// File: Approx_CurveOnSurface.cxx // Created: Mon Oct 6 14:34:17 1997 // Author: Roman BORISOV // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //======================================================================= //class : Approx_CurveOnSurface_Eval //purpose: evaluator class for approximation of both 2d and 3d curves //======================================================================= class Approx_CurveOnSurface_Eval : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval (const Handle(Adaptor3d_HCurve)& theFunc, const Handle(Adaptor2d_HCurve2d)& theFunc2d, Standard_Real First, Standard_Real Last) : fonct(theFunc), fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor3d_HCurve) fonct; Handle(Adaptor2d_HCurve2d) fonct2d; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 5) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1], Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt pnt; gp_Pnt2d pnt2d; switch (*Order) { case 0: { fonct2d->D0(par, pnt2d); fonct->D0(par, pnt); Result[0] = pnt2d.X(); Result[1] = pnt2d.Y(); Result[2] = pnt.X(); Result[3] = pnt.Y(); Result[4] = pnt.Z(); break; } case 1: { gp_Vec v1; gp_Vec2d v21; fonct2d->D1(par, pnt2d, v21); fonct->D1(par,pnt, v1); Result[0] = v21.X(); Result[1] = v21.Y(); Result[2] = v1.X(); Result[3] = v1.Y(); Result[4] = v1.Z(); break; } case 2: { gp_Vec v1, v2; gp_Vec2d v21, v22; fonct2d->D2(par, pnt2d, v21, v22); fonct->D2(par, pnt, v1, v2); Result[0] = v22.X(); Result[1] = v22.Y(); Result[2] = v2.X(); Result[3] = v2.Y(); Result[4] = v2.Z(); break; } default: Result[0] = Result[1] = Result[2] = Result[3] = Result[4] = 0.; *ErrorCode = 3; break; } } //======================================================================= //class : Approx_CurveOnSurface_Eval3d //purpose: evaluator class for approximation of 3d curve //======================================================================= class Approx_CurveOnSurface_Eval3d : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval3d (const Handle(Adaptor3d_HCurve)& theFunc, Standard_Real First, Standard_Real Last) : fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor3d_HCurve) fonct; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval3d::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 3) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt pnt; switch (*Order) { case 0: pnt = fonct->Value(par); Result[0] = pnt.X(); Result[1] = pnt.Y(); Result[2] = pnt.Z(); break; case 1: { gp_Vec v1; fonct->D1(par, pnt, v1); Result[0] = v1.X(); Result[1] = v1.Y(); Result[2] = v1.Z(); break; } case 2: { gp_Vec v1, v2; fonct->D2(par, pnt, v1, v2); Result[0] = v2.X(); Result[1] = v2.Y(); Result[2] = v2.Z(); break; } default: Result[0] = Result[1] = Result[2] = 0.; *ErrorCode = 3; break; } } //======================================================================= //class : Approx_CurveOnSurface_Eval2d //purpose: evaluator class for approximation of 2d curve //======================================================================= class Approx_CurveOnSurface_Eval2d : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval2d (const Handle(Adaptor2d_HCurve2d)& theFunc2d, Standard_Real First, Standard_Real Last) : fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor2d_HCurve2d) fonct2d; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval2d::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 2) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt2d pnt; switch (*Order) { case 0: { pnt = fonct2d->Value(par); Result[0] = pnt.X(); Result[1] = pnt.Y(); break; } case 1: { gp_Vec2d v1; fonct2d->D1(par, pnt, v1); Result[0] = v1.X(); Result[1] = v1.Y(); break; } case 2: { gp_Vec2d v1, v2; fonct2d->D2(par, pnt, v1, v2); Result[0] = v2.X(); Result[1] = v2.Y(); break; } default: Result[0] = Result[1] = 0.; *ErrorCode = 3; break; } } Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_HCurve2d)& C2D, const Handle(Adaptor3d_HSurface)& Surf, const Standard_Real First, const Standard_Real Last, const Standard_Real Tol, const GeomAbs_Shape S, const Standard_Integer MaxDegree, const Standard_Integer MaxSegments, const Standard_Boolean only3d, const Standard_Boolean only2d) { myIsDone = Standard_False; if(only3d && only2d) Standard_ConstructionError::Raise(); GeomAbs_Shape Order = S; Handle( Adaptor2d_HCurve2d ) TrimmedC2D = C2D->Trim( First, Last, Precision::PConfusion() ); Adaptor3d_CurveOnSurface COnS( TrimmedC2D, Surf ); Handle(Adaptor3d_HCurveOnSurface) HCOnS = new Adaptor3d_HCurveOnSurface(); HCOnS->Set(COnS); Standard_Integer Num1DSS = 0, Num2DSS=0, Num3DSS=0; Handle(TColStd_HArray1OfReal) OneDTol; Handle(TColStd_HArray1OfReal) TwoDTolNul; Handle(TColStd_HArray1OfReal) ThreeDTol; // create evaluators and choose appropriate one Approx_CurveOnSurface_Eval3d Eval3dCvOnSurf (HCOnS, First, Last); Approx_CurveOnSurface_Eval2d Eval2dCvOnSurf ( TrimmedC2D, First, Last); Approx_CurveOnSurface_Eval EvalCvOnSurf (HCOnS, TrimmedC2D, First, Last); AdvApprox_EvaluatorFunction* EvalPtr; if ( only3d ) EvalPtr = &Eval3dCvOnSurf; else if ( only2d ) EvalPtr = &Eval2dCvOnSurf; else EvalPtr = &EvalCvOnSurf; // Initialization for 2d approximation if(!only3d) { Num1DSS = 2; OneDTol = new TColStd_HArray1OfReal(1,Num1DSS); Standard_Real TolU, TolV; TolU = Surf->UResolution(Tol)/2; TolV = Surf->VResolution(Tol)/2; OneDTol->SetValue(1,TolU); OneDTol->SetValue(2,TolV); } if(!only2d) { Num3DSS=1; ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS); ThreeDTol->Init(Tol/2); } myError2dU = 0; myError2dV = 0; myError3d = 0; Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2); TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1); HCOnS->Intervals(CutPnts_C2, GeomAbs_C2); Standard_Integer NbInterv_C3 = HCOnS->NbIntervals(GeomAbs_C3); TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3 + 1); HCOnS->Intervals(CutPnts_C3, GeomAbs_C3); AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3); AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS, OneDTol, TwoDTolNul, ThreeDTol, First, Last, Order, MaxDegree, MaxSegments, *EvalPtr, CutTool); myIsDone = aApprox.IsDone(); myHasResult = aApprox.HasResult(); if (myHasResult) { Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots(); Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities(); Standard_Integer Degree = aApprox.Degree(); if(!only2d) { TColgp_Array1OfPnt Poles(1,aApprox.NbPoles()); aApprox.Poles(1,Poles); myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree); myError3d = aApprox.MaxError(3, 1); } if(!only3d) { TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles()); TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles()); aApprox.Poles1d(1, Poles1dU); TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles()); aApprox.Poles1d(2, Poles1dV); for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++) Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i))); myCurve2d = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree); myError2dU = aApprox.MaxError(1, 1); myError2dV = aApprox.MaxError(1, 2); } } // } } Standard_Boolean Approx_CurveOnSurface::IsDone() const { return myIsDone; } Standard_Boolean Approx_CurveOnSurface::HasResult() const { return myHasResult; } Handle(Geom_BSplineCurve) Approx_CurveOnSurface::Curve3d() const { return myCurve3d; } Handle(Geom2d_BSplineCurve) Approx_CurveOnSurface::Curve2d() const { return myCurve2d; } Standard_Real Approx_CurveOnSurface::MaxError3d() const { return myError3d; } Standard_Real Approx_CurveOnSurface::MaxError2dU() const { return myError2dU; } Standard_Real Approx_CurveOnSurface::MaxError2dV() const { return myError2dV; }