/******************************************************************** * Description: emccanon.cc * Canonical definitions for 3-axis NC application * * Derived from a work by Fred Proctor & Will Shackleford * * Author: * License: GPL Version 2 * System: Linux * * Copyright (c) 2004 All rights reserved. ********************************************************************/ /* Notes: Units ----- Values are stored internally as mm and degree units, e.g, program offsets, end point, tool length offset. These are "internal units". "External units" are the units used by the EMC motion planner. All lengths and units output by the interpreter are converted to internal units here, using FROM_PROG_LEN,ANG, and then TO_EXT_LEN(),ANG are called to convert these to external units. Tool Length Offsets ------------------- The interpreter does not subtract off tool length offsets. It calls USE_TOOL_LENGTH_OFFSETS(length), which we record here and apply to all appropriate values subsequently. */ #include "config.h" #include <stdio.h> #include <stdarg.h> #include <math.h> #include <string.h> // strncpy() #include <ctype.h> // isspace() #include "emc.hh" // EMC NML #include "emc_nml.hh" #include "canon.hh" // these decls #include "interpl.hh" // interp_list #include "emcglb.h" // TRAJ_MAX_VELOCITY #include "emcpos.h" static int debug_velacc = 0; static double css_maximum, css_numerator; static const double tiny = 1e-10; #ifndef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) #endif #ifndef MIN3 #define MIN3(a,b,c) (MIN(MIN((a),(b)),(c))) #endif #ifndef MAX #define MAX(a,b) ((a)>(b)?(a):(b)) #endif #ifndef MAX3 #define MAX3(a,b,c) (MAX(MAX((a),(b)),(c))) #endif #ifndef MAX4 #define MAX4(a,b,c,d) (MAX(MAX((a),(b)),MAX((c),(d)))) #endif #ifndef MAX9 #define MAX9(a,b,c,d,e,f,g,h,i) (MAX3((MAX3(a,b,c)),(MAX3(d,e,f)),(MAX3(g,h,i)))) #endif /* macros for converting internal (mm/deg) units to external units */ #define TO_EXT_LEN(mm) ((mm) * GET_EXTERNAL_LENGTH_UNITS()) #define TO_EXT_ANG(deg) ((deg) * GET_EXTERNAL_ANGLE_UNITS()) /* macros for converting external units to internal (mm/deg) units */ #define FROM_EXT_LEN(ext) ((ext) / GET_EXTERNAL_LENGTH_UNITS()) #define FROM_EXT_ANG(ext) ((ext) / GET_EXTERNAL_ANGLE_UNITS()) /* macros for converting internal (mm/deg) units to program units */ #define TO_PROG_LEN(mm) ((mm) / (lengthUnits == CANON_UNITS_INCHES ? 25.4 : lengthUnits == CANON_UNITS_CM ? 10.0 : 1.0)) #define TO_PROG_ANG(deg) (deg) /* macros for converting program units to internal (mm/deg) units */ #define FROM_PROG_LEN(prog) ((prog) * (lengthUnits == CANON_UNITS_INCHES ? 25.4 : lengthUnits == CANON_UNITS_CM ? 10.0 : 1.0)) #define FROM_PROG_ANG(prog) (prog) static PM_QUATERNION quat(1, 0, 0, 0); static void flush_segments(void); /* These decls were from the old 3-axis canon.hh, and refer functions defined here that are used for convenience but no longer have decls in the 6-axis canon.hh. So, we declare them here now. */ extern void CANON_ERROR(const char *fmt, ...); /* Origin offsets, length units, and active plane are all maintained here in this file. Controller runs in absolute mode, and does not have plane select concept. programOrigin is stored in mm always, and converted when set or read. When it's applied to positions, convert positions to mm units first and then add programOrigin. Units are then converted from mm to external units, as reported by the GET_EXTERNAL_LENGTH_UNITS() function. */ static CANON_POSITION programOrigin(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); static CANON_UNITS lengthUnits = CANON_UNITS_MM; static CANON_PLANE activePlane = CANON_PLANE_XY; static int feed_mode = 0; /* canonEndPoint is the last programmed end point, stored in case it's needed for subsequent calculations. It's in absolute frame, mm units. */ static CANON_POSITION canonEndPoint; static void canonUpdateEndPoint(double x, double y, double z, double a, double b, double c, double u, double v, double w) { canonEndPoint.x = x; canonEndPoint.y = y; canonEndPoint.z = z; canonEndPoint.a = a; canonEndPoint.b = b; canonEndPoint.c = c; canonEndPoint.u = u; canonEndPoint.v = v; canonEndPoint.w = w; } /* External call to update the canon end point. Called by emctask during skipping of lines (run-from-line) */ void CANON_UPDATE_END_POINT(double x, double y, double z, double a, double b, double c, double u, double v, double w) { canonUpdateEndPoint(FROM_PROG_LEN(x),FROM_PROG_LEN(y),FROM_PROG_LEN(z), FROM_PROG_ANG(a),FROM_PROG_ANG(b),FROM_PROG_ANG(c), FROM_PROG_LEN(u),FROM_PROG_LEN(v),FROM_PROG_LEN(w)); } /* motion control mode is used to signify blended v. stop-at-end moves. Set to 0 (invalid) at start, so first call will send command out */ static CANON_MOTION_MODE canonMotionMode = 0; /* motion path-following tolerance is used to set the max path-following deviation during CANON_CONTINUOUS. If this param is 0, then it will behave as emc always did, allowing almost any deviation trying to keep speed up. */ static double canonMotionTolerance = 0.0; /* Spindle speed is saved here */ static double spindleSpeed = 0.0; /* Prepped tool is saved here */ static int preppedTool = 0; /* optional program stop */ static bool optional_program_stop = ON; //set enabled by default (previous EMC behaviour) /* optional block delete */ static bool block_delete = ON; //set enabled by default (previous EMC behaviour) /* Tool length offset is saved here */ static double currentXToolOffset = 0.0; static double currentZToolOffset = 0.0; /* Feed rate is saved here; values are in mm/sec or deg/sec. It will be initially set in INIT_CANON() below. */ static double currentLinearFeedRate = 0.0; static double currentAngularFeedRate = 0.0; /* Used to indicate whether the current move is linear, angular, or a combination of both. */ //AJ says: linear means axes XYZ move (lines or even circles) // angular means axes ABC move static int cartesian_move = 0; static int angular_move = 0; static double toExtVel(double vel) { if (cartesian_move && !angular_move) { return TO_EXT_LEN(vel); } else if (!cartesian_move && angular_move) { return TO_EXT_ANG(vel); } else if (cartesian_move && angular_move) { return TO_EXT_LEN(vel); } else { //seems this case was forgotten, neither linear, neither angular move (we are only sending vel) return TO_EXT_LEN(vel); } } static double toExtAcc(double acc) { return toExtVel(acc); } /* Representation */ void SET_ORIGIN_OFFSETS(double x, double y, double z, double a, double b, double c, double u, double v, double w) { EMC_TRAJ_SET_ORIGIN set_origin_msg; flush_segments(); /* convert to mm units */ x = FROM_PROG_LEN(x); y = FROM_PROG_LEN(y); z = FROM_PROG_LEN(z); a = FROM_PROG_ANG(a); b = FROM_PROG_ANG(b); c = FROM_PROG_ANG(c); u = FROM_PROG_LEN(u); v = FROM_PROG_LEN(v); w = FROM_PROG_LEN(w); programOrigin.x = x; programOrigin.y = y; programOrigin.z = z; programOrigin.a = a; programOrigin.b = b; programOrigin.c = c; programOrigin.u = u; programOrigin.v = v; programOrigin.w = w; /* append it to interp list so it gets updated at the right time, not at read-ahead time */ set_origin_msg.origin.tran.x = TO_EXT_LEN(programOrigin.x); set_origin_msg.origin.tran.y = TO_EXT_LEN(programOrigin.y); set_origin_msg.origin.tran.z = TO_EXT_LEN(programOrigin.z); set_origin_msg.origin.a = TO_EXT_ANG(programOrigin.a); set_origin_msg.origin.b = TO_EXT_ANG(programOrigin.b); set_origin_msg.origin.c = TO_EXT_ANG(programOrigin.c); set_origin_msg.origin.u = TO_EXT_LEN(programOrigin.u); set_origin_msg.origin.v = TO_EXT_LEN(programOrigin.v); set_origin_msg.origin.w = TO_EXT_LEN(programOrigin.w); interp_list.append(set_origin_msg); } void USE_LENGTH_UNITS(CANON_UNITS in_unit) { lengthUnits = in_unit; emcStatus->task.programUnits = in_unit; } /* Free Space Motion */ void SET_TRAVERSE_RATE(double rate) { // nothing need be done here } void SET_FEED_MODE(int mode) { flush_segments(); feed_mode = mode; if(feed_mode == 0) STOP_SPEED_FEED_SYNCH(); } void SET_FEED_RATE(double rate) { if(feed_mode) { START_SPEED_FEED_SYNCH(rate, 1); currentLinearFeedRate = rate; } else { /* convert from /min to /sec */ rate /= 60.0; /* convert to traj units (mm & deg) if needed */ double newLinearFeedRate = FROM_PROG_LEN(rate), newAngularFeedRate = FROM_PROG_ANG(rate); if(newLinearFeedRate != currentLinearFeedRate || newAngularFeedRate != currentAngularFeedRate) flush_segments(); currentLinearFeedRate = newLinearFeedRate; currentAngularFeedRate = newAngularFeedRate; } } void SET_FEED_REFERENCE(CANON_FEED_REFERENCE reference) { // nothing need be done here } double getStraightAcceleration(double x, double y, double z, double a, double b, double c, double u, double v, double w) { double dx, dy, dz, du, dv, dw, da, db, dc; double tx, ty, tz, tu, tv, tw, ta, tb, tc, tmax; double acc, dtot; acc = 0.0; // if a move to nowhere // Compute absolute travel distance for each axis: dx = fabs(x - canonEndPoint.x); dy = fabs(y - canonEndPoint.y); dz = fabs(z - canonEndPoint.z); da = fabs(a - canonEndPoint.a); db = fabs(b - canonEndPoint.b); dc = fabs(c - canonEndPoint.c); du = fabs(u - canonEndPoint.u); dv = fabs(v - canonEndPoint.v); dw = fabs(w - canonEndPoint.w); if(dx < tiny) dx = 0.0; if(dy < tiny) dy = 0.0; if(dz < tiny) dz = 0.0; if(da < tiny) da = 0.0; if(db < tiny) db = 0.0; if(dc < tiny) dc = 0.0; if(du < tiny) du = 0.0; if(dv < tiny) dv = 0.0; if(dw < tiny) dw = 0.0; if(debug_velacc) printf("getStraightAcceleration dx %g dy %g dz %g da %g db %g dc %g du %g dv %g dw %g ", dx, dy, dz, da, db, dc, du, dv, dw); // Figure out what kind of move we're making. This is used to determine // the units of vel/acc. if (dx <= 0.0 && dy <= 0.0 && dz <= 0.0 && du <= 0.0 && dv <= 0.0 && dw <= 0.0) { cartesian_move = 0; } else { cartesian_move = 1; } if (da <= 0.0 && db <= 0.0 && dc <= 0.0) { angular_move = 0; } else { angular_move = 1; } // Pure linear move: if (cartesian_move && !angular_move) { tx = dx? (dx / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[0])): 0.0; ty = dy? (dy / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[1])): 0.0; tz = dz? (dz / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[2])): 0.0; tu = du? (du / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[6])): 0.0; tv = dv? (dv / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[7])): 0.0; tw = dw? (dw / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[8])): 0.0; tmax = MAX3(tx, ty ,tz); tmax = MAX4(tu, tv, tw, tmax); if(dx || dy || dz) dtot = sqrt(dx * dx + dy * dy + dz * dz); else dtot = sqrt(du * du + dv * dv + dw * dw); if (tmax > 0.0) { acc = dtot / tmax; } } // Pure angular move: else if (!cartesian_move && angular_move) { ta = da? (da / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[3])): 0.0; tb = db? (db / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[4])): 0.0; tc = dc? (dc / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[5])): 0.0; tmax = MAX3(ta, tb, tc); dtot = sqrt(da * da + db * db + dc * dc); if (tmax > 0.0) { acc = dtot / tmax; } } // Combination angular and linear move: else if (cartesian_move && angular_move) { tx = dx? (dx / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[0])): 0.0; ty = dy? (dy / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[1])): 0.0; tz = dz? (dz / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[2])): 0.0; ta = da? (da / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[3])): 0.0; tb = db? (db / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[4])): 0.0; tc = dc? (dc / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[5])): 0.0; tu = du? (du / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[6])): 0.0; tv = dv? (dv / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[7])): 0.0; tw = dw? (dw / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[8])): 0.0; tmax = MAX9(tx, ty, tz, ta, tb, tc, tu, tv, tw); /* According to NIST IR6556 Section 2.1.2.5 Paragraph A a combnation move is handled like a linear move, except that the angular axes are allowed sufficient time to complete their motion coordinated with the motion of the linear axes. */ if(dx || dy || dz) dtot = sqrt(dx * dx + dy * dy + dz * dz); else dtot = sqrt(du * du + dv * dv + dw * dw); if (tmax > 0.0) { acc = dtot / tmax; } } if(debug_velacc) printf("cartesian %d ang %d acc %g\n", cartesian_move, angular_move, acc); return acc; } double getStraightVelocity(double x, double y, double z, double a, double b, double c, double u, double v, double w) { double dx, dy, dz, da, db, dc, du, dv, dw; double tx, ty, tz, ta, tb, tc, tu, tv, tw, tmax; double vel, dtot; /* If we get a move to nowhere (!cartesian_move && !angular_move) we might as well go there at the currentLinearFeedRate... */ vel = currentLinearFeedRate; // Compute absolute travel distance for each axis: dx = fabs(x - canonEndPoint.x); dy = fabs(y - canonEndPoint.y); dz = fabs(z - canonEndPoint.z); da = fabs(a - canonEndPoint.a); db = fabs(b - canonEndPoint.b); dc = fabs(c - canonEndPoint.c); du = fabs(u - canonEndPoint.u); dv = fabs(v - canonEndPoint.v); dw = fabs(w - canonEndPoint.w); if(dx < tiny) dx = 0.0; if(dy < tiny) dy = 0.0; if(dz < tiny) dz = 0.0; if(da < tiny) da = 0.0; if(db < tiny) db = 0.0; if(dc < tiny) dc = 0.0; if(du < tiny) du = 0.0; if(dv < tiny) dv = 0.0; if(dw < tiny) dw = 0.0; if(debug_velacc) printf("getStraightVelocity dx %g dy %g dz %g da %g db %g dc %g du %g dv %g dw %g ", dx, dy, dz, da, db, dc, du, dv, dw); // Figure out what kind of move we're making: if (dx <= 0.0 && dy <= 0.0 && dz <= 0.0 && du <= 0.0 && dv <= 0.0 && dw <= 0.0) { cartesian_move = 0; } else { cartesian_move = 1; } if (da <= 0.0 && db <= 0.0 && dc <= 0.0) { angular_move = 0; } else { angular_move = 1; } // Pure linear move: if (cartesian_move && !angular_move) { tx = dx? fabs(dx / FROM_EXT_LEN(AXIS_MAX_VELOCITY[0])): 0.0; ty = dy? fabs(dy / FROM_EXT_LEN(AXIS_MAX_VELOCITY[1])): 0.0; tz = dz? fabs(dz / FROM_EXT_LEN(AXIS_MAX_VELOCITY[2])): 0.0; tu = du? fabs(du / FROM_EXT_LEN(AXIS_MAX_VELOCITY[6])): 0.0; tv = dv? fabs(dv / FROM_EXT_LEN(AXIS_MAX_VELOCITY[7])): 0.0; tw = dw? fabs(dw / FROM_EXT_LEN(AXIS_MAX_VELOCITY[8])): 0.0; tmax = MAX3(tx, ty ,tz); tmax = MAX4(tu, tv, tw, tmax); if(dx || dy || dz) dtot = sqrt(dx * dx + dy * dy + dz * dz); else dtot = sqrt(du * du + dv * dv + dw * dw); if (tmax <= 0.0) { vel = currentLinearFeedRate; } else { vel = dtot / tmax; } } // Pure angular move: else if (!cartesian_move && angular_move) { ta = da? fabs(da / FROM_EXT_ANG(AXIS_MAX_VELOCITY[3])):0.0; tb = db? fabs(db / FROM_EXT_ANG(AXIS_MAX_VELOCITY[4])):0.0; tc = dc? fabs(dc / FROM_EXT_ANG(AXIS_MAX_VELOCITY[5])):0.0; tmax = MAX3(ta, tb, tc); dtot = sqrt(da * da + db * db + dc * dc); if (tmax <= 0.0) { vel = currentAngularFeedRate; } else { vel = dtot / tmax; } } // Combination angular and linear move: else if (cartesian_move && angular_move) { tx = dx? fabs(dx / FROM_EXT_LEN(AXIS_MAX_VELOCITY[0])): 0.0; ty = dy? fabs(dy / FROM_EXT_LEN(AXIS_MAX_VELOCITY[1])): 0.0; tz = dz? fabs(dz / FROM_EXT_LEN(AXIS_MAX_VELOCITY[2])): 0.0; ta = da? fabs(da / FROM_EXT_ANG(AXIS_MAX_VELOCITY[3])):0.0; tb = db? fabs(db / FROM_EXT_ANG(AXIS_MAX_VELOCITY[4])):0.0; tc = dc? fabs(dc / FROM_EXT_ANG(AXIS_MAX_VELOCITY[5])):0.0; tu = du? fabs(du / FROM_EXT_LEN(AXIS_MAX_VELOCITY[6])): 0.0; tv = dv? fabs(dv / FROM_EXT_LEN(AXIS_MAX_VELOCITY[7])): 0.0; tw = dw? fabs(dw / FROM_EXT_LEN(AXIS_MAX_VELOCITY[8])): 0.0; tmax = MAX9(tx, ty, tz, ta, tb, tc, tu, tv, tw); /* According to NIST IR6556 Section 2.1.2.5 Paragraph A a combnation move is handled like a linear move, except that the angular axes are allowed sufficient time to complete their motion coordinated with the motion of the linear axes. */ if(dx || dy || dz) dtot = sqrt(dx * dx + dy * dy + dz * dz); else dtot = sqrt(du * du + dv * dv + dw * dw); if (tmax <= 0.0) { vel = currentLinearFeedRate; } else { vel = dtot / tmax; } } if(debug_velacc) printf("cartesian %d ang %d vel %g\n", cartesian_move, angular_move, vel); return vel; } #include <vector> struct pt { double x, y, z, a, b, c, u, v, w; int line_no;}; static std::vector<struct pt>& chained_points(void) { static std::vector<struct pt> points; return points; } static void flush_segments(void) { if(chained_points().empty()) return; struct pt &pos = chained_points().back(); double x = pos.x, y = pos.y, z = pos.z; double a = pos.a, b = pos.b, c = pos.c; double u = pos.u, v = pos.v, w = pos.w; int line_no = pos.line_no; #ifdef SHOW_JOINED_SEGMENTS for(unsigned int i=0; i != chained_points().size(); i++) { printf("."); } printf("\n"); #endif double ini_maxvel = getStraightVelocity(x, y, z, a, b, c, u, v, w), vel = ini_maxvel; if (cartesian_move && !angular_move) { if (vel > currentLinearFeedRate) { vel = currentLinearFeedRate; } } else if (!cartesian_move && angular_move) { if (vel > currentAngularFeedRate) { vel = currentAngularFeedRate; } } else if (cartesian_move && angular_move) { if (vel > currentLinearFeedRate) { vel = currentLinearFeedRate; } } EMC_TRAJ_LINEAR_MOVE linearMoveMsg; linearMoveMsg.feed_mode = feed_mode; // now x, y, z, and b are in absolute mm or degree units linearMoveMsg.end.tran.x = TO_EXT_LEN(x); linearMoveMsg.end.tran.y = TO_EXT_LEN(y); linearMoveMsg.end.tran.z = TO_EXT_LEN(z); linearMoveMsg.end.u = TO_EXT_LEN(u); linearMoveMsg.end.v = TO_EXT_LEN(v); linearMoveMsg.end.w = TO_EXT_LEN(w); // fill in the orientation linearMoveMsg.end.a = TO_EXT_ANG(a); linearMoveMsg.end.b = TO_EXT_ANG(b); linearMoveMsg.end.c = TO_EXT_ANG(c); linearMoveMsg.vel = toExtVel(vel); linearMoveMsg.ini_maxvel = toExtVel(ini_maxvel); double acc = getStraightAcceleration(x, y, z, a, b, c, u, v, w); linearMoveMsg.acc = toExtAcc(acc); linearMoveMsg.type = EMC_MOTION_TYPE_FEED; int save = interp_list.get_next_line_number(); interp_list.set_line_number(line_no); interp_list.append(linearMoveMsg); interp_list.set_line_number(save); canonUpdateEndPoint(x, y, z, a, b, c, u, v, w); chained_points().clear(); } static bool linkable(double x, double y, double z, double a, double b, double c, double u, double v, double w) { struct pt &pos = chained_points().back(); if(canonMotionMode != CANON_CONTINUOUS || canonMotionTolerance == 0) return false; if(chained_points().size() > 100) return false; if(a != pos.a) return false; if(b != pos.b) return false; if(c != pos.c) return false; if(u != pos.u) return false; if(v != pos.v) return false; if(w != pos.w) return false; if(x==canonEndPoint.x && y==canonEndPoint.y && z==canonEndPoint.z) return false; for(std::vector<struct pt>::iterator it = chained_points().begin(); it != chained_points().end(); it++) { PM_CARTESIAN M(x-canonEndPoint.x, y-canonEndPoint.y, z-canonEndPoint.z), B(canonEndPoint.x, canonEndPoint.y, canonEndPoint.z), P(it->x, it->y, it->z); double t0 = dot(M, P-B) / dot(M, M); if(t0 < 0) t0 = 0; if(t0 > 1) t0 = 1; double D = mag(P - (B + t0 * M)); if(D > canonMotionTolerance) return false; } return true; } static void see_segment(double x, double y, double z, double a, double b, double c, double u, double v, double w) { bool changed_abc = (a != canonEndPoint.a) || (b != canonEndPoint.b) || (c != canonEndPoint.c); bool changed_uvw = (u != canonEndPoint.u) || (v != canonEndPoint.v) || (w != canonEndPoint.w); if(!chained_points().empty() && !linkable(x, y, z, a, b, c, u, v, w)) { flush_segments(); } pt pos = {x, y, z, a, b, c, u, v, w, interp_list.get_next_line_number()}; chained_points().push_back(pos); if(changed_abc || changed_uvw) { flush_segments(); } } void FINISH() { flush_segments(); } void STRAIGHT_TRAVERSE(double x, double y, double z, double a, double b, double c, double u, double v, double w) { double vel, acc; EMC_TRAJ_LINEAR_MOVE linearMoveMsg; linearMoveMsg.feed_mode = 0; // convert to mm units x = FROM_PROG_LEN(x); y = FROM_PROG_LEN(y); z = FROM_PROG_LEN(z); a = FROM_PROG_ANG(a); b = FROM_PROG_ANG(b); c = FROM_PROG_ANG(c); u = FROM_PROG_LEN(u); v = FROM_PROG_LEN(v); w = FROM_PROG_LEN(w); x += programOrigin.x; y += programOrigin.y; z += programOrigin.z; a += programOrigin.a; b += programOrigin.b; c += programOrigin.c; u += programOrigin.u; v += programOrigin.v; w += programOrigin.w; x += currentXToolOffset; z += currentZToolOffset; // now x, y, z, and b are in absolute mm or degree units linearMoveMsg.end.tran.x = TO_EXT_LEN(x); linearMoveMsg.end.tran.y = TO_EXT_LEN(y); linearMoveMsg.end.tran.z = TO_EXT_LEN(z); // fill in the orientation linearMoveMsg.end.a = TO_EXT_ANG(a); linearMoveMsg.end.b = TO_EXT_ANG(b); linearMoveMsg.end.c = TO_EXT_ANG(c); linearMoveMsg.end.u = TO_EXT_LEN(u); linearMoveMsg.end.v = TO_EXT_LEN(v); linearMoveMsg.end.w = TO_EXT_LEN(w); linearMoveMsg.type = EMC_MOTION_TYPE_TRAVERSE; flush_segments(); vel = getStraightVelocity(x, y, z, a, b, c, u, v, w); acc = getStraightAcceleration(x, y, z, a, b, c, u, v, w); linearMoveMsg.vel = linearMoveMsg.ini_maxvel = toExtVel(vel); linearMoveMsg.acc = toExtAcc(acc); linearMoveMsg.type = EMC_MOTION_TYPE_TRAVERSE; int old_feed_mode = feed_mode; if(feed_mode) STOP_SPEED_FEED_SYNCH(); if(vel && acc) interp_list.append(linearMoveMsg); if(old_feed_mode) START_SPEED_FEED_SYNCH(currentLinearFeedRate, 1); canonUpdateEndPoint(x, y, z, a, b, c, u, v, w); } void STRAIGHT_FEED(double x, double y, double z, double a, double b, double c, double u, double v, double w) { EMC_TRAJ_LINEAR_MOVE linearMoveMsg; linearMoveMsg.feed_mode = feed_mode; // convert to mm units x = FROM_PROG_LEN(x); y = FROM_PROG_LEN(y); z = FROM_PROG_LEN(z); a = FROM_PROG_ANG(a); b = FROM_PROG_ANG(b); c = FROM_PROG_ANG(c); u = FROM_PROG_LEN(u); v = FROM_PROG_LEN(v); w = FROM_PROG_LEN(w); x += programOrigin.x; y += programOrigin.y; z += programOrigin.z; a += programOrigin.a; b += programOrigin.b; c += programOrigin.c; u += programOrigin.u; v += programOrigin.v; w += programOrigin.w; x += currentXToolOffset; z += currentZToolOffset; see_segment(x, y, z, a, b, c, u, v, w); } void RIGID_TAP(double x, double y, double z) { double ini_maxvel, vel, acc; EMC_TRAJ_RIGID_TAP rigidTapMsg; // convert to mm units x = FROM_PROG_LEN(x); y = FROM_PROG_LEN(y); z = FROM_PROG_LEN(z); x += programOrigin.x; y += programOrigin.y; z += programOrigin.z; x += currentXToolOffset; z += currentZToolOffset; rigidTapMsg.pos.tran.x = TO_EXT_LEN(x); rigidTapMsg.pos.tran.y = TO_EXT_LEN(y); rigidTapMsg.pos.tran.z = TO_EXT_LEN(z); vel = getStraightVelocity(x, y, z, canonEndPoint.a, canonEndPoint.b, canonEndPoint.c, canonEndPoint.u, canonEndPoint.v, canonEndPoint.w); ini_maxvel = vel; acc = getStraightAcceleration(x, y, z, canonEndPoint.a, canonEndPoint.b, canonEndPoint.c, canonEndPoint.u, canonEndPoint.v, canonEndPoint.w); rigidTapMsg.vel = toExtVel(vel); rigidTapMsg.ini_maxvel = toExtVel(ini_maxvel); rigidTapMsg.acc = toExtAcc(acc); flush_segments(); interp_list.append(rigidTapMsg); // don't move the endpoint because after this move, we are back where we started } /* STRAIGHT_PROBE is exactly the same as STRAIGHT_FEED, except that it uses a probe message instead of a linear move message. */ void STRAIGHT_PROBE(double x, double y, double z, double a, double b, double c, double u, double v, double w, unsigned char probe_type) { double ini_maxvel, vel, acc; EMC_TRAJ_PROBE probeMsg; // convert to mm units x = FROM_PROG_LEN(x); y = FROM_PROG_LEN(y); z = FROM_PROG_LEN(z); a = FROM_PROG_ANG(a); b = FROM_PROG_ANG(b); c = FROM_PROG_ANG(c); u = FROM_PROG_LEN(u); v = FROM_PROG_LEN(v); w = FROM_PROG_LEN(w); x += programOrigin.x; y += programOrigin.y; z += programOrigin.z; a += programOrigin.a; b += programOrigin.b; c += programOrigin.c; u += programOrigin.u; v += programOrigin.v; w += programOrigin.w; x += currentXToolOffset; z += currentZToolOffset; // now x, y, z, and b are in absolute mm or degree units probeMsg.pos.tran.x = TO_EXT_LEN(x); probeMsg.pos.tran.y = TO_EXT_LEN(y); probeMsg.pos.tran.z = TO_EXT_LEN(z); // fill in the orientation probeMsg.pos.a = TO_EXT_ANG(a); probeMsg.pos.b = TO_EXT_ANG(b); probeMsg.pos.c = TO_EXT_ANG(c); probeMsg.pos.u = TO_EXT_LEN(u); probeMsg.pos.v = TO_EXT_LEN(v); probeMsg.pos.w = TO_EXT_LEN(w); flush_segments(); ini_maxvel = vel = getStraightVelocity(x, y, z, a, b, c, u, v, w); if (cartesian_move && !angular_move) { if (vel > currentLinearFeedRate) { vel = currentLinearFeedRate; } } else if (!cartesian_move && angular_move) { if (vel > currentAngularFeedRate) { vel = currentAngularFeedRate; } } else if (cartesian_move && angular_move) { if (vel > currentLinearFeedRate) { vel = currentLinearFeedRate; } } acc = getStraightAcceleration(x, y, z, a, b, c, u, v, w); probeMsg.vel = toExtVel(vel); probeMsg.ini_maxvel = toExtVel(ini_maxvel); probeMsg.acc = toExtAcc(acc); probeMsg.type = EMC_MOTION_TYPE_PROBING; probeMsg.probe_type = probe_type; interp_list.append(probeMsg); canonUpdateEndPoint(x, y, z, a, b, c, u, v, w); } /* Machining Attributes */ void SET_MOTION_CONTROL_MODE(CANON_MOTION_MODE mode, double tolerance) { EMC_TRAJ_SET_TERM_COND setTermCondMsg; flush_segments(); if ((mode != canonMotionMode) || (FROM_PROG_LEN(tolerance) != canonMotionTolerance)) { canonMotionMode = mode; canonMotionTolerance = FROM_PROG_LEN(tolerance); switch (mode) { case CANON_CONTINUOUS: setTermCondMsg.cond = EMC_TRAJ_TERM_COND_BLEND; setTermCondMsg.tolerance = TO_EXT_LEN(canonMotionTolerance); break; default: setTermCondMsg.cond = EMC_TRAJ_TERM_COND_STOP; break; } interp_list.append(setTermCondMsg); } } CANON_MOTION_MODE GET_MOTION_CONTROL_MODE() { return canonMotionMode; } double GET_MOTION_CONTROL_TOLERANCE() { return canonMotionTolerance; } void SELECT_PLANE(CANON_PLANE in_plane) { activePlane = in_plane; } void SET_CUTTER_RADIUS_COMPENSATION(double radius) { // nothing need be done here } void START_CUTTER_RADIUS_COMPENSATION(int side) { // nothing need be done here } void STOP_CUTTER_RADIUS_COMPENSATION() { // nothing need be done here } void START_SPEED_FEED_SYNCH(double feed_per_revolution, bool velocity_mode) { flush_segments(); EMC_TRAJ_SET_SPINDLESYNC spindlesyncMsg; spindlesyncMsg.feed_per_revolution = TO_EXT_LEN(FROM_PROG_LEN(feed_per_revolution)); spindlesyncMsg.velocity_mode = velocity_mode; interp_list.append(spindlesyncMsg); } void STOP_SPEED_FEED_SYNCH() { flush_segments(); EMC_TRAJ_SET_SPINDLESYNC spindlesyncMsg; spindlesyncMsg.feed_per_revolution = 0.0; spindlesyncMsg.velocity_mode = false; interp_list.append(spindlesyncMsg); } void SELECT_MOTION_MODE(CANON_MOTION_MODE mode) { // nothing need be done here } /* Machining Functions */ void ARC_FEED(double first_end, double second_end, double first_axis, double second_axis, int rotation, double axis_end_point, double a, double b, double c, double u, double v, double w) { EmcPose end; PM_CARTESIAN center, normal; EMC_TRAJ_CIRCULAR_MOVE circularMoveMsg; EMC_TRAJ_LINEAR_MOVE linearMoveMsg; double v1, v2, a1, a2, vel, ini_maxvel, circ_maxvel, axial_maxvel=0.0, circ_acc, axial_acc, acc=0.0; double radius, angle, theta1, theta2, helical_length, axis_len; double tcircle, taxial, tmax, thelix, ta, tb, tc, da, db, dc; double tu, tv, tw, du, dv, dw; //ini_maxvel = max vel defined by various ini constraints //circ_maxvel = max vel defined by ini constraints in the circle plane (XY, YZ or XZ) //axial_maxvel = max vel defined by ini constraints in the axial direction (Z, X or Y) linearMoveMsg.feed_mode = feed_mode; circularMoveMsg.feed_mode = feed_mode; flush_segments(); /* In response to Bugs item #1274108 - rotary axis moves when coordinate offsets used with A. Original code failed to include programOrigin on rotary moves. */ a = FROM_PROG_ANG(a); b = FROM_PROG_ANG(b); c = FROM_PROG_ANG(c); a += programOrigin.a; b += programOrigin.b; c += programOrigin.c; u = FROM_PROG_LEN(u); v = FROM_PROG_LEN(v); w = FROM_PROG_LEN(w); u += programOrigin.u; v += programOrigin.v; w += programOrigin.w; da = fabs(canonEndPoint.a - a); db = fabs(canonEndPoint.b - b); dc = fabs(canonEndPoint.c - c); du = fabs(canonEndPoint.u - u); dv = fabs(canonEndPoint.v - v); dw = fabs(canonEndPoint.w - w); /* Since there's no default case here, we need to initialise vel to something safe! */ vel = ini_maxvel = currentLinearFeedRate; // convert to absolute mm units first_axis = FROM_PROG_LEN(first_axis); second_axis = FROM_PROG_LEN(second_axis); first_end = FROM_PROG_LEN(first_end); second_end = FROM_PROG_LEN(second_end); axis_end_point = FROM_PROG_LEN(axis_end_point); /* associate x with x, etc., offset by program origin, and set normals */ switch (activePlane) { default: // to eliminate "uninitalized" warnings case CANON_PLANE_XY: // offset and align args properly end.tran.x = first_end + programOrigin.x; end.tran.y = second_end + programOrigin.y; end.tran.z = axis_end_point + programOrigin.z; end.tran.x += currentXToolOffset; end.tran.z += currentZToolOffset; center.x = first_axis + programOrigin.x; center.x += currentXToolOffset; center.y = second_axis + programOrigin.y; center.z = end.tran.z; normal.x = 0.0; normal.y = 0.0; normal.z = 1.0; theta1 = atan2(canonEndPoint.y - center.y, canonEndPoint.x - center.x); theta2 = atan2(end.tran.y - center.y, end.tran.x - center.x); radius = hypot(canonEndPoint.x - center.x, canonEndPoint.y - center.y); axis_len = fabs(end.tran.z - canonEndPoint.z); v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[0]); v2 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[1]); a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[0]); a2 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[1]); circ_maxvel = ini_maxvel = MIN(v1, v2); circ_acc = acc = MIN(a1, a2); if(axis_len > 0.001) { axial_maxvel = v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[2]); axial_acc = a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[2]); ini_maxvel = MIN(ini_maxvel, v1); acc = MIN(acc, a1); } break; case CANON_PLANE_YZ: // offset and align args properly end.tran.y = first_end + programOrigin.y; end.tran.z = second_end + programOrigin.z; end.tran.x = axis_end_point + programOrigin.x; end.tran.x += currentXToolOffset; end.tran.z += currentZToolOffset; center.y = first_axis + programOrigin.y; center.z = second_axis + programOrigin.z; center.z += currentZToolOffset; center.x = end.tran.x; normal.y = 0.0; normal.z = 0.0; normal.x = 1.0; theta1 = atan2(canonEndPoint.z - center.z, canonEndPoint.y - center.y); theta2 = atan2(end.tran.z - center.z, end.tran.y - center.y); radius = hypot(canonEndPoint.y - center.y, canonEndPoint.z - center.z); axis_len = fabs(end.tran.x - canonEndPoint.x); v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[1]); v2 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[2]); a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[1]); a2 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[2]); circ_maxvel = ini_maxvel = MIN(v1, v2); circ_acc = acc = MIN(a1, a2); if(axis_len > 0.001) { axial_maxvel = v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[0]); axial_acc = a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[0]); ini_maxvel = MIN(ini_maxvel, v1); acc = MIN(acc, a1); } break; case CANON_PLANE_XZ: // offset and align args properly end.tran.z = first_end + programOrigin.z; end.tran.x = second_end + programOrigin.x; end.tran.y = axis_end_point + programOrigin.y; end.tran.x += currentXToolOffset; end.tran.z += currentZToolOffset; center.z = first_axis + programOrigin.z; center.z += currentZToolOffset; center.x = second_axis + programOrigin.x; center.x += currentXToolOffset; center.y = end.tran.y; normal.z = 0.0; normal.x = 0.0; normal.y = 1.0; theta1 = atan2(canonEndPoint.x - center.x, canonEndPoint.z - center.z); theta2 = atan2(end.tran.x - center.x, end.tran.z - center.z); radius = hypot(canonEndPoint.x - center.x, canonEndPoint.z - center.z); axis_len = fabs(end.tran.y - canonEndPoint.y); v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[0]); v2 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[2]); a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[0]); a2 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[2]); circ_maxvel = ini_maxvel = MIN(v1, v2); circ_acc = acc = MIN(a1, a2); if(axis_len > 0.001) { axial_maxvel = v1 = FROM_EXT_LEN(AXIS_MAX_VELOCITY[1]); axial_acc = a1 = FROM_EXT_LEN(AXIS_MAX_ACCELERATION[1]); ini_maxvel = MIN(ini_maxvel, v1); acc = MIN(acc, a1); } break; } if(rotation < 0) { if(theta2 >= theta1) theta2 -= M_PI * 2.0; } else { if(theta2 <= theta1) theta2 += M_PI * 2.0; } angle = theta2 - theta1; helical_length = hypot(angle * radius, axis_len); // COMPUTE VELOCITIES ta = da? fabs(da / FROM_EXT_ANG(AXIS_MAX_VELOCITY[3])):0.0; tb = db? fabs(db / FROM_EXT_ANG(AXIS_MAX_VELOCITY[4])):0.0; tc = dc? fabs(dc / FROM_EXT_ANG(AXIS_MAX_VELOCITY[5])):0.0; tu = du? (du / FROM_EXT_LEN(AXIS_MAX_VELOCITY[6])): 0.0; tv = dv? (dv / FROM_EXT_LEN(AXIS_MAX_VELOCITY[7])): 0.0; tw = dw? (dw / FROM_EXT_LEN(AXIS_MAX_VELOCITY[8])): 0.0; //we have accel, check what the max_vel is that doesn't violate the centripetal accel=accel v1 = sqrt(circ_acc * radius); circ_maxvel = MIN(v1, circ_maxvel); // find out how long the arc takes at ini_maxvel tcircle = fabs(angle * radius / circ_maxvel); taxial = fabs(axis_len / axial_maxvel); tmax = MAX(taxial, tcircle); tmax = MAX4(tmax, ta, tb, tc); tmax = MAX4(tmax, tu, tv, tw); if (tmax <= 0.0) { vel = currentLinearFeedRate; } else { ini_maxvel = helical_length / tmax; //compute the new maxvel based on all previous constraints vel = MIN(vel, ini_maxvel); //the programmed vel is either feedrate or machine_maxvel if lower } // for arcs we always user linear move since there is no // arc possible with only ABC motion cartesian_move = 1; // COMPUTE ACCELS // the next calcs are not really times. the units are time^2, but // the division at the end gives the right units for accel. if you // try to think of these in terms of any real-world value (time to // do what?), you're probably doomed. think of them as a parametric // expression of the acceleration in the various directions. thelix = (helical_length / acc); ta = da? (da / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[3])): 0.0; tb = db? (db / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[4])): 0.0; tc = dc? (dc / FROM_EXT_ANG(AXIS_MAX_ACCELERATION[5])): 0.0; tu = du? (du / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[6])): 0.0; tv = dv? (dv / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[7])): 0.0; tw = dw? (dw / FROM_EXT_LEN(AXIS_MAX_ACCELERATION[8])): 0.0; tmax = MAX4(thelix, ta, tb, tc); tmax = MAX4(tmax, tu, tv, tw); if (tmax > 0.0) { acc = helical_length / tmax; } /* mapping of rotation to turns: rotation turns -------- ----- 0 none (linear move) 1 0 2 1 -1 -1 -2 -2 */ if (rotation == 0) { // linear move linearMoveMsg.end.tran.x = TO_EXT_LEN(end.tran.x); linearMoveMsg.end.tran.y = TO_EXT_LEN(end.tran.y); linearMoveMsg.end.tran.z = TO_EXT_LEN(end.tran.z); // fill in the orientation linearMoveMsg.end.a = TO_EXT_ANG(a); linearMoveMsg.end.b = TO_EXT_ANG(b); linearMoveMsg.end.c = TO_EXT_ANG(c); linearMoveMsg.end.u = TO_EXT_LEN(u); linearMoveMsg.end.v = TO_EXT_LEN(v); linearMoveMsg.end.w = TO_EXT_LEN(w); linearMoveMsg.type = EMC_MOTION_TYPE_ARC; linearMoveMsg.vel = toExtVel(vel); linearMoveMsg.ini_maxvel = toExtVel(ini_maxvel); linearMoveMsg.acc = toExtAcc(acc); if(acc) interp_list.append(linearMoveMsg); } else { circularMoveMsg.end.tran.x = TO_EXT_LEN(end.tran.x); circularMoveMsg.end.tran.y = TO_EXT_LEN(end.tran.y); circularMoveMsg.end.tran.z = TO_EXT_LEN(end.tran.z); circularMoveMsg.center.x = TO_EXT_LEN(center.x); circularMoveMsg.center.y = TO_EXT_LEN(center.y); circularMoveMsg.center.z = TO_EXT_LEN(center.z); circularMoveMsg.normal = normal; if (rotation > 0) circularMoveMsg.turn = rotation - 1; else // reverse turn circularMoveMsg.turn = rotation; // fill in the orientation circularMoveMsg.end.a = TO_EXT_ANG(a); circularMoveMsg.end.b = TO_EXT_ANG(b); circularMoveMsg.end.c = TO_EXT_ANG(c); circularMoveMsg.end.u = TO_EXT_LEN(u); circularMoveMsg.end.v = TO_EXT_LEN(v); circularMoveMsg.end.w = TO_EXT_LEN(w); circularMoveMsg.type = EMC_MOTION_TYPE_ARC; // These are suboptimal but safe values. The actual maximums // are hard to calculate but may be somewhat larger than // these. Imagine an arc with very large radius going from // 0,0,0 to 1,1,1 on a machine with maxvel=1 and maxaccel=1 on // all axes. The actual maximums will be near sqrt(3) but // we'll be using 1 instead. circularMoveMsg.vel = toExtVel(vel); circularMoveMsg.ini_maxvel = toExtVel(ini_maxvel); circularMoveMsg.acc = toExtAcc(acc); if(acc) interp_list.append(circularMoveMsg); } // update the end point canonUpdateEndPoint(end.tran.x, end.tran.y, end.tran.z, a, b, c, u, v, w); } void DWELL(double seconds) { EMC_TRAJ_DELAY delayMsg; flush_segments(); delayMsg.delay = seconds; interp_list.append(delayMsg); } /* Spindle Functions */ void SPINDLE_RETRACT_TRAVERSE() { /*! \todo FIXME-- unimplemented */ } /* 0 is off, -1 is CCW, 1 is CW; used as flag if settting speed again */ static int spindleOn = 0; void SET_SPINDLE_MODE(double css_max) { css_maximum = css_max; } void START_SPINDLE_CLOCKWISE() { EMC_SPINDLE_ON emc_spindle_on_msg; flush_segments(); if(css_maximum) { if(lengthUnits == CANON_UNITS_INCHES) css_numerator = 12 / (2 * M_PI) * spindleSpeed * TO_EXT_LEN(25.4); else css_numerator = 1000 / (2 * M_PI) * spindleSpeed * TO_EXT_LEN(1); emc_spindle_on_msg.speed = css_maximum; emc_spindle_on_msg.factor = css_numerator; emc_spindle_on_msg.xoffset = TO_EXT_LEN(currentXToolOffset); } else { emc_spindle_on_msg.speed = spindleSpeed; css_numerator = 0; } interp_list.append(emc_spindle_on_msg); spindleOn = 1; } void START_SPINDLE_COUNTERCLOCKWISE() { EMC_SPINDLE_ON emc_spindle_on_msg; flush_segments(); if(css_maximum) { if(lengthUnits == CANON_UNITS_INCHES) css_numerator = -12 / (2 * M_PI) * spindleSpeed; else css_numerator = -1000 / (2 * M_PI) * spindleSpeed; emc_spindle_on_msg.speed = css_maximum; emc_spindle_on_msg.factor = css_numerator; emc_spindle_on_msg.xoffset = TO_EXT_LEN(currentXToolOffset); } else { emc_spindle_on_msg.speed = -spindleSpeed; css_numerator = 0; } interp_list.append(emc_spindle_on_msg); spindleOn = -1; } void SET_SPINDLE_SPEED(double r) { // speed is in RPMs everywhere spindleSpeed = r; // check if we need to resend command if (spindleOn == 1) { START_SPINDLE_CLOCKWISE(); } else if (spindleOn == -1) { START_SPINDLE_COUNTERCLOCKWISE(); } } void STOP_SPINDLE_TURNING() { EMC_SPINDLE_OFF emc_spindle_off_msg; flush_segments(); interp_list.append(emc_spindle_off_msg); spindleOn = 0; } void SPINDLE_RETRACT() { /*! \todo FIXME-- unimplemented */ } void ORIENT_SPINDLE(double orientation, CANON_DIRECTION direction) { /*! \todo FIXME-- unimplemented */ } void USE_SPINDLE_FORCE(void) { /*! \todo FIXME-- unimplemented */ } void LOCK_SPINDLE_Z(void) { /*! \todo FIXME-- unimplemented */ } void USE_NO_SPINDLE_FORCE(void) { /*! \todo FIXME-- unimplemented */ } /* Tool Functions */ /* EMC has no tool length offset. To implement it, we save it here, and apply it when necessary */ void USE_TOOL_LENGTH_OFFSET(double xoffset, double zoffset) { EMC_TRAJ_SET_OFFSET set_offset_msg; flush_segments(); /* convert to mm units for internal canonical use */ currentXToolOffset = FROM_PROG_LEN(xoffset); currentZToolOffset = FROM_PROG_LEN(zoffset); /* append it to interp list so it gets updated at the right time, not at read-ahead time */ set_offset_msg.offset.tran.x = TO_EXT_LEN(currentXToolOffset); set_offset_msg.offset.tran.y = 0.0; set_offset_msg.offset.tran.z = TO_EXT_LEN(currentZToolOffset); set_offset_msg.offset.a = 0.0; set_offset_msg.offset.b = 0.0; set_offset_msg.offset.c = 0.0; if(css_maximum && spindleOn) { EMC_SPINDLE_ON emc_spindle_on_msg; emc_spindle_on_msg.speed = css_maximum; emc_spindle_on_msg.factor = css_numerator; emc_spindle_on_msg.xoffset = TO_EXT_LEN(currentXToolOffset); interp_list.append(emc_spindle_on_msg); } interp_list.append(set_offset_msg); } /* CHANGE_TOOL results from M6, for example */ void CHANGE_TOOL(int slot) { EMC_TRAJ_LINEAR_MOVE linearMoveMsg; linearMoveMsg.feed_mode = feed_mode; EMC_TOOL_LOAD load_tool_msg; flush_segments(); /* optional move to tool change position. This * is a mess because we really want a configurable chain * of events to happen when a tool change is called for. * Since they'll probably involve motion, we can't just * do it in HAL. This is basic support for making one * move to a particular coordinate before the tool change * is called. */ if (HAVE_TOOL_CHANGE_POSITION) { double vel, acc, x, y, z, a, b, c; x = FROM_EXT_LEN(TOOL_CHANGE_POSITION.tran.x); y = FROM_EXT_LEN(TOOL_CHANGE_POSITION.tran.y); z = FROM_EXT_LEN(TOOL_CHANGE_POSITION.tran.z); a = FROM_EXT_ANG(TOOL_CHANGE_POSITION.a); b = FROM_EXT_ANG(TOOL_CHANGE_POSITION.b); c = FROM_EXT_ANG(TOOL_CHANGE_POSITION.c); // XXX for now, don't move uvw for a tool change vel = getStraightVelocity(x, y, z, a, b, c, canonEndPoint.u, canonEndPoint.v, canonEndPoint.w); acc = getStraightAcceleration(x, y, z, a, b, c, canonEndPoint.u, canonEndPoint.v, canonEndPoint.w); linearMoveMsg.end.tran.x = TO_EXT_LEN(x); linearMoveMsg.end.tran.y = TO_EXT_LEN(y); linearMoveMsg.end.tran.z = TO_EXT_LEN(z); linearMoveMsg.end.a = TO_EXT_ANG(a); linearMoveMsg.end.b = TO_EXT_ANG(b); linearMoveMsg.end.c = TO_EXT_ANG(c); linearMoveMsg.end.u = TO_EXT_LEN(canonEndPoint.u); linearMoveMsg.end.v = TO_EXT_LEN(canonEndPoint.v); linearMoveMsg.end.w = TO_EXT_LEN(canonEndPoint.w); linearMoveMsg.vel = linearMoveMsg.ini_maxvel = toExtVel(vel); linearMoveMsg.acc = toExtAcc(acc); linearMoveMsg.type = EMC_MOTION_TYPE_TOOLCHANGE; linearMoveMsg.feed_mode = 0; int old_feed_mode = feed_mode; if(feed_mode) STOP_SPEED_FEED_SYNCH(); if(vel && acc) interp_list.append(linearMoveMsg); if(old_feed_mode) START_SPEED_FEED_SYNCH(currentLinearFeedRate, 1); canonUpdateEndPoint(x, y, z, a, b, c, canonEndPoint.u, canonEndPoint.v, canonEndPoint.w); } /* regardless of optional moves above, we'll always send a load tool message */ interp_list.append(load_tool_msg); } /* SELECT_TOOL results from T1, for example */ void SELECT_TOOL(int slot) { EMC_TOOL_PREPARE prep_for_tool_msg; prep_for_tool_msg.tool = slot; interp_list.append(prep_for_tool_msg); } /* Misc Functions */ void CLAMP_AXIS(CANON_AXIS axis) { /*! \todo FIXME-- unimplemented */ } /* setString and addString initializes or adds src to dst, never exceeding dst's maxlen chars. */ static char *setString(char *dst, const char *src, int maxlen) { dst[0] = 0; strncat(dst, src, maxlen - 1); dst[maxlen - 1] = 0; return dst; } static char *addString(char *dst, const char *src, int maxlen) { int dstlen = strlen(dst); int srclen = strlen(src); int actlen; if (srclen >= maxlen - dstlen) { actlen = maxlen - dstlen - 1; dst[maxlen - 1] = 0; } else { actlen = srclen; } strncat(dst, src, actlen); return dst; } /* The probe file is opened with a hot-comment (PROBEOPEN <filename>), and the results of each probed point are written to that file. The file is closed with a (PROBECLOSE) comment. */ static FILE *probefile = NULL; void COMMENT(char *comment) { // nothing need be done here, but you can play tricks with hot comments char msg[LINELEN]; char probefilename[LINELEN]; char *ptr; // set RPY orientation for subsequent moves if (!strncmp(comment, "RPY", strlen("RPY"))) { PM_RPY rpy; // it's RPY <R> <P> <Y> if (3 != sscanf(comment, "%*s %lf %lf %lf", &rpy.r, &rpy.p, &rpy.y)) { // print current orientation printf("rpy = %f %f %f, quat = %f %f %f %f\n", rpy.r, rpy.p, rpy.y, quat.s, quat.x, quat.y, quat.z); } else { // set and print orientation quat = rpy; printf("rpy = %f %f %f, quat = %f %f %f %f\n", rpy.r, rpy.p, rpy.y, quat.s, quat.x, quat.y, quat.z); } return; } // open probe output file if (!strncmp(comment, "PROBEOPEN", strlen("PROBEOPEN"))) { // position ptr to first char after PROBEOPEN ptr = &comment[strlen("PROBEOPEN")]; // and step over white space to name, or NULL while (isspace(*ptr)) { ptr++; } setString(probefilename, ptr, LINELEN); if (NULL == (probefile = fopen(probefilename, "w"))) { // pop up a warning message setString(msg, "can't open probe file ", LINELEN); addString(msg, probefilename, LINELEN); MESSAGE(msg); probefile = NULL; } return; } // close probe output file if (!strncmp(comment, "PROBECLOSE", strlen("PROBECLOSE"))) { if (probefile != NULL) { fclose(probefile); probefile = NULL; } return; } return; } // refers to feed rate void DISABLE_FEED_OVERRIDE() { EMC_TRAJ_SET_FO_ENABLE set_fo_enable_msg; flush_segments(); set_fo_enable_msg.mode = 0; interp_list.append(set_fo_enable_msg); } void ENABLE_FEED_OVERRIDE() { EMC_TRAJ_SET_FO_ENABLE set_fo_enable_msg; flush_segments(); set_fo_enable_msg.mode = 1; interp_list.append(set_fo_enable_msg); } //refers to adaptive feed override (HAL input, usefull for EDM for example) void DISABLE_ADAPTIVE_FEED() { EMC_MOTION_ADAPTIVE emcmotAdaptiveMsg; flush_segments(); emcmotAdaptiveMsg.status = 0; interp_list.append(emcmotAdaptiveMsg); } void ENABLE_ADAPTIVE_FEED() { EMC_MOTION_ADAPTIVE emcmotAdaptiveMsg; flush_segments(); emcmotAdaptiveMsg.status = 1; interp_list.append(emcmotAdaptiveMsg); } //refers to spindle speed void DISABLE_SPEED_OVERRIDE() { EMC_TRAJ_SET_SO_ENABLE set_so_enable_msg; flush_segments(); set_so_enable_msg.mode = 0; interp_list.append(set_so_enable_msg); } void ENABLE_SPEED_OVERRIDE() { EMC_TRAJ_SET_SO_ENABLE set_so_enable_msg; flush_segments(); set_so_enable_msg.mode = 1; interp_list.append(set_so_enable_msg); } void ENABLE_FEED_HOLD() { EMC_TRAJ_SET_FH_ENABLE set_feed_hold_msg; flush_segments(); set_feed_hold_msg.mode = 1; interp_list.append(set_feed_hold_msg); } void DISABLE_FEED_HOLD() { EMC_TRAJ_SET_FH_ENABLE set_feed_hold_msg; flush_segments(); set_feed_hold_msg.mode = 0; interp_list.append(set_feed_hold_msg); } void FLOOD_OFF() { EMC_COOLANT_FLOOD_OFF flood_off_msg; flush_segments(); interp_list.append(flood_off_msg); } void FLOOD_ON() { EMC_COOLANT_FLOOD_ON flood_on_msg; flush_segments(); interp_list.append(flood_on_msg); } void MESSAGE(char *s) { EMC_OPERATOR_DISPLAY operator_display_msg; flush_segments(); operator_display_msg.id = 0; strncpy(operator_display_msg.display, s, LINELEN); operator_display_msg.display[LINELEN - 1] = 0; interp_list.append(operator_display_msg); } void MIST_OFF() { EMC_COOLANT_MIST_OFF mist_off_msg; flush_segments(); interp_list.append(mist_off_msg); } void MIST_ON() { EMC_COOLANT_MIST_ON mist_on_msg; flush_segments(); interp_list.append(mist_on_msg); } void PALLET_SHUTTLE() { /*! \todo FIXME-- unimplemented */ } void TURN_PROBE_OFF() { // don't do anything-- this is called when the probing is done } void TURN_PROBE_ON() { EMC_TRAJ_CLEAR_PROBE_TRIPPED_FLAG clearMsg; interp_list.append(clearMsg); } void UNCLAMP_AXIS(CANON_AXIS axis) { /*! \todo FIXME-- unimplemented */ } /* Program Functions */ void STOP(void) { flush_segments(); } void PROGRAM_STOP() { /* implement this as a pause. A resume will cause motion to proceed. */ EMC_TASK_PLAN_PAUSE pauseMsg; flush_segments(); interp_list.append(pauseMsg); } void SET_BLOCK_DELETE(bool state) { block_delete = state; //state == ON, means we don't interpret lines starting with "/" } bool GET_BLOCK_DELETE() { return block_delete; //state == ON, means we don't interpret lines starting with "/" } void SET_OPTIONAL_PROGRAM_STOP(bool state) { optional_program_stop = state; //state == ON, means we stop } bool GET_OPTIONAL_PROGRAM_STOP() { return optional_program_stop; //state == ON, means we stop } void OPTIONAL_PROGRAM_STOP() { EMC_TASK_PLAN_OPTIONAL_STOP stopMsg; flush_segments(); interp_list.append(stopMsg); } void PROGRAM_END() { flush_segments(); EMC_TASK_PLAN_END endMsg; interp_list.append(endMsg); } /* returns the current x, y, z origin offsets */ CANON_VECTOR GET_PROGRAM_ORIGIN() { CANON_VECTOR origin; /* and convert from mm units to interpreter units */ origin.x = TO_PROG_LEN(programOrigin.x); origin.y = TO_PROG_LEN(programOrigin.y); origin.z = TO_PROG_LEN(programOrigin.z); return origin; /* in program units */ } /* returns the current active units */ CANON_UNITS GET_LENGTH_UNITS() { return lengthUnits; } CANON_PLANE GET_PLANE() { return activePlane; } double GET_EXTERNAL_TOOL_LENGTH_XOFFSET() { return TO_PROG_LEN(currentXToolOffset); } double GET_EXTERNAL_TOOL_LENGTH_ZOFFSET() { return TO_PROG_LEN(currentZToolOffset); } /* INIT_CANON() Initialize canonical local variables to defaults */ void INIT_CANON() { double units; chained_points().clear(); // initialize locals to original values programOrigin.x = 0.0; programOrigin.y = 0.0; programOrigin.z = 0.0; programOrigin.a = 0.0; programOrigin.b = 0.0; programOrigin.c = 0.0; activePlane = CANON_PLANE_XY; canonEndPoint.x = 0.0; canonEndPoint.y = 0.0; canonEndPoint.z = 0.0; canonEndPoint.a = 0.0; canonEndPoint.b = 0.0; canonEndPoint.c = 0.0; SET_MOTION_CONTROL_MODE(CANON_CONTINUOUS, 0); spindleSpeed = 0.0; preppedTool = 0; cartesian_move = 0; angular_move = 0; currentLinearFeedRate = 0.0; currentAngularFeedRate = 0.0; currentXToolOffset = 0.0; currentZToolOffset = 0.0; /* to set the units, note that GET_EXTERNAL_LENGTH_UNITS() returns traj->linearUnits, which is already set from the .ini file in iniTraj(). This is a floating point number, in user units per mm. We can compare this against known values and set the symbolic values accordingly. If it doesn't match, we have an error. */ units = GET_EXTERNAL_LENGTH_UNITS(); if (fabs(units - 1.0 / 25.4) < 1.0e-3) { lengthUnits = CANON_UNITS_INCHES; } else if (fabs(units - 1.0) < 1.0e-3) { lengthUnits = CANON_UNITS_MM; } else { CANON_ERROR ("non-standard length units, setting interpreter to mm"); lengthUnits = CANON_UNITS_MM; } } /* Sends error message */ void CANON_ERROR(const char *fmt, ...) { va_list ap; EMC_OPERATOR_ERROR operator_error_msg; flush_segments(); operator_error_msg.id = 0; if (fmt != NULL) { va_start(ap, fmt); vsprintf(operator_error_msg.error, fmt, ap); va_end(ap); } else { operator_error_msg.error[0] = 0; } interp_list.append(operator_error_msg); } /* GET_EXTERNAL_TOOL_TABLE(int pocket) Returns the tool table structure associated with pocket. Note that pocket can run from 0 (by definition, no tool), to pocket CANON_TOOL_MAX - 1. The value from emc status is in user units. We need to convert these to interpreter units, by calling FROM_EXT_LEN() to get them to mm, and then switching on lengthUnits. */ CANON_TOOL_TABLE GET_EXTERNAL_TOOL_TABLE(int pocket) { CANON_TOOL_TABLE retval; if (pocket < 0 || pocket >= CANON_TOOL_MAX) { retval.id = 0; retval.xoffset = 0.0; retval.zoffset = 0.0; retval.frontangle = 0.0; retval.backangle = 0.0; retval.diameter = 0.0; retval.orientation = 0; } else { retval = emcStatus->io.tool.toolTable[pocket]; // convert from user to program units retval.xoffset = retval.xoffset; retval.zoffset = retval.zoffset; retval.diameter = retval.diameter; // leave the angles alone } return retval; } CANON_POSITION GET_EXTERNAL_POSITION() { CANON_POSITION position; EmcPose pos; chained_points().clear(); pos = emcStatus->motion.traj.position; // first update internal record of last position canonEndPoint.x = FROM_EXT_LEN(pos.tran.x); canonEndPoint.y = FROM_EXT_LEN(pos.tran.y); canonEndPoint.z = FROM_EXT_LEN(pos.tran.z); canonEndPoint.a = FROM_EXT_ANG(pos.a); canonEndPoint.b = FROM_EXT_ANG(pos.b); canonEndPoint.c = FROM_EXT_ANG(pos.c); canonEndPoint.u = FROM_EXT_LEN(pos.u); canonEndPoint.v = FROM_EXT_LEN(pos.v); canonEndPoint.w = FROM_EXT_LEN(pos.w); // now calculate position in program units, for interpreter position.x = TO_PROG_LEN(canonEndPoint.x - programOrigin.x - currentXToolOffset); position.y = TO_PROG_LEN(canonEndPoint.y - programOrigin.y); position.z = TO_PROG_LEN(canonEndPoint.z - programOrigin.z - currentZToolOffset); position.a = TO_PROG_ANG(canonEndPoint.a - programOrigin.a); position.b = TO_PROG_ANG(canonEndPoint.b - programOrigin.b); position.c = TO_PROG_ANG(canonEndPoint.c - programOrigin.c); position.u = TO_PROG_LEN(canonEndPoint.u - programOrigin.u); position.v = TO_PROG_LEN(canonEndPoint.v - programOrigin.v); position.w = TO_PROG_LEN(canonEndPoint.w - programOrigin.w); return position; } CANON_POSITION GET_EXTERNAL_PROBE_POSITION() { CANON_POSITION position; EmcPose pos; static CANON_POSITION last_probed_position; flush_segments(); pos = emcStatus->motion.traj.probedPosition; // first update internal record of last position pos.tran.x = FROM_EXT_LEN(pos.tran.x); pos.tran.y = FROM_EXT_LEN(pos.tran.y); pos.tran.z = FROM_EXT_LEN(pos.tran.z); pos.a = FROM_EXT_ANG(pos.a); pos.b = FROM_EXT_ANG(pos.b); pos.c = FROM_EXT_ANG(pos.c); pos.u = FROM_EXT_LEN(pos.u); pos.v = FROM_EXT_LEN(pos.v); pos.w = FROM_EXT_LEN(pos.w); // now calculate position in program units, for interpreter position.x = TO_PROG_LEN(pos.tran.x - programOrigin.x); position.y = TO_PROG_LEN(pos.tran.y - programOrigin.y); position.z = TO_PROG_LEN(pos.tran.z - programOrigin.z); position.x -= TO_PROG_LEN(currentXToolOffset); position.z -= TO_PROG_LEN(currentZToolOffset); position.a = TO_PROG_ANG(pos.a - programOrigin.a); position.b = TO_PROG_ANG(pos.b - programOrigin.b); position.c = TO_PROG_ANG(pos.c - programOrigin.c); position.u = TO_PROG_LEN(pos.u - programOrigin.u); position.v = TO_PROG_LEN(pos.v - programOrigin.v); position.w = TO_PROG_LEN(pos.w - programOrigin.w); if (probefile != NULL) { if (last_probed_position != position) { fprintf(probefile, "%f %f %f %f %f %f %f %f %f\n", position.x, position.y, position.z, position.a, position.b, position.c, position.u, position.v, position.w); last_probed_position = position; } } return position; } double GET_EXTERNAL_PROBE_VALUE() { // only for analog non-contact probe, so force a 0 return 0.0; } int IS_EXTERNAL_QUEUE_EMPTY() { flush_segments(); return emcStatus->motion.traj.queue == 0 ? 1 : 0; } // feed rate wanted is in program units per minute double GET_EXTERNAL_FEED_RATE() { double feed; // convert from internal to program units // it is wrong to use emcStatus->motion.traj.velocity here, as that is the traj speed regardless of G0 / G1 feed = TO_PROG_LEN(currentLinearFeedRate); // now convert from per-sec to per-minute feed *= 60.0; return feed; } // traverse rate wanted is in program units per minute double GET_EXTERNAL_TRAVERSE_RATE() { double traverse; // convert from external to program units traverse = TO_PROG_LEN(FROM_EXT_LEN(emcStatus->motion.traj.maxVelocity)); // now convert from per-sec to per-minute traverse *= 60.0; return traverse; } double GET_EXTERNAL_LENGTH_UNITS(void) { double u; u = emcStatus->motion.traj.linearUnits; if (u == 0) { CANON_ERROR("external length units are zero"); return 1.0; } else { return u; } } double GET_EXTERNAL_ANGLE_UNITS(void) { double u; u = emcStatus->motion.traj.angularUnits; if (u == 0) { CANON_ERROR("external angle units are zero"); return 1.0; } else { return u; } } int GET_EXTERNAL_TOOL() { return emcStatus->io.tool.toolInSpindle; } int GET_EXTERNAL_MIST() { return emcStatus->io.coolant.mist; } int GET_EXTERNAL_FLOOD() { return emcStatus->io.coolant.flood; } int GET_EXTERNAL_POCKET() { return emcStatus->io.tool.toolPrepped; } double GET_EXTERNAL_SPEED() { // speed is in RPMs everywhere return emcStatus->motion.spindle.speed; } CANON_DIRECTION GET_EXTERNAL_SPINDLE() { if (emcStatus->motion.spindle.speed == 0) { return CANON_STOPPED; } if (emcStatus->motion.spindle.speed >= 0.0) { return CANON_CLOCKWISE; } return CANON_COUNTERCLOCKWISE; } int GET_EXTERNAL_TOOL_MAX() { return CANON_TOOL_MAX; } char _parameter_file_name[LINELEN]; /* Not static.Driver writes */ void GET_EXTERNAL_PARAMETER_FILE_NAME(char *file_name, /* string: to copy file name into */ int max_size) { /* maximum number of characters to copy */ // Paranoid checks if (0 == file_name) return; if (max_size < 0) return; if (strlen(_parameter_file_name) < ((size_t) max_size)) strcpy(file_name, _parameter_file_name); else file_name[0] = 0; } double GET_EXTERNAL_POSITION_X(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.x; } double GET_EXTERNAL_POSITION_Y(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.y; } double GET_EXTERNAL_POSITION_Z(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.z; } double GET_EXTERNAL_POSITION_A(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.a; } double GET_EXTERNAL_POSITION_B(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.b; } double GET_EXTERNAL_POSITION_C(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.c; } double GET_EXTERNAL_POSITION_U(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.u; } double GET_EXTERNAL_POSITION_V(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.v; } double GET_EXTERNAL_POSITION_W(void) { CANON_POSITION position; position = GET_EXTERNAL_POSITION(); return position.w; } double GET_EXTERNAL_PROBE_POSITION_X(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.x; } double GET_EXTERNAL_PROBE_POSITION_Y(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.y; } double GET_EXTERNAL_PROBE_POSITION_Z(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.z; } double GET_EXTERNAL_PROBE_POSITION_A(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.a; } double GET_EXTERNAL_PROBE_POSITION_B(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.b; } double GET_EXTERNAL_PROBE_POSITION_C(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.c; } double GET_EXTERNAL_PROBE_POSITION_U(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.u; } double GET_EXTERNAL_PROBE_POSITION_V(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.v; } double GET_EXTERNAL_PROBE_POSITION_W(void) { CANON_POSITION position; position = GET_EXTERNAL_PROBE_POSITION(); return position.w; } CANON_MOTION_MODE GET_EXTERNAL_MOTION_CONTROL_MODE() { return canonMotionMode; } double GET_EXTERNAL_MOTION_CONTROL_TOLERANCE() { return TO_PROG_LEN(canonMotionTolerance); } CANON_UNITS GET_EXTERNAL_LENGTH_UNIT_TYPE() { return lengthUnits; } int GET_EXTERNAL_QUEUE_EMPTY(void) { flush_segments(); return emcStatus->motion.traj.queue == 0 ? 1 : 0; } int GET_EXTERNAL_TOOL_SLOT() { return emcStatus->io.tool.toolInSpindle; } int GET_EXTERNAL_SELECTED_TOOL_SLOT() { return emcStatus->io.tool.toolPrepped; } int GET_EXTERNAL_FEED_OVERRIDE_ENABLE() { return emcStatus->motion.traj.feed_override_enabled; } int GET_EXTERNAL_SPINDLE_OVERRIDE_ENABLE() { return emcStatus->motion.traj.spindle_override_enabled; } int GET_EXTERNAL_ADAPTIVE_FEED_ENABLE() { return emcStatus->motion.traj.adaptive_feed_enabled; } int GET_EXTERNAL_FEED_HOLD_ENABLE() { return emcStatus->motion.traj.feed_hold_enabled; } int GET_EXTERNAL_AXIS_MASK() { return emcStatus->motion.traj.axis_mask; } CANON_PLANE GET_EXTERNAL_PLANE() { return activePlane; } int GET_EXTERNAL_DIGITAL_INPUT(int index) { /* returns current value of the digital input selected by index.*/ //#ifdef INPUT_DEBUG printf("GET_EXTERNAL_DIGITAL_INPUT called\n di[%d]=%d \n timeout=%d \n",index,emcStatus->motion.synch_di[index],emcStatus->task.input_timeout); //#endif if ((index < 0) || (index >= EMC_MAX_DIO)) return -1; if (emcStatus->task.input_timeout == 1) return -1; return emcStatus->motion.synch_di[index]; } double GET_EXTERNAL_ANALOG_INPUT(int index) { /* returns current value of the analog input selected by index.*/ // FIXME-AJ - implement Analog return 0; } USER_DEFINED_FUNCTION_TYPE USER_DEFINED_FUNCTION[USER_DEFINED_FUNCTION_NUM] = { 0 }; int USER_DEFINED_FUNCTION_ADD(USER_DEFINED_FUNCTION_TYPE func, int num) { if (num < 0 || num >= USER_DEFINED_FUNCTION_NUM) { return -1; } USER_DEFINED_FUNCTION[num] = func; return 0; } /*! \function SET_MOTION_OUTPUT_BIT sets a DIO pin this message goes to task, then to motion which sets the DIO when the first motion starts. The pin gets set with value 1 at the begin of motion, and stays 1 at the end of motion (this behaviour can be changed if needed) warning: setting more then one for a motion segment will clear out the previous ones (the TP doesn't implement a queue of these), use SET_AUX_OUTPUT_BIT instead, that allows to set the value right away */ void SET_MOTION_OUTPUT_BIT(int index) { EMC_MOTION_SET_DOUT dout_msg; flush_segments(); dout_msg.index = index; dout_msg.start = 1; // startvalue = 1 dout_msg.end = 1; // endvalue = 1, means it doesn't get reset after current motion dout_msg.now = 0; // not immediate, but synched with motion (goes to the TP) interp_list.append(dout_msg); return; } /*! \function CLEAR_MOTION_OUTPUT_BIT clears a DIO pin this message goes to task, then to motion which clears the DIO when the first motion starts. The pin gets set with value 0 at the begin of motion, and stays 0 at the end of motion (this behaviour can be changed if needed) warning: setting more then one for a motion segment will clear out the previous ones (the TP doesn't implement a queue of these), use CLEAR_AUX_OUTPUT_BIT instead, that allows to set the value right away */ void CLEAR_MOTION_OUTPUT_BIT(int index) { EMC_MOTION_SET_DOUT dout_msg; flush_segments(); dout_msg.index = index; dout_msg.start = 0; // startvalue = 1 dout_msg.end = 0; // endvalue = 0, means it stays 0 after current motion dout_msg.now = 0; // not immediate, but synched with motion (goes to the TP) interp_list.append(dout_msg); return; } /*! \function SET_AUX_OUTPUT_BIT sets a DIO pin this message goes to task, then to motion which sets the DIO right away. The pin gets set with value 1 at the begin of motion, and stays 1 at the end of motion (this behaviour can be changed if needed) you can use any number of these, as the effect is imediate */ void SET_AUX_OUTPUT_BIT(int index) { /* we're gonna use the EMC_MOTION_SET_DOUT for now EMC_AUX_DIO_WRITE dio_msg; dio_msg.index = index; dio_msg.value = 1; interp_list.append(dio_msg); */ EMC_MOTION_SET_DOUT dout_msg; flush_segments(); dout_msg.index = index; dout_msg.start = 1; // startvalue = 1 dout_msg.end = 1; // endvalue = 1, means it doesn't get reset after current motion dout_msg.now = 1; // immediate, we don't care about synching for AUX interp_list.append(dout_msg); return; } /*! \function CLEAR_AUX_OUTPUT_BIT clears a DIO pin this message goes to task, then to motion which clears the DIO right away. The pin gets set with value 0 at the begin of motion, and stays 0 at the end of motion (this behaviour can be changed if needed) you can use any number of these, as the effect is imediate */ void CLEAR_AUX_OUTPUT_BIT(int index) { /* we're gonna use the EMC_MOTION_SET_DOUT for now EMC_AUX_DIO_WRITE dio_msg; dio_msg.index = index; dio_msg.value = 0; interp_list.append(dio_msg);*/ EMC_MOTION_SET_DOUT dout_msg; flush_segments(); dout_msg.index = index; dout_msg.start = 0; // startvalue = 1 dout_msg.end = 0; // endvalue = 0, means it stays 0 after current motion dout_msg.now = 1; // immediate, we don't care about synching for AUX interp_list.append(dout_msg); return; } /*! \function SET_MOTION_OUTPUT_VALUE sets a AIO value, not used by the RS274 Interp, not fully implemented in the motion controller either */ void SET_MOTION_OUTPUT_VALUE(int index, double value) { EMC_MOTION_SET_AOUT aout_msg; flush_segments(); aout_msg.index = index; // which output aout_msg.start = value; // start value aout_msg.end = value; // end value aout_msg.now = 0; // immediate=1, or synched when motion start=0 interp_list.append(aout_msg); return; } /*! \function SET_AUX_OUTPUT_VALUE sets a AIO value, not used by the RS274 Interp, not fully implemented in the motion controller either */ void SET_AUX_OUTPUT_VALUE(int index, double value) { EMC_AUX_AIO_WRITE aio_msg; flush_segments(); aio_msg.index = index; aio_msg.value = value; interp_list.append(aio_msg); return; } /*! \function WAIT program execution and interpreting is stopped until the input selected by index changed to the needed state (specified by wait_type). Return value: either wait_type if timeout didn't occur, or -1 otherwise. */ void WAIT(int index, /* index of the motion exported input */ int input_type, /*DIGITAL_INPUT or ANALOG_INPUT */ int wait_type, /* 0 - rise, 1 - fall, 2 - be high, 3 - be low */ int timeout) /* time to wait [in seconds], if the input didn't change the value -1 is returned */ { EMC_AUX_INPUT_WAIT wait_msg; flush_segments(); wait_msg.index = index; wait_msg.input_type = input_type; wait_msg.wait_type = wait_type; wait_msg.timeout = timeout; interp_list.append(wait_msg); }