Return-Path: Received: from hemlock.osuosl.org (smtp2.osuosl.org [140.211.166.133]) by lists.linuxfoundation.org (Postfix) with ESMTP id EE6A5C0172 for ; Tue, 28 Apr 2020 13:03:43 +0000 (UTC) Received: from localhost (localhost [127.0.0.1]) by hemlock.osuosl.org (Postfix) with ESMTP id D9BBE87ED9 for ; Tue, 28 Apr 2020 13:03:43 +0000 (UTC) X-Virus-Scanned: amavisd-new at osuosl.org Received: from hemlock.osuosl.org ([127.0.0.1]) by localhost (.osuosl.org [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id 8vIwYQZTRJW9 for ; Tue, 28 Apr 2020 13:03:42 +0000 (UTC) X-Greylist: domain auto-whitelisted by SQLgrey-1.7.6 Received: from mx1.riseup.net (mx1.riseup.net [198.252.153.129]) by hemlock.osuosl.org (Postfix) with ESMTPS id 347A788026 for ; Tue, 28 Apr 2020 13:03:42 +0000 (UTC) Received: from capuchin.riseup.net (unknown [10.0.1.176]) (using TLSv1 with cipher ECDHE-RSA-AES256-SHA (256/256 bits)) (Client CN "*.riseup.net", Issuer "Sectigo RSA Domain Validation Secure Server CA" (not verified)) by mx1.riseup.net (Postfix) with ESMTPS id 49BMK96VtWzFfB2 for ; Tue, 28 Apr 2020 06:03:41 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=riseup.net; s=squak; t=1588079021; bh=NiIRjM/Aw0Wjrk81lsXTGvF5neHButrcioxf+0TwI+Q=; h=Subject:To:References:From:Date:In-Reply-To:From; b=KYHJ5q65DpUjjmopAAQ8HRCkY0GYMAjhFTZOLnOIV37lRin855wjC1MBLfyykOB5d mCodpMvDj8TKSxlTxrpX0qda95W10e6fU1DSCL9TfeJ/38sJEkBiSP3VNsfaMGfZhU TyAM98AfgZ+0C5XhQWN33Hxq4f5vFd8eu9D9nNaI= X-Riseup-User-ID: 72DA326C3C145CD52C7502C48CEB0665FBD092A95CBF13BC0DEA9A9714E40CF1 Received: from [127.0.0.1] (localhost [127.0.0.1]) by capuchin.riseup.net (Postfix) with ESMTPSA id 49BMK85sh6z8vWC for ; Tue, 28 Apr 2020 06:03:40 -0700 (PDT) To: bitcoin-dev@lists.linuxfoundation.org References: <-_xRcjb8H_0Bck71k4VkeukEBgHT-03ikLTIdyTG2P0rt0T_mvN4b4FejmWobwnAUCGNaDpFQlPc3TMwlml1gjnZ1lwSumeEYQpXSyijND0=@protonmail.com> From: Chris Belcher Autocrypt: addr=belcher@riseup.net; prefer-encrypt=mutual; keydata= xsFNBFPk74oBEACzBLjd+Z5z7eimqPuObFTaJCTXP7fgZjgVwt+q94VQ2wM0ctk/Ft9w2A92 f14T7PiHaVDjHxrcW+6sw2VI2f60T8Tjf+b4701hIybluWL8DntG9BW19bZLmjAj7zkgektl YNDUrlYcQq2OEHm/MGk6Ajt2RA56aRKqoz22e+4ZA89gDgamxUAadul7AETSsgqOEUDI0FKR FODzoH65w1ien/DLkG1f76jd0XA6AxrESJVO0JzvkTnJGElBcA37rYaMmDi4DhG2MY4u63VE 8h6DyUXcRhmTZIAj+r+Ht+KMDiuiyQcKywCzzF/7Ui7YxqeAgjm5aPDU2E8X9Qd7cqHQzFM7 ZCqc9P6ENAk5a0JjHw0d0knApboSvkIJUB0j1xDIS0HaRlfHM4TPdOoDgnaXb7BvDfE+0zSz WkvAns9oJV6uWdnz5kllVCjgB/FXO4plyFCHhXikXjm1XuQyL8xV88OqgDFXwVhKrDL9Pknu sTchYm3BS2b5Xq1HQqToT3I2gRGTtDzZVZV0izCefJaDp1mf49k2cokDEfw9MroEj4A0Wfht 0J64pzlBYn/9zor5cZp/EAblLRDK6HKhSZArIiDR1RC7a6s7oTzmfn0suhKDdTzkbTAnDsPi Dokl58xoxz+JdYKjzVh98lpcvMPlbZ+LwIsgbdH4KZj7mVOsJwARAQABzR9DaHJpcyBCZWxj aGVyIDxmYWxzZUBlbWFpbC5jb20+wsF+BBMBAgAoBQJT5O+KAhsDBQkSzAMABgsJCAcDAgYV CAIJCgsEFgIDAQIeAQIXgAAKCRDvc06md/MRKS8jD/9P9fSYSIVjltL9brAMfIu7wJn0H0lX TbcuCM2uQitJ3BNxI3c7aq5dEby27u5Ud54otncDJuRPQVDKs6H7t1rInitgJ1MTQ9/aQGFA btKcgtVIMFbeClzTTfWr4W7fE45NI7E9EANgk5JfmWh3U+KINYLF5RtqynYocrsP6zOV+G9A HCpBemd9TN60CoMLMyMzTHEW1oQffaVAXY8DgthEYO/odWYIod7VTmEm0zU1aSysPqMwPWNm 8XIl0f8SfKQyZlAU8e1eCFVCenkE44FKC5qQNYc2UxexEYtfCWChTGc4oHKxIyYmTCCefsQF LvgwtvlNHRXHSDKSPSNcRcpl8DFpNEKrmMlkJ8Mx+YR05CydlTQ0bI3FBohJC+UHrjD5I3hA wJUC1o+yVSOEd+zN3cG1EECIwkEQSmBgG5t/le2RdzfXOdpf9ku2/zoBpq00R54JxUKlfRM7 OPTv7X+1AKHkxOySdCZwGgvdh2Whuqs4kTvtco00gCFM9fBd5oi1RJuHtxHsj8+/XU15UItb jeo96CIlM5YUeoRLPT5mxZYWgYAARFeSFReNq/Tuwq9d8EokUrtAyrPayznliy53UJfWDVzl 925c0Cz0HWaP2fWj+uFcj/8K0bhptuWJQy0Poht1z3aJC1UjEgr1Xz8I7jeSJmIlA9plcJw2 k4dhWc7BTQRT5O+KARAAyFxAM28EQwLctr0CrQhYWZfMKzAhCw+EyrUJ+/e4uiAQ4OyXifRr ZV6kLRul3WbTB1kpA6wgCShO0N3vw8fFG2Cs6QphVagEH8yfQUroaVxgADYOTLHMOb7INS8r KI/uRNmE6bXTX27oaqCEXLMycqYlufad7hr42S/T8zNh5m2vl6T/1Poj2/ormViKwAxM+8qf xd8FNI4UKmq2zZE9mZ5PiSIX0qRgM0yCvxV39ex/nhxzouTBvv4Lb1ntplR/bMLrHxsCzhyM KDgcX7ApGm+y6YEsOvzw9rRCRuJpE4lth8ShgjTtNTHfklBD6Ztymc7q7bdPWpKOEvO5lDQ6 q8+KfENv862cOLlWLk7YR2+mHZ1PXGhWC7ggwEkfGJoXo0x8X+zgUKe2+9Jj4yEhfL0IbFYC z2J5d+cWVIBktI3xqkwLUZWuAbE3vgYA4h8ztR6l18NTPkiAvpNQEaL4ZRnAx22WdsQ8GlEW dyKZBWbLUdNcMmPfGi5FCw2nNvCyN6ktv5mTZE12EqgvpzYcuUGQPIMV9KTlSPum3NLDq8QI 6grbG8iNNpEBxmCQOKz2/BuYApU2hwt2E44fL8e6CRK3ridcRdqpueg75my6KkOqm8nSiMEc /pVIHwdJ9/quiuRaeC/tZWlYPIwDWgb8ZE/g66z35WAguMQ+EwfvgAUAEQEAAcLBZQQYAQIA DwUCU+TvigIbDAUJEswDAAAKCRDvc06md/MRKaZwD/9OI3o3gVmst/mGx6hVQry++ht8dFWN IiASPBvD3E5EWbqWi6mmqSIOS6CxjU0PncxTBPCXtzxo/WzuHGQg/xtNeQ0T8b2lBScZAw93 qm1IcHXLUe5w/Tap6YaDmSYCIZAdtbHzYfPW4JK7cmvcjvF8jhTFOBEOFVQkTi19G7caVot0 +wL1e2DRHDXAe5CinEpaLBlwHeEu/5j6wc3erohUZlK9IbAclj4iZTQbaq3EyqUXl59dBOON xmL5edJxzVishIYQGIyA9WP1SylXt+kO82NEqZG2OxdXAlzjuJ8C2pAG+nbLtDo4hcsiN/MA aX9/JB7MXclT5ioerF4yNgKEdfq7LmynsTUd8w/Ilyp7AD+BWoujyO94i8h9eKvjf9PvSwxQ uAjRpxne7ZJD8vCsMNXBHSbeEK2LiwStHL/w473viXpDD53J6OLxX6a5RummR+rixbMH7dgK MJQ7FlyDphm3or6CSkGEir1KA0y1vqQNFtHhguFapAWMDKaJjQQNgvZUmOo6hbZqmvUF1OWc d6GA6j3WOUe3fDJXfbq6P9Jmxq64op887dYKsg7xjQq/7KM7wyRcqXXcbBdgvNtVDP+EnzBN HyYY/3ms4YIHE5JHxQ9LV4yPcWkYTvb1XpNIFVbrSXAeyGHVNT+SO6olFovbWIC3Az9yesaM 1aSoTg== Message-ID: <0e1c0287-617c-976c-9fd4-16683881d5d5@riseup.net> Date: Tue, 28 Apr 2020 14:03:36 +0100 MIME-Version: 1.0 In-Reply-To: <-_xRcjb8H_0Bck71k4VkeukEBgHT-03ikLTIdyTG2P0rt0T_mvN4b4FejmWobwnAUCGNaDpFQlPc3TMwlml1gjnZ1lwSumeEYQpXSyijND0=@protonmail.com> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit Subject: Re: [bitcoin-dev] Fwd: (Semi)Traceless 2-party coinjoin off-chain protocol using schnorr signatures X-BeenThere: bitcoin-dev@lists.linuxfoundation.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: Bitcoin Protocol Discussion List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 28 Apr 2020 13:03:44 -0000 On 24/04/2020 02:34, ZmnSCPxj via bitcoin-dev wrote: > Good morning Germán, > > >> With regards to trying to tackle the problem of value-based correlations, wouldn't it be possible to try to model the solution after the equal-sum-subset problem (np complete problem)( https://www.cs.mcgill.ca/~lyepre/pdf/assignment2-solutions/subsetSumNPCompleteness.pdf  )?  >> That is, a pair of individuals with a set of UTXOs that both add up to similar if not equal value perform a swap of similar-(total)value sets. In this way the values of the UTXOs can be broken up essentially at random (following some nominal distribution so that it doesn't stand out; e.g. https://en.wikipedia.org/wiki/Benford%27s_law), but swapped in conjunction and decorrelated by using different keys + randomized locktimes. > > There are a number of issues to simply modeling this to the subset-sum problem. > > * There is a practical limit to the number of UTXOs you would be willing to receive in the swap. > * Every UTXO you receive increases the potential fee you have to pay to spend them, meaning you would strongly dislike receiving 100 UTXOs that sum up to 1mBTC. > * Thus, a practical blockchain analyst can bound the size of the sets involved, and the problem becomes less than NP in practice. > * If you have a single UTXO and split it, then swap, anyone looking at the history can conjecture that the split involved is part of a CoinSwap. > * The split is now a hint on how the subset sums can be tried. > * If after the CoinSwap you spend the UTXOs you received in a single transaction, then you just published the solution to the subset sum for your adversary. > * This ties in even further to the "practical limit on the number of UTXOs". > * Because it is not safe to spend the UTXOs from a single CoinSwap together, you want to have fewer, larger UTXOs for more flexibility in spending later. > > I believe belcher and waxwing and nopara73 have been working far longer on privacy tech, and you should try to get in contact with them as well, they may know of other issues (or solutions to the above problems). > > Regards, > ZmnSCPxj > _______________________________________________ > bitcoin-dev mailing list > bitcoin-dev@lists.linuxfoundation.org > https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev > Hello list, A couple of thoughts on multi-transaction coinswaps: * Users should never split up a single UTXO before doing a coinswap, instead they should send the one UTXO to a coinswap address and get back multiple UTXOs. For example, this 1-to-3 TXO coinswap (The symbol ----> means bitcoin transaction). AliceA (10 BTC) ----> CoinSwap AddressA ----> BobA (10 BTC) BobB (3 BTC) ----> CoinSwap AddressB ----> AliceB (6 BTC) BobC (2 BTC) ----> CoinSwap AddressC ----> AliceC (3 BTC) BobD (5 BTC) ----> CoinSwap AddressD ----> AliceD (1 BTC) Note that the Bob-to-Alice set of transactions add up to 10 BTC, the entire CoinSwap is swapping the same amount. Or written another way: Alice TXO (10 BTC) ----> Coinswap Protocol ----> Alice TXO1 (6 BTC) ----> Alice TXO2 (3 BTC) ----> Alice TXO3 (1 BTC) This kind of thing could also be used for consolidation of many UTXOs without necessarily leaking information that the same person owns them. For example, if Alice owns 5 UTXOs: Alice TXO1 ----> Coinswap Protocol ----> Alice TXO Alice TXO2 ----> Alice TXO3 ----> Alice TXO4 ----> Alice TXO5 ----> * It's helpful if any CoinSwap app is actually used for spending rather than just mixing back to yourself. That will help avoid the problem of users inadvertently co-spending all their coinswap outputs in the same transaction. An example of Alice paying for a VPN anonymously: Alice TXO (10 BTC) ---> Coinswap Protocol ---> VPN Payment (0.1 BTC) ---> Change1 (6 BTC) ---> Change2 (3 BTC) ---> Change3 (0.9 BTC) In this case Alice will never accidentally merge all her TXOs together, because the VPN Payment TXO doesn't belong to her. Also this could improve privacy because unlike in normal transaction the VPN provider might not be able to figure out the lower bound of Alice's balance (10 BTC in this case). * Multi-transaction CoinSwaps aren't truly an example of a subset-sum problem, but "sparse subset sum", a related and easier problem. The way its normally formulated, subset sum is about finding a subset that adds up to a target value. But in multi-transaction coinswap there'd only be three or four CoinSwap outputs, so the problem is finding just three or four integers in a big set that add up to the target. You could think of it mathematically that the n-choose-k function is near-polynomial when k is near 0 or near n, and the function is exponential when k is near n/2. A more promising way to build privacy is to create a situation where an adversary would find a huge amount of false positives which are very close the amount being sent. So even if the adversary has enough computational power to iterate all the amounts it won't help them much due to the huge number of false positives. Regards CB