Return-Path: Received: from smtp1.linuxfoundation.org (smtp1.linux-foundation.org [172.17.192.35]) by mail.linuxfoundation.org (Postfix) with ESMTPS id 2FE83C90 for ; Fri, 18 Dec 2015 02:30:42 +0000 (UTC) X-Greylist: whitelisted by SQLgrey-1.7.6 Received: from mail-io0-f180.google.com (mail-io0-f180.google.com [209.85.223.180]) by smtp1.linuxfoundation.org (Postfix) with ESMTPS id 703FDED for ; Fri, 18 Dec 2015 02:30:39 +0000 (UTC) Received: by mail-io0-f180.google.com with SMTP id e126so75889245ioa.1 for ; Thu, 17 Dec 2015 18:30:39 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:date:message-id:subject:from:to:content-type; bh=dUw9E0y4zxSufvPGTTZWXDOTeJ58MbTFvLjXb+D+p5g=; b=f0HQowA0t+GWJw9hXqztVaXAeT9dCdHHqWBqcjsv/vGAWDP6TrGmzFebLUN3HGFs6S Tpj3C8wCB1sf3ZvqJmjNzYfgvH+t8FBZv5e/UvDQ0d5iHbhKyE+INIAzGF7iB26PGIkS gjQJgQkUWsTrz4r8poeD0p/RR5LKf2G1J14gPz7LI30TQBUHM37SLaWAQ9Q1/1jHyL+F q8zyrZGMSBACgrJ7+0+MBd0NWY3UdgovW+b9q+9sV0m7jdmWYuGyDLWpXN2dgmczt15z /ZIawA09xRzONH1UOmbYW+cM4DuxUucgf7EtcEx+uc4ajrf0WXSMpdBQAPJ0QITRDBli 7atA== MIME-Version: 1.0 X-Received: by 10.107.168.5 with SMTP id r5mr1952548ioe.126.1450405839057; Thu, 17 Dec 2015 18:30:39 -0800 (PST) Received: by 10.36.80.6 with HTTP; Thu, 17 Dec 2015 18:30:38 -0800 (PST) Date: Fri, 18 Dec 2015 03:30:38 +0100 Message-ID: From: Pieter Wuille To: Bitcoin Dev Content-Type: text/plain; charset=UTF-8 X-Spam-Status: No, score=-2.7 required=5.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID, DKIM_VALID_AU, FREEMAIL_FROM, RCVD_IN_DNSWL_LOW autolearn=ham version=3.3.1 X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on smtp1.linux-foundation.org Subject: [bitcoin-dev] On the security of softforks X-BeenThere: bitcoin-dev@lists.linuxfoundation.org X-Mailman-Version: 2.1.12 Precedence: list List-Id: Bitcoin Development Discussion List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 18 Dec 2015 02:30:42 -0000 Hello all, For a long time, I was personally of the opinion that soft forks constituted a mild security reduction for old full nodes, albeit one that was preferable to hard forks due to being far less risky, easier, and less forceful to deploy. After thinking more about this, I'm not convinced that it is even that anymore. Let's analyze all failure modes (and feel free to let me know whether I've missed any specific ones): 1) The risk of an old full node wallet accepting a transaction that is invalid to the new rules. The receiver wallet chooses what address/script to accept coins on. They'll upgrade to the new softfork rules before creating an address that depends on the softfork's features. So, not a problem. 2) The risk of an old full node wallet accepting a transaction whose coins passed through a script that depends on the softforked rules. It is reasonable that the receiver of a transaction places some trust in the sender, and on the basis of that, decides to reduce the number of confirmations before acceptance. In case the transaction indirectly depends on a low-confirmation transaction using softforked rules, it may be treated as an anyone-can-spend transaction. Obviously, no trust can be placed in such a transactions not being reorged out and replaced with an incompatible one. However, this problem is common for all anyonecanspend transactions, which are perfectly legal today in the blockchain. So, if this is a worry, we can solve it by marking incoming transactions as "uncertain history" in the wallet if they have an anyonecanspend transaction with less than 6 confirmations in its history. In fact, the same problem to a lesser extent exists if coins pass through a 1-of-N multisig or so, because you're not only trusting the (indirect) senders, but also their potential cosigners. 3) The risk of an SPV node wallet accepting an unconfirmed transaction which is invalid to new nodes. Defrauding an SPV wallet with an invalid unconfirmed transaction doesn't change with the introduction of new consensus rules, as they don't validate them anyway. In the case the client trusts the full node peer(s) it is connected to to do validation before relay, nodes can either indicate (service bit or new p2p message) which softforks are accepted (as it only matters to SPV wallets that wish to accept transactions using new style script anyway), or wallets can rely on the new rules being non-standard even to old full nodes (which is typically aimed for in softforks). 4) The risk of an SPV node wallet accepting a confirmed transaction which is invalid to new nodes Miners can of course construct an invalid block purely for defrauding SPV nodes, without intending to get that block accepted by full nodes. That is expensive (no subsidy/fee income for those blocks) and more importantly it isn't in any way affected by softforks. So the only place where this matters is where miners create a block chain that violates the new rules, and still get it accepted. This requires a hash rate majority, and sufficiently few economically important full nodes that forking them off is a viable approach. It's interesting that even though it requires forking off full nodes (who will notice, there will be an invalid majority hash rate chain to them), the attack only allows defrauding SPV nodes. It can't be used to bypass any of the economic properties of the system (as subsidy and other resource limits are still enforced by old nodes, and invalid scripts will either not be accepted by old full nodes wallets, or are as vulnerable as unrelated anyonecanspends). Furthermore, it's easily preventable by not using the feature in SPV wallets until a sufficient amount of economically relevant full nodes are known to have upgraded, or by just waiting for enough confirmations. So, we'd of course prefer to have all full nodes enforce all rules, but the security reduction is not large. On the other hand, there are also security advantages that softforks offer: A) Softforks do not require the pervasive consensus that hardforks need. Soft forks can be deployed without knowing when all full nodes will adopt the rule, or even whether they will ever adopt it at all. B) Keeping up with hard forking changes puts load on full node operators, who may choose to instead switch to delegating full validation to third parties, which is worse than just validating the old rules. C) Hardfork coordination has a centralizing effect on development. As hardforks can only be deployed with sufficient node deployment, they can't just be triggered by miner votes. This requires central coordination to determine flag times, which is incompatible with having multiple independent consensus changes being proposed. For softforks, something like BIP9 supports having multiple independent softforks in flight, that nodes can individually chose to accept or not, only requiring coordination to not choose clashing bit numbers. For hardforks, there is effectively no choice but having every codebase deployed at a particular point in time to support every possible hard forks (there can still be an additional hashpower based trigger conditions for hardforks, but all nodes need to support the fork at the earliest time it can happen, or risk being forked off). D) If you are concerned about the security degradation a soft fork might bring, you can always configure your node to treat a (signalled) softfork as a hardfork, and stop processing blocks if a sortfork condition is detected. The other direction is not possible. -- Pieter