// File gp_Vec2d.cxx, JCV 06/90 // File gp_Vec2d.cxx, REG 26/10/90 nouvelle version // JCV 08/01/90 Modifs suite a l'introduction des classes XY et Mat2d dans gp #define No_Standard_OutOfRange #include #include #include Standard_Boolean gp_Vec2d::IsEqual (const gp_Vec2d& Other, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance) const { const Standard_Real theNorm = Magnitude(); const Standard_Real theOtherNorm = Other.Magnitude(); Standard_Real val = theNorm - theOtherNorm; if (val < 0.0) val = -val; // Check for equal lengths const Standard_Boolean isEqualLength = (val <= LinearTolerance); // Check for small vectors if (theNorm > LinearTolerance && theOtherNorm > LinearTolerance) { Standard_Real Ang = Angle(Other); if (Ang < 0.0) Ang = -Ang; // Check for zero angle return isEqualLength && (Ang <= AngularTolerance); } return isEqualLength; } Standard_Real gp_Vec2d::Angle (const gp_Vec2d& Other) const { // Commentaires : // Au dessus de 45 degres l'arccos donne la meilleur precision pour le // calcul de l'angle. Sinon il vaut mieux utiliser l'arcsin. // Les erreurs commises sont loin d'etre negligeables lorsque l'on est // proche de zero ou de 90 degres. // En 2D les valeurs angulaires sont comprises entre -PI et PI const Standard_Real theNorm = Magnitude(); const Standard_Real theOtherNorm = Other.Magnitude(); if (theNorm <= gp::Resolution() || theOtherNorm <= gp::Resolution()) gp_VectorWithNullMagnitude::Raise(); const Standard_Real D = theNorm * theOtherNorm; const Standard_Real Cosinus = coord.Dot (Other.coord) / D; const Standard_Real Sinus = coord.Crossed (Other.coord) / D; if (Cosinus > -0.70710678118655 && Cosinus < 0.70710678118655) { if (Sinus > 0.0) return acos (Cosinus); else return -acos (Cosinus); } else { if (Cosinus > 0.0) return asin (Sinus); else { if (Sinus > 0.0) return PI - asin (Sinus); else return - PI - asin (Sinus); } } } void gp_Vec2d::Mirror (const gp_Ax2d& A1) { const gp_XY& XY = A1.Direction().XY(); Standard_Real X = coord.X(); Standard_Real Y = coord.Y(); Standard_Real A = XY.X(); Standard_Real B = XY.Y(); Standard_Real M1 = 2.0 * A * B; coord.SetX(((2.0 * A * A) - 1.) * X + M1 * Y); coord.SetY(M1 * X + ((2. * B * B) - 1.0) * Y); } gp_Vec2d gp_Vec2d::Mirrored (const gp_Ax2d& A1) const { gp_Vec2d Vres = *this; Vres.Mirror(A1); return Vres; } void gp_Vec2d::Transform (const gp_Trsf2d& T) { if (T.Form() == gp_Identity || T.Form() == gp_Translation) { } else if (T.Form() == gp_PntMirror) coord.Reverse (); else if (T.Form() == gp_Scale) coord.Multiply (T.ScaleFactor ()); else coord.Multiply (T.VectorialPart ()); } void gp_Vec2d::Mirror (const gp_Vec2d& V) { const Standard_Real D = V.coord.Modulus(); if (D > gp::Resolution()) { const gp_XY& XY = V.coord; Standard_Real X = XY.X(); Standard_Real Y = XY.Y(); Standard_Real A = X / D; Standard_Real B = Y / D; Standard_Real M1 = 2.0 * A * B; coord.SetX(((2.0 * A * A) - 1.0) * X + M1 * Y); coord.SetY(M1 * X + ((2.0 * B * B) - 1.0) * Y); } } gp_Vec2d gp_Vec2d::Mirrored (const gp_Vec2d& V) const { gp_Vec2d Vres = *this; Vres.Mirror(V); return Vres; }