# Copyright 2009 Nanorex, Inc. See LICENSE file for details. """ GLCylinderBuffer.py -- Subclass of GLPrimitiveBuffer for cylinder primitives. @author: Russ @version: $Id$ @copyright: 2009 Nanorex, Inc. See LICENSE file for details. History: Originally written by Russ Fish; designed together with Bruce Smith. Russ 090118: Cloned from GLSphereBuffer.py . ================================================================ See design comments on: * GL contexts, CSDLs and DrawingSet in DrawingSet.py * TransformControl in TransformControl.py * VBOs, IBOs, and GLPrimitiveBuffer in GLPrimitiveBuffer.py * GLPrimitiveSet in GLPrimitiveSet in GLPrimitiveSet.py """ from graphics.drawing.GLPrimitiveBuffer import GLPrimitiveBuffer, HunkBuffer from geometry.VQT import V, A class GLCylinderBuffer(GLPrimitiveBuffer): """ Encapsulate VBO/IBO handles for a batch of cylinders. See doc for common code in the base class, GLPrimitiveBuffer. Draws a bounding-box of quads (or a single billboard quad) to a custom cylinder shader for each cylinder, along with control attribute data. """ def __init__(self, shaderGlobals): """ @param shaderGlobals: the instance of class ShaderGlobals we will be associated with. """ super(GLCylinderBuffer, self).__init__( shaderGlobals ) # Per-vertex attribute hunk VBOs that are specific to the cylinder # shader. Combine endpoints and radii into two vec4's. It would be # nicer to use a twice-4-element mat2x4 attribute VBO, but it would have # to be sent as two attribute slots anyway, because OpenGL only allows # "size" to be 1 to 4 in glVertexAttribPointer. shader = self.shader self.endptRad0Hunks = HunkBuffer(shader, "endpt_rad_0", self.nVertices, 4) self.endptRad1Hunks = HunkBuffer(shader, "endpt_rad_1", self.nVertices, 4) self.hunkBuffers += [self.endptRad0Hunks, self.endptRad1Hunks] return def addCylinders(self, endpts, radii, colors, transform_ids, glnames): """ Cylinder endpts must be a list of tuples of 2 VQT points. Lists or single values may be given for the attributes of the cylinders (radii, colors, transform_ids, and selection glnames). A single value is replicated for the whole batch. The lengths of attribute lists must match the endpoints list. radii and colors are required. Cylinder radii are single numbers (untapered) or tuples of 2 numbers (tapered). Colors are tuples of components: (R, G, B) or (R, G, B, A). transform_ids may be None for endpts in global modeling coordinates. glnames may be None if mouseover drawing will not be done. glnames are 32-bit integers, allocated sequentially and associated with selected objects in a global object dictionary The return value is a list of allocated primitive IDs for the cylinders. """ nCylinders = len(endpts) for endptTuple in endpts: assert type(endptTuple) == type(()) assert len(endptTuple) == 2 if type(radii) == type(()): # A tuple of two numbers. assert len(radii) == 2 radii = (float(radii[0]), float(radii[1])) elif type(radii) != type([]): # Not a list, better be a single number. radii = (float(radii), float(radii)) if type(radii) == type([]): assert len(radii) == nCylinders else: radii = nCylinders * [radii] pass if type(colors) == type([]): assert len(colors) == nCylinders colors = [self.color4(colors) for color in colors] else: colors = nCylinders * [self.color4(colors)] pass if type(transform_ids) == type([]): assert len(transform_ids) == nCylinders else: if transform_ids is None: # This bypasses transform logic in the shader for this cylinder. transform_ids = -1 pass transform_ids = nCylinders * [transform_ids] pass if type(glnames) == type([]): assert len(glnames) == nCylinders else: if glnames is None: glnames = 0 pass glnames = nCylinders * [glnames] pass newIDs = self.newPrimitives(nCylinders) for (newID, endpt2, radius2, color, transform_id, glname) in \ zip(newIDs, endpts, radii, colors, transform_ids, glnames): # Combine each center and radius into one vertex attribute. endptRad0 = V(endpt2[0][0], endpt2[0][1], endpt2[0][2], radius2[0]) endptRad1 = V(endpt2[1][0], endpt2[1][1], endpt2[1][2], radius2[1]) self.endptRad0Hunks.setData(newID, endptRad0) self.endptRad1Hunks.setData(newID, endptRad1) self.colorHunks.setData(newID, color) if self.transform_id_Hunks: self.transform_id_Hunks.setData(newID, transform_id) # Break the glname into RGBA pixel color components, 0.0 to 1.0 . # (Per-vertex attributes are all multiples (1-4) of Float32.) ##rgba = [(glname >> bits & 0xff) / 255.0 for bits in range(24,-1,-8)] ## Temp fix: Ignore the last byte, which always comes back 255 on Windows. rgba = [(glname >> bits & 0xff) / 255.0 for bits in range(16,-1,-8)]+[0.0] self.glname_color_Hunks.setData(newID, rgba) continue return newIDs def grab_untransformed_data(self, primID): #bruce 090223 """ """ endptRad0 = self.endptRad0Hunks.getData(primID) endptRad1 = self.endptRad1Hunks.getData(primID) #### these can be removed after debugging: assert len(endptRad0) == 4, "len(endptRad0) should be 4: %r" % (endptRad0,) assert len(endptRad1) == 4, "len(endptRad1) should be 4: %r" % (endptRad1,) assert len(endptRad0[:3]) == 3, "len slice of 3 (in endptRad0) should be 3: %r" % (endptRad0[:3],) assert len(endptRad1[:3]) == 3, "len slice of 3 (in endptRad1) should be 3: %r" % (endptRad1[:3],) return A(endptRad0[:3]), endptRad0[3], A(endptRad1[:3]), endptRad1[3] def store_transformed_primitive(self, primID, untransformed_data, transform): #bruce 090223 """ @param untransformed_data: something returned earlier from self.grab_untransformed_data(primID) """ # todo: heavily optimize this (see comment in sphere version) point0, radius0, point1, radius1 = untransformed_data point0 = transform.applyToPoint(point0) point1 = transform.applyToPoint(point1) endptRad0 = V(point0[0], point0[1], point0[2], radius0) endptRad1 = V(point1[0], point1[1], point1[2], radius1) self.endptRad0Hunks.setData(primID, endptRad0) self.endptRad1Hunks.setData(primID, endptRad1) return pass # End of class GLCylinderBuffer.