#include #include #include #include #include #include #include #include #include class HMath_Vector{ math_Vector *pvec; void operator=(const math_Vector&){} public: HMath_Vector(){ pvec = 0;} HMath_Vector(math_Vector* pv){ pvec = pv;} ~HMath_Vector(){ if(pvec != 0) delete pvec;} void operator=(math_Vector* pv){ if(pvec != pv && pvec != 0) delete pvec; pvec = pv;} Standard_Real& operator()(Standard_Integer i){ return (*pvec).operator()(i);} const Standard_Real& operator()(Standard_Integer i) const{ return (*pvec).operator()(i);} const math_Vector* operator->() const{ return pvec;} math_Vector* operator->(){ return pvec;} math_Vector* Vector(){ return pvec;} math_Vector* Init(Standard_Real v, Standard_Integer i = 0, Standard_Integer iEnd = 0){ if(pvec == 0) return pvec; if(iEnd - i == 0) pvec->Init(v); else { Standard_Integer End = (iEnd <= pvec->Upper()) ? iEnd : pvec->Upper(); for(; i <= End; i++) pvec->operator()(i) = v; } return pvec; } }; static Standard_Real EPS_PARAM = 1.e-12; static Standard_Real EPS_DIM = 1.e-20; static Standard_Real ERROR_ALGEBR_RATIO = 2.0/3.0; static Standard_Integer GPM = 61; static Standard_Integer SUBS_POWER = 32; static Standard_Integer SM = 1953; static math_Vector LGaussP0(1,GPM); static math_Vector LGaussW0(1,GPM); static math_Vector LGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))); static math_Vector LGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))); static math_Vector* LGaussP[] = {&LGaussP0,&LGaussP1}; static math_Vector* LGaussW[] = {&LGaussW0,&LGaussW1}; static HMath_Vector L1 = new math_Vector(1,SM,0.0); static HMath_Vector L2 = new math_Vector(1,SM,0.0); static HMath_Vector DimL = new math_Vector(1,SM,0.0); static HMath_Vector ErrL = new math_Vector(1,SM,0.0); static HMath_Vector ErrUL = new math_Vector(1,SM,0.0); static HMath_Vector IxL = new math_Vector(1,SM,0.0); static HMath_Vector IyL = new math_Vector(1,SM,0.0); static HMath_Vector IzL = new math_Vector(1,SM,0.0); static HMath_Vector IxxL = new math_Vector(1,SM,0.0); static HMath_Vector IyyL = new math_Vector(1,SM,0.0); static HMath_Vector IzzL = new math_Vector(1,SM,0.0); static HMath_Vector IxyL = new math_Vector(1,SM,0.0); static HMath_Vector IxzL = new math_Vector(1,SM,0.0); static HMath_Vector IyzL = new math_Vector(1,SM,0.0); static math_Vector UGaussP0(1,GPM); static math_Vector UGaussW0(1,GPM); static math_Vector UGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))); static math_Vector UGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))); static math_Vector* UGaussP[] = {&UGaussP0,&UGaussP1}; static math_Vector* UGaussW[] = {&UGaussW0,&UGaussW1}; static HMath_Vector U1 = new math_Vector(1,SM,0.0); static HMath_Vector U2 = new math_Vector(1,SM,0.0); static HMath_Vector DimU = new math_Vector(1,SM,0.0); static HMath_Vector ErrU = new math_Vector(1,SM,0.0); static HMath_Vector IxU = new math_Vector(1,SM,0.0); static HMath_Vector IyU = new math_Vector(1,SM,0.0); static HMath_Vector IzU = new math_Vector(1,SM,0.0); static HMath_Vector IxxU = new math_Vector(1,SM,0.0); static HMath_Vector IyyU = new math_Vector(1,SM,0.0); static HMath_Vector IzzU = new math_Vector(1,SM,0.0); static HMath_Vector IxyU = new math_Vector(1,SM,0.0); static HMath_Vector IxzU = new math_Vector(1,SM,0.0); static HMath_Vector IyzU = new math_Vector(1,SM,0.0); static Standard_Integer FillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots, HMath_Vector& VA, HMath_Vector& VB) { Standard_Integer i = 1, iEnd = Knots.Upper(), j = 1, k = 1; VA(j++) = A; for(; i <= iEnd; i++){ Standard_Real kn = Knots(i); if(A < kn) { if(kn < B) VA(j++) = VB(k++) = kn; else break; } } VB(k) = B; return k; } static inline Standard_Integer MaxSubs(Standard_Integer n, Standard_Integer coeff = SUBS_POWER){ // return n = IntegerLast()/coeff < n? IntegerLast(): n*coeff + 1; return Min((n * coeff + 1),SM); } static Standard_Integer LFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots, const Standard_Integer NumSubs) { Standard_Integer iEnd = Knots.Upper(), jEnd = L1->Upper(); if(iEnd - 1 > jEnd){ iEnd = MaxSubs(iEnd-1,NumSubs); L1 = new math_Vector(1,iEnd); L2 = new math_Vector(1,iEnd); DimL = new math_Vector(1,iEnd); ErrL = new math_Vector(1,iEnd,0.0); ErrUL = new math_Vector(1,iEnd,0.0); IxL = new math_Vector(1,iEnd); IyL = new math_Vector(1,iEnd); IzL = new math_Vector(1,iEnd); IxxL = new math_Vector(1,iEnd); IyyL = new math_Vector(1,iEnd); IzzL = new math_Vector(1,iEnd); IxyL = new math_Vector(1,iEnd); IxzL = new math_Vector(1,iEnd); IyzL = new math_Vector(1,iEnd); } return FillIntervalBounds(A, B, Knots, L1, L2); } static Standard_Integer UFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots, const Standard_Integer NumSubs) { Standard_Integer iEnd = Knots.Upper(), jEnd = U1->Upper(); if(iEnd - 1 > jEnd){ iEnd = MaxSubs(iEnd-1,NumSubs); U1 = new math_Vector(1,iEnd); U2 = new math_Vector(1,iEnd); DimU = new math_Vector(1,iEnd); ErrU = new math_Vector(1,iEnd,0.0); IxU = new math_Vector(1,iEnd); IyU = new math_Vector(1,iEnd); IzU = new math_Vector(1,iEnd); IxxU = new math_Vector(1,iEnd); IyyU = new math_Vector(1,iEnd); IzzU = new math_Vector(1,iEnd); IxyU = new math_Vector(1,iEnd); IxzU = new math_Vector(1,iEnd); IyzU = new math_Vector(1,iEnd); } return FillIntervalBounds(A, B, Knots, U1, U2); } static Standard_Real CCompute(Face& S, Domain& D, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, const Standard_Real EpsDim, const Standard_Boolean isErrorCalculation, const Standard_Boolean isVerifyComputation) { Standard_Boolean isNaturalRestriction = S.NaturalRestriction(); Standard_Integer NumSubs = SUBS_POWER; Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz; Dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0; Standard_Real x, y, z; //boundary curve parametrization Standard_Real l1, l2, lm, lr, l; //Face parametrization in U and V direction Standard_Real BV1, BV2, v; Standard_Real BU1, BU2, u1, u2, um, ur, u; S.Bounds (BU1, BU2, BV1, BV2); u1 = BU1; //location point used to compute the inertia Standard_Real xloc, yloc, zloc; loc.Coord (xloc, yloc, zloc); // use member of parent class //Jacobien (x, y, z) -> (u, v) = ||n|| Standard_Real ds; //On the Face gp_Pnt Ps; gp_Vec VNor; //On the boundary curve u-v gp_Pnt2d Puv; gp_Vec2d Vuv; Standard_Real Dul; // Dul = Du / Dl Standard_Real CDim[2], CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz; Standard_Real LocDim[2], LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz; Standard_Real ErrorU, ErrorL, ErrorLMax = 0.0, Eps=0.0, EpsL=0.0, EpsU=0.0; Standard_Integer iD = 0, NbLSubs, iLS, iLSubEnd, iGL, iGLEnd, NbLGaussP[2], LRange[2], iL, kL, kLEnd, IL, JL; Standard_Integer i, NbUSubs, iUS, iUSubEnd, iGU, iGUEnd, NbUGaussP[2], URange[2], iU, kU, kUEnd, IU, JU; Standard_Integer UMaxSubs, LMaxSubs; iGLEnd = isErrorCalculation? 2: 1; for(i = 0; i < 2; i++) { LocDim[i] = 0.0; CDim[i] = 0.0; } NbUGaussP[0] = S.SIntOrder(EpsDim); NbUGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbUGaussP[0])); math::GaussPoints(NbUGaussP[0],UGaussP0); math::GaussWeights(NbUGaussP[0],UGaussW0); math::GaussPoints(NbUGaussP[1],UGaussP1); math::GaussWeights(NbUGaussP[1],UGaussW1); NbUSubs = S.SUIntSubs(); TColStd_Array1OfReal UKnots(1,NbUSubs+1); S.UKnots(UKnots); while (isNaturalRestriction || D.More()) { if(isNaturalRestriction){ NbLGaussP[0] = Min(2*NbUGaussP[0],math::GaussPointsMax()); }else{ S.Load(D.Value()); ++iD; NbLGaussP[0] = S.LIntOrder(EpsDim); } NbLGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbLGaussP[0])); math::GaussPoints(NbLGaussP[0],LGaussP0); math::GaussWeights(NbLGaussP[0],LGaussW0); math::GaussPoints(NbLGaussP[1],LGaussP1); math::GaussWeights(NbLGaussP[1],LGaussW1); NbLSubs = isNaturalRestriction? S.SVIntSubs(): S.LIntSubs(); TColStd_Array1OfReal LKnots(1,NbLSubs+1); if(isNaturalRestriction){ S.VKnots(LKnots); l1 = BV1; l2 = BV2; }else{ S.LKnots(LKnots); l1 = S.FirstParameter(); l2 = S.LastParameter(); } ErrorL = 0.0; kLEnd = 1; JL = 0; //OCC503(apo): if(Abs(l2-l1) < EPS_PARAM) continue; if(Abs(l2-l1) > EPS_PARAM) { iLSubEnd = LFillIntervalBounds(l1, l2, LKnots, NumSubs); LMaxSubs = MaxSubs(iLSubEnd); if(LMaxSubs > DimL.Vector()->Upper()) LMaxSubs = DimL.Vector()->Upper(); DimL.Init(0.0,1,LMaxSubs); ErrL.Init(0.0,1,LMaxSubs); ErrUL.Init(0.0,1,LMaxSubs); do{// while: L if(++JL > iLSubEnd){ LRange[0] = IL = ErrL->Max(); LRange[1] = JL; L1(JL) = (L1(IL) + L2(IL))/2.0; L2(JL) = L2(IL); L2(IL) = L1(JL); }else LRange[0] = IL = JL; if(JL == LMaxSubs || Abs(L2(JL) - L1(JL)) < EPS_PARAM) if(kLEnd == 1){ DimL(JL) = ErrL(JL) = IxL(JL) = IyL(JL) = IzL(JL) = IxxL(JL) = IyyL(JL) = IzzL(JL) = IxyL(JL) = IxzL(JL) = IyzL(JL) = 0.0; }else{ JL--; EpsL = ErrorL; Eps = EpsL/0.9; break; } else for(kL=0; kL < kLEnd; kL++){ iLS = LRange[kL]; lm = 0.5*(L2(iLS) + L1(iLS)); lr = 0.5*(L2(iLS) - L1(iLS)); CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0; for(iGL=0; iGL < iGLEnd; iGL++){// CDim[iGL] = 0.0; for(iL=1; iL<=NbLGaussP[iGL]; iL++){ l = lm + lr*(*LGaussP[iGL])(iL); if(isNaturalRestriction){ v = l; u2 = BU2; Dul = (*LGaussW[iGL])(iL); }else{ S.D12d (l, Puv, Vuv); Dul = Vuv.Y()*(*LGaussW[iGL])(iL); // Dul = Du / Dl if(Abs(Dul) < EPS_PARAM) continue; v = Puv.Y(); u2 = Puv.X(); //Check on cause out off bounds of value current parameter if(v < BV1) v = BV1; else if(v > BV2) v = BV2; if(u2 < BU1) u2 = BU1; else if(u2 > BU2) u2 = BU2; } ErrUL(iLS) = 0.0; kUEnd = 1; JU = 0; if(Abs(u2-u1) < EPS_PARAM) continue; iUSubEnd = UFillIntervalBounds(u1, u2, UKnots, NumSubs); UMaxSubs = MaxSubs(iUSubEnd); if(UMaxSubs > DimU.Vector()->Upper()) UMaxSubs = DimU.Vector()->Upper(); DimU.Init(0.0,1,UMaxSubs); ErrU.Init(0.0,1,UMaxSubs); ErrorU = 0.0; do{//while: U if(++JU > iUSubEnd){ URange[0] = IU = ErrU->Max(); URange[1] = JU; U1(JU) = (U1(IU)+U2(IU))/2.0; U2(JU) = U2(IU); U2(IU) = U1(JU); }else URange[0] = IU = JU; if(JU == UMaxSubs || Abs(U2(JU) - U1(JU)) < EPS_PARAM) if(kUEnd == 1){ DimU(JU) = ErrU(JU) = IxU(JU) = IyU(JU) = IzU(JU) = IxxU(JU) = IyyU(JU) = IzzU(JU) = IxyU(JU) = IxzU(JU) = IyzU(JU) = 0.0; }else{ JU--; EpsU = ErrorU; Eps = EpsU*Abs((u2-u1)*Dul)/0.1; EpsL = 0.9*Eps; break; } else for(kU=0; kU < kUEnd; kU++){ iUS = URange[kU]; um = 0.5*(U2(iUS) + U1(iUS)); ur = 0.5*(U2(iUS) - U1(iUS)); LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0; iGUEnd = iGLEnd - iGL; for(iGU=0; iGU < iGUEnd; iGU++){// LocDim[iGU] = 0.0; for(iU=1; iU<=NbUGaussP[iGU]; iU++){ u = um + ur*(*UGaussP[iGU])(iU); S.Normal(u, v, Ps, VNor); ds = VNor.Magnitude(); //Jacobien(x,y,z) -> (u,v)=||n|| ds *= (*UGaussW[iGU])(iU); LocDim[iGU] += ds; if(iGU > 0) continue; Ps.Coord(x, y, z); x -= xloc; y -= yloc; z -= zloc; LocIx += x*ds; LocIy += y*ds; LocIz += z*ds; LocIxy += x*y*ds; LocIyz += y*z*ds; LocIxz += x*z*ds; x *= x; y *= y; z *= z; LocIxx += (y+z)*ds; LocIyy += (x+z)*ds; LocIzz += (x+y)*ds; }//for: iU }//for: iGU DimU(iUS) = LocDim[0]*ur; if(iGL > 0) continue; ErrU(iUS) = Abs(LocDim[1]-LocDim[0])*ur; IxU(iUS) = LocIx*ur; IyU(iUS) = LocIy*ur; IzU(iUS) = LocIz*ur; IxxU(iUS) = LocIxx*ur; IyyU(iUS) = LocIyy*ur; IzzU(iUS) = LocIzz*ur; IxyU(iUS) = LocIxy*ur; IxzU(iUS) = LocIxz*ur; IyzU(iUS) = LocIyz*ur; }//for: kU (iUS) if(JU == iUSubEnd) kUEnd = 2; if(kUEnd == 2) ErrorU = ErrU(ErrU->Max()); }while((ErrorU - EpsU > 0.0 && EpsU != 0.0) || kUEnd == 1); for(i=1; i<=JU; i++) CDim[iGL] += DimU(i)*Dul; if(iGL > 0) continue; ErrUL(iLS) = ErrorU*Abs((u2-u1)*Dul); for(i=1; i<=JU; i++){ CIx += IxU(i)*Dul; CIy += IyU(i)*Dul; CIz += IzU(i)*Dul; CIxx += IxxU(i)*Dul; CIyy += IyyU(i)*Dul; CIzz += IzzU(i)*Dul; CIxy += IxyU(i)*Dul; CIxz += IxzU(i)*Dul; CIyz += IyzU(i)*Dul; } }//for: iL }//for: iGL DimL(iLS) = CDim[0]*lr; if(iGLEnd == 2) ErrL(iLS) = Abs(CDim[1]-CDim[0])*lr + ErrUL(iLS); IxL(iLS) = CIx*lr; IyL(iLS) = CIy*lr; IzL(iLS) = CIz*lr; IxxL(iLS) = CIxx*lr; IyyL(iLS) = CIyy*lr; IzzL(iLS) = CIzz*lr; IxyL(iLS) = CIxy*lr; IxzL(iLS) = CIxz*lr; IyzL(iLS) = CIyz*lr; }//for: (kL)iLS // Calculate/correct epsilon of computation by current value of Dim //That is need for not spend time for if(JL == iLSubEnd){ kLEnd = 2; Standard_Real DDim = 0.0; for(i=1; i<=JL; i++) DDim += DimL(i); DDim = Abs(DDim*EpsDim); if(DDim > Eps) { Eps = DDim; EpsL = 0.9*Eps; } } if(kLEnd == 2) ErrorL = ErrL(ErrL->Max()); }while((ErrorL - EpsL > 0.0 && isVerifyComputation) || kLEnd == 1); for(i=1; i<=JL; i++){ Dim += DimL(i); Ix += IxL(i); Iy += IyL(i); Iz += IzL(i); Ixx += IxxL(i); Iyy += IyyL(i); Izz += IzzL(i); Ixy += IxyL(i); Ixz += IxzL(i); Iyz += IyzL(i); } ErrorLMax = Max(ErrorLMax, ErrorL); } if(isNaturalRestriction) break; D.Next(); } if(Abs(Dim) >= EPS_DIM){ Ix /= Dim; Iy /= Dim; Iz /= Dim; g.SetCoord (Ix, Iy, Iz); }else{ Dim =0.0; g.SetCoord (0., 0.,0.); } inertia = gp_Mat (gp_XYZ (Ixx, -Ixy, -Ixz), gp_XYZ (-Ixy, Iyy, -Iyz), gp_XYZ (-Ixz, -Iyz, Izz)); if(iGLEnd == 2) Eps = Dim != 0.0? ErrorLMax/Abs(Dim): 0.0; else Eps = EpsDim; return Eps; } static Standard_Real Compute(Face& S, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim) { Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0; Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0; EpsDim = Abs(EpsDim); Domain D; return CCompute(S,D,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation); } static Standard_Real Compute(Face& S, Domain& D, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim) { Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0; Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0; EpsDim = Abs(EpsDim); return CCompute(S,D,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation); } static void Compute(Face& S, Domain& D, const gp_Pnt& loc, Standard_Real& dim, gp_Pnt& g, gp_Mat& inertia){ Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz; dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0; Standard_Real x, y, z; Standard_Integer NbCGaussgp_Pnts = 0; Standard_Real l1, l2, lm, lr, l; //boundary curve parametrization Standard_Real v1, v2, v; //Face parametrization in v direction Standard_Real u1, u2, um, ur, u; Standard_Real ds; //Jacobien (x, y, z) -> (u, v) = ||n|| gp_Pnt P; //On the Face gp_Vec VNor; gp_Pnt2d Puv; //On the boundary curve u-v gp_Vec2d Vuv; Standard_Real Dul; // Dul = Du / Dl Standard_Real CArea, CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz; Standard_Real LocArea, LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz; S.Bounds (u1, u2, v1, v2); Standard_Integer NbUGaussgp_Pnts = Min(S.UIntegrationOrder (), math::GaussPointsMax()); Standard_Integer NbVGaussgp_Pnts = Min(S.VIntegrationOrder (), math::GaussPointsMax()); Standard_Integer NbGaussgp_Pnts = Max(NbUGaussgp_Pnts, NbVGaussgp_Pnts); //Number of Gauss points for the integration //on the Face math_Vector GaussSPV (1, NbGaussgp_Pnts); math_Vector GaussSWV (1, NbGaussgp_Pnts); math::GaussPoints (NbGaussgp_Pnts,GaussSPV); math::GaussWeights (NbGaussgp_Pnts,GaussSWV); //location point used to compute the inertia Standard_Real xloc, yloc, zloc; loc.Coord (xloc, yloc, zloc); while (D.More()) { S.Load(D.Value()); NbCGaussgp_Pnts = Min(S.IntegrationOrder (), math::GaussPointsMax()); math_Vector GaussCP (1, NbCGaussgp_Pnts); math_Vector GaussCW (1, NbCGaussgp_Pnts); math::GaussPoints (NbCGaussgp_Pnts,GaussCP); math::GaussWeights (NbCGaussgp_Pnts,GaussCW); CArea = 0.0; CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0; l1 = S.FirstParameter (); l2 = S.LastParameter (); lm = 0.5 * (l2 + l1); lr = 0.5 * (l2 - l1); Puv = S.Value2d (lm); Puv = S.Value2d (lr); for (Standard_Integer i = 1; i <= NbCGaussgp_Pnts; i++) { l = lm + lr * GaussCP (i); S.D12d(l, Puv, Vuv); v = Puv.Y(); u2 = Puv.X(); Dul = Vuv.Y(); Dul *= GaussCW (i); um = 0.5 * (u2 + u1); ur = 0.5 * (u2 - u1); LocArea = LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0; for (Standard_Integer j = 1; j <= NbGaussgp_Pnts; j++) { u = um + ur * GaussSPV (j); S.Normal (u, v, P, VNor); ds = VNor.Magnitude(); //normal.Magnitude ds = ds * Dul * GaussSWV (j); LocArea += ds; P.Coord (x, y, z); x -= xloc; y -= yloc; z -= zloc; LocIx += x * ds; LocIy += y * ds; LocIz += z * ds; LocIxy += x * y * ds; LocIyz += y * z * ds; LocIxz += x * z * ds; x *= x; y *= y; z *= z; LocIxx += (y + z) * ds; LocIyy += (x + z) * ds; LocIzz += (x + y) * ds; } CArea += LocArea * ur; CIx += LocIx * ur; CIy += LocIy * ur; CIz += LocIz * ur; CIxx += LocIxx * ur; CIyy += LocIyy * ur; CIzz += LocIzz * ur; CIxy += LocIxy * ur; CIxz += LocIxz * ur; CIyz += LocIyz * ur; } dim += CArea * lr; Ix += CIx * lr; Iy += CIy * lr; Iz += CIz * lr; Ixx += CIxx * lr; Iyy += CIyy * lr; Izz += CIzz * lr; Ixy += CIxy * lr; Ixz += CIxz * lr; Iyz += CIyz * lr; D.Next(); } if (Abs(dim) >= EPS_DIM) { Ix /= dim; Iy /= dim; Iz /= dim; g.SetCoord (Ix, Iy, Iz); } else { dim =0.; g.SetCoord (0., 0.,0.); } inertia = gp_Mat (gp_XYZ (Ixx, -Ixy, -Ixz), gp_XYZ (-Ixy, Iyy, -Iyz), gp_XYZ (-Ixz, -Iyz, Izz)); } static void Compute(const Face& S, const gp_Pnt& loc, Standard_Real& dim, gp_Pnt& g, gp_Mat& inertia){ Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz; dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0; Standard_Real LowerU, UpperU, LowerV, UpperV; S.Bounds (LowerU, UpperU, LowerV, UpperV); Standard_Integer UOrder = Min(S.UIntegrationOrder (), math::GaussPointsMax()); Standard_Integer VOrder = Min(S.VIntegrationOrder (), math::GaussPointsMax()); gp_Pnt P; gp_Vec VNor; Standard_Real dsi, ds; Standard_Real ur, um, u, vr, vm, v; Standard_Real x, y, z; Standard_Real Ixi, Iyi, Izi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi; Standard_Real xloc, yloc, zloc; loc.Coord (xloc, yloc, zloc); Standard_Integer i, j; math_Vector GaussPU (1, UOrder); //gauss points and weights math_Vector GaussWU (1, UOrder); math_Vector GaussPV (1, VOrder); math_Vector GaussWV (1, VOrder); //Recuperation des points de Gauss dans le fichier GaussPoints. math::GaussPoints (UOrder,GaussPU); math::GaussWeights (UOrder,GaussWU); math::GaussPoints (VOrder,GaussPV); math::GaussWeights (VOrder,GaussWV); // Calcul des integrales aux points de gauss : um = 0.5 * (UpperU + LowerU); vm = 0.5 * (UpperV + LowerV); ur = 0.5 * (UpperU - LowerU); vr = 0.5 * (UpperV - LowerV); for (j = 1; j <= VOrder; j++) { v = vm + vr * GaussPV (j); dsi = Ixi = Iyi = Izi = Ixxi = Iyyi = Izzi = Ixyi = Ixzi = Iyzi = 0.0; for (i = 1; i <= UOrder; i++) { u = um + ur * GaussPU (i); S.Normal (u, v, P, VNor); ds = VNor.Magnitude() * GaussWU (i); P.Coord (x, y, z); x -= xloc; y -= yloc; z -= zloc; dsi += ds; Ixi += x * ds; Iyi += y * ds; Izi += z * ds; Ixyi += x * y * ds; Iyzi += y * z * ds; Ixzi += x * z * ds; x *= x; y *= y; z *= z; Ixxi += (y + z) * ds; Iyyi += (x + z) * ds; Izzi += (x + y) * ds; } dim += dsi * GaussWV (j); Ix += Ixi * GaussWV (j); Iy += Iyi * GaussWV (j); Iz += Izi * GaussWV (j); Ixx += Ixxi * GaussWV (j); Iyy += Iyyi * GaussWV (j); Izz += Izzi * GaussWV (j); Ixy += Ixyi * GaussWV (j); Iyz += Iyzi * GaussWV (j); Ixz += Ixzi * GaussWV (j); } vr *= ur; Ixx *= vr; Iyy *= vr; Izz *= vr; Ixy *= vr; Ixz *= vr; Iyz *= vr; if (Abs(dim) >= EPS_DIM) { Ix /= dim; Iy /= dim; Iz /= dim; dim *= vr; g.SetCoord (Ix, Iy, Iz); } else { dim =0.; g.SetCoord (0.,0.,0.); } inertia = gp_Mat (gp_XYZ (Ixx, -Ixy, -Ixz), gp_XYZ (-Ixy, Iyy, -Iyz), gp_XYZ (-Ixz, -Iyz, Izz)); } GProp_SGProps::GProp_SGProps(){} GProp_SGProps::GProp_SGProps (const Face& S, const gp_Pnt& SLocation ) { SetLocation(SLocation); Perform(S); } GProp_SGProps::GProp_SGProps (Face& S, Domain& D, const gp_Pnt& SLocation ) { SetLocation(SLocation); Perform(S,D); } GProp_SGProps::GProp_SGProps(Face& S, const gp_Pnt& SLocation, const Standard_Real Eps){ SetLocation(SLocation); Perform(S, Eps); } GProp_SGProps::GProp_SGProps(Face& S, Domain& D, const gp_Pnt& SLocation, const Standard_Real Eps){ SetLocation(SLocation); Perform(S, D, Eps); } void GProp_SGProps::SetLocation(const gp_Pnt& SLocation){ loc = SLocation; } void GProp_SGProps::Perform(const Face& S){ Compute(S,loc,dim,g,inertia); myEpsilon = 1.0; return; } void GProp_SGProps::Perform(Face& S, Domain& D){ Compute(S,D,loc,dim,g,inertia); myEpsilon = 1.0; return; } Standard_Real GProp_SGProps::Perform(Face& S, const Standard_Real Eps){ return myEpsilon = Compute(S,loc,dim,g,inertia,Eps); } Standard_Real GProp_SGProps::Perform(Face& S, Domain& D, const Standard_Real Eps){ return myEpsilon = Compute(S,D,loc,dim,g,inertia,Eps); } Standard_Real GProp_SGProps::GetEpsilon(){ return myEpsilon; }