/******************************************************************** * Description: genserkins.c * Kinematics for a generalised serial kinematics machine * * Derived from a work by Fred Proctor, * changed to work with emc2 and HAL * * Adapting Author: Alex Joni * License: GPL Version 2 * System: Linux * ******************************************************************* These are the forward and inverse kinematic functions for a general serial-link manipulator. Thanks to Herman Bruyninckx and John Hallam at http://www.roble.info/ for this. The functions are general enough to be configured for any serial configuration. The kinematics use Denavit-Hartenberg definition for the joint and links. The DH definitions are the ones used by John J Craig in "Introduction to Robotics: Mechanics and Control" The parameters for the manipulator are defined by hal pins. Currently the type of the joints is hardcoded to ANGULAR, although the kins support both ANGULAR and LINEAR axes. TODO: * make number of joints a loadtime parameter * add HAL pins for all settable parameters, including joint type: ANGULAR / LINEAR * add HAL pins for debug data (num_iterations) * add HAL pins for ULAPI compiled version */ #include "rtapi_math.h" #include "gotypes.h" /* go_result, go_integer */ #include "gomath.h" /* go_pose */ #include "genserkins.h" /* these decls */ #include "kinematics.h" #ifdef RTAPI #include "rtapi.h" #include "rtapi_app.h" #endif #include "hal.h" struct haldata { hal_float_t *a[GENSER_MAX_JOINTS]; hal_float_t *alpha[GENSER_MAX_JOINTS]; hal_float_t *d[GENSER_MAX_JOINTS]; genser_struct *kins; go_pose *pos; // used in various functions, we malloc it // only once in rtapi_app_main } *haldata = 0; double j[GENSER_MAX_JOINTS]; #define A(i) (*(haldata->a[i])) #define ALPHA(i) (*(haldata->alpha[i])) #define D(i) (*(haldata->d[i])) #define KINS_PTR (haldata->kins) #if GENSER_MAX_JOINTS < 6 #error GENSER_MAX_JOINTS must be at least 6; fix genserkins.h #endif enum { GENSER_DEFAULT_MAX_ITERATIONS = 100 }; int genser_kin_init(void) { genser_struct *genser = KINS_PTR; int t; /* init them all and make them revolute joints */ /* FIXME: should allow LINEAR joints based on HAL param too */ for (t = 0; t < GENSER_MAX_JOINTS; t++) { genser->links[t].u.dh.a = A(t); genser->links[t].u.dh.alpha = ALPHA(t); genser->links[t].u.dh.d = D(t); genser->links[t].u.dh.theta = 0; genser->links[t].type = GO_LINK_DH; genser->links[t].quantity = GO_QUANTITY_ANGLE; } /* set a select few to make it PUMA-like */ // FIXME-AJ: make a hal pin, also set number of joints based on it genser->link_num = 6; return GO_RESULT_OK; } /* compute the forward jacobian function: the jacobian is a linear aproximation of the kinematics function. It is calculated using derivation of the position transformation matrix, and usually used for feeding velocities through it. It is analytically possible to calculate the inverse of the jacobian (sometimes only the pseudoinverse) and to use that for the inverse kinematics. */ static int compute_jfwd(go_link * link_params, int link_number, go_matrix * Jfwd, go_pose * T_L_0) { GO_MATRIX_DECLARE(Jv, Jvstg, 3, GENSER_MAX_JOINTS); GO_MATRIX_DECLARE(Jw, Jwstg, 3, GENSER_MAX_JOINTS); GO_MATRIX_DECLARE(R_i_ip1, R_i_ip1stg, 3, 3); GO_MATRIX_DECLARE(scratch, scratchstg, 3, GENSER_MAX_JOINTS); GO_MATRIX_DECLARE(R_inv, R_invstg, 3, 3); go_pose pose; go_quat quat; go_vector P_ip1_i[3]; int row, col; /* init matrices to possibly smaller size */ go_matrix_init(Jv, Jvstg, 3, link_number); go_matrix_init(Jw, Jwstg, 3, link_number); go_matrix_init(R_i_ip1, R_i_ip1stg, 3, 3); go_matrix_init(scratch, scratchstg, 3, link_number); go_matrix_init(R_inv, R_invstg, 3, 3); Jv.el[0][0] = 0, Jv.el[1][0] = 0, Jv.el[2][0] = (GO_QUANTITY_LENGTH == link_params[0].quantity ? 1 : 0); Jw.el[0][0] = 0, Jw.el[1][0] = 0, Jw.el[2][0] = (GO_QUANTITY_ANGLE == link_params[0].quantity ? 1 : 0); /* initialize inverse rotational transform */ if (GO_LINK_DH == link_params[0].type) { go_dh_pose_convert(&link_params[0].u.dh, &pose); } else if (GO_LINK_PP == link_params[0].type) { pose = link_params[0].u.pp.pose; } else { return GO_RESULT_IMPL_ERROR; } *T_L_0 = pose; for (col = 1; col < link_number; col++) { /* T_ip1_i */ if (GO_LINK_DH == link_params[col].type) { go_dh_pose_convert(&link_params[col].u.dh, &pose); } else if (GO_LINK_PP == link_params[col].type) { pose = link_params[col].u.pp.pose; } else { return GO_RESULT_IMPL_ERROR; } go_cart_vector_convert(&pose.tran, P_ip1_i); go_quat_inv(&pose.rot, &quat); go_quat_matrix_convert(&quat, &R_i_ip1); /* Jv */ go_matrix_vector_cross(&Jw, P_ip1_i, &scratch); go_matrix_matrix_add(&Jv, &scratch, &scratch); go_matrix_matrix_mult(&R_i_ip1, &scratch, &Jv); Jv.el[0][col] = 0, Jv.el[1][col] = 0, Jv.el[2][col] = (GO_QUANTITY_LENGTH == link_params[col].quantity ? 1 : 0); /* Jw */ go_matrix_matrix_mult(&R_i_ip1, &Jw, &Jw); Jw.el[0][col] = 0, Jw.el[1][col] = 0, Jw.el[2][col] = (GO_QUANTITY_ANGLE == link_params[col].quantity ? 1 : 0); if (GO_LINK_DH == link_params[col].type) { go_dh_pose_convert(&link_params[col].u.dh, &pose); } else if (GO_LINK_PP == link_params[col].type) { pose = link_params[col].u.pp.pose; } else { return GO_RESULT_IMPL_ERROR; } go_pose_pose_mult(T_L_0, &pose, T_L_0); } /* rotate back into {0} frame */ go_quat_matrix_convert(&T_L_0->rot, &R_inv); go_matrix_matrix_mult(&R_inv, &Jv, &Jv); go_matrix_matrix_mult(&R_inv, &Jw, &Jw); /* put Jv atop Jw in J */ for (row = 0; row < 6; row++) { for (col = 0; col < link_number; col++) { if (row < 3) { Jfwd->el[row][col] = Jv.el[row][col]; } else { Jfwd->el[row][col] = Jw.el[row - 3][col]; } } } return GO_RESULT_OK; } /* compute the inverse of the jacobian matrix */ static int compute_jinv(go_matrix * Jfwd, go_matrix * Jinv) { int retval; GO_MATRIX_DECLARE(JT, JTstg, GENSER_MAX_JOINTS, 6); /* compute inverse, or pseudo-inverse */ if (Jfwd->rows == Jfwd->cols) { retval = go_matrix_inv(Jfwd, Jinv); if (GO_RESULT_OK != retval) return retval; } else if (Jfwd->rows < Jfwd->cols) { /* underdetermined, optimize on smallest sum of square of speeds */ /* JT(JJT)inv */ GO_MATRIX_DECLARE(JJT, JJTstg, 6, 6); go_matrix_init(JT, JTstg, Jfwd->cols, Jfwd->rows); go_matrix_init(JJT, JJTstg, Jfwd->rows, Jfwd->rows); go_matrix_transpose(Jfwd, &JT); go_matrix_matrix_mult(Jfwd, &JT, &JJT); retval = go_matrix_inv(&JJT, &JJT); if (GO_RESULT_OK != retval) return retval; go_matrix_matrix_mult(&JT, &JJT, Jinv); } else { /* overdetermined, do least-squares best fit */ /* (JTJ)invJT */ GO_MATRIX_DECLARE(JTJ, JTJstg, GENSER_MAX_JOINTS, GENSER_MAX_JOINTS); go_matrix_init(JT, JTstg, Jfwd->cols, Jfwd->rows); go_matrix_init(JTJ, JTJstg, Jfwd->cols, Jfwd->cols); go_matrix_transpose(Jfwd, &JT); go_matrix_matrix_mult(&JT, Jfwd, &JTJ); retval = go_matrix_inv(&JTJ, &JTJ); if (GO_RESULT_OK != retval) return retval; go_matrix_matrix_mult(&JTJ, &JT, Jinv); } return GO_RESULT_OK; } int genser_kin_jac_inv(void *kins, const go_pose * pos, const go_screw * vel, const go_real * joints, go_real * jointvels) { genser_struct *genser = (genser_struct *) kins; GO_MATRIX_DECLARE(Jfwd, Jfwd_stg, 6, GENSER_MAX_JOINTS); GO_MATRIX_DECLARE(Jinv, Jinv_stg, GENSER_MAX_JOINTS, 6); go_pose T_L_0; go_link linkout[GENSER_MAX_JOINTS]; go_real vw[6]; int link; int retval; go_matrix_init(Jfwd, Jfwd_stg, 6, genser->link_num); go_matrix_init(Jinv, Jinv_stg, GENSER_MAX_JOINTS, 6); for (link = 0; link < genser->link_num; link++) { retval = go_link_joint_set(&genser->links[link], joints[link], &linkout[link]); if (GO_RESULT_OK != retval) return retval; } retval = compute_jfwd(linkout, genser->link_num, &Jfwd, &T_L_0); if (GO_RESULT_OK != retval) return retval; retval = compute_jinv(&Jfwd, &Jinv); if (GO_RESULT_OK != retval) return retval; vw[0] = vel->v.x; vw[1] = vel->v.y; vw[2] = vel->v.z; vw[3] = vel->w.x; vw[4] = vel->w.y; vw[5] = vel->w.z; return go_matrix_vector_mult(&Jinv, vw, jointvels); } int genser_kin_jac_fwd(void *kins, const go_real * joints, const go_real * jointvels, const go_pose * pos, go_screw * vel) { genser_struct *genser = (genser_struct *) kins; GO_MATRIX_DECLARE(Jfwd, Jfwd_stg, 6, GENSER_MAX_JOINTS); go_pose T_L_0; go_link linkout[GENSER_MAX_JOINTS]; go_real vw[6]; int link; int retval; go_matrix_init(Jfwd, Jfwd_stg, 6, genser->link_num); for (link = 0; link < genser->link_num; link++) { retval = go_link_joint_set(&genser->links[link], joints[link], &linkout[link]); if (GO_RESULT_OK != retval) return retval; } retval = compute_jfwd(linkout, genser->link_num, &Jfwd, &T_L_0); if (GO_RESULT_OK != retval) return retval; go_matrix_vector_mult(&Jfwd, jointvels, vw); vel->v.x = vw[0]; vel->v.y = vw[1]; vel->v.z = vw[2]; vel->w.x = vw[3]; vel->w.y = vw[4]; vel->w.z = vw[5]; return GO_RESULT_OK; } /* main function called by emc2 for forward Kins */ int kinematicsForward(const double *joint, EmcPose * world, const KINEMATICS_FORWARD_FLAGS * fflags, KINEMATICS_INVERSE_FLAGS * iflags) { go_pose *pos; go_rpy rpy; go_real jcopy[GENSER_MAX_JOINTS]; // will hold the radian conversion of joints int ret = 0; int i, changed=0; for (i=0; i< 6; i++) { // FIXME - debug hack if (!GO_ROT_CLOSE(j[i],joint[i])) changed = 1; // convert to radians to pass to genser_kin_fwd jcopy[i] = joint[i] * PM_PI / 180; } if (changed) { for (i=0; i< 6; i++) j[i] = joint[i]; // rtapi_print("kinematicsForward(joints: %f %f %f %f %f %f)\n", joint[0],joint[1],joint[2],joint[3],joint[4],joint[5]); } // AJ: convert from emc2 coords (XYZABC - which are actually rpy euler // angles) // to go angles (quaternions) pos = haldata->pos; rpy.y = world->c * PM_PI / 180; rpy.p = world->b * PM_PI / 180; rpy.r = world->a * PM_PI / 180; go_rpy_quat_convert(&rpy, &pos->rot); pos->tran.x = world->tran.x; pos->tran.y = world->tran.y; pos->tran.z = world->tran.z; // pos will be the world location // jcopy: joitn position in radians ret = genser_kin_fwd(KINS_PTR, jcopy, pos); if (ret < 0) return ret; // AJ: convert back to emc2 coords ret = go_quat_rpy_convert(&pos->rot, &rpy); if (ret < 0) return ret; world->tran.x = pos->tran.x; world->tran.y = pos->tran.y; world->tran.z = pos->tran.z; world->a = rpy.r * 180 / PM_PI; world->b = rpy.p * 180 / PM_PI; world->c = rpy.y * 180 / PM_PI; if (changed) { // rtapi_print("kinematicsForward(world: %f %f %f %f %f %f)\n", world->tran.x, world->tran.y, world->tran.z, world->a, world->b, world->c); } return 0; } int genser_kin_fwd(void *kins, const go_real * joints, go_pose * pos) { genser_struct *genser = kins; go_link linkout[GENSER_MAX_JOINTS]; int link; int retval; genser_kin_init(); for (link = 0; link < genser->link_num; link++) { retval = go_link_joint_set(&genser->links[link], joints[link], &linkout[link]); if (GO_RESULT_OK != retval) return retval; } retval = go_link_pose_build(linkout, genser->link_num, pos); if (GO_RESULT_OK != retval) return retval; return GO_RESULT_OK; } int kinematicsInverse(const EmcPose * world, double *joints, const KINEMATICS_INVERSE_FLAGS * iflags, KINEMATICS_FORWARD_FLAGS * fflags) { genser_struct *genser = KINS_PTR; GO_MATRIX_DECLARE(Jfwd, Jfwd_stg, 6, GENSER_MAX_JOINTS); GO_MATRIX_DECLARE(Jinv, Jinv_stg, GENSER_MAX_JOINTS, 6); go_pose T_L_0; go_real dvw[6]; go_real jest[GENSER_MAX_JOINTS]; go_real dj[GENSER_MAX_JOINTS]; go_pose pest, pestinv, Tdelta; // pos = converted pose from EmcPose go_rpy rpy; go_rvec rvec; go_cart cart; go_link linkout[GENSER_MAX_JOINTS]; int link; int smalls; int retval; // rtapi_print("kineInverse(joints: %f %f %f %f %f %f)\n", joints[0],joints[1],joints[2],joints[3],joints[4],joints[5]); // rtapi_print("kineInverse(world: %f %f %f %f %f %f)\n", world->tran.x, world->tran.y, world->tran.z, world->a, world->b, world->c); // genser_kin_init(); // FIXME-AJ: rpy or zyx ? rpy.y = world->c * PM_PI / 180; rpy.p = world->b * PM_PI / 180; rpy.r = world->a * PM_PI / 180; go_rpy_quat_convert(&rpy, &haldata->pos->rot); haldata->pos->tran.x = world->tran.x; haldata->pos->tran.y = world->tran.y; haldata->pos->tran.z = world->tran.z; go_matrix_init(Jfwd, Jfwd_stg, 6, genser->link_num); go_matrix_init(Jinv, Jinv_stg, genser->link_num, 6); /* jest[] is a copy of joints[], which is the joint estimate */ for (link = 0; link < genser->link_num; link++) { // jest, and the rest of joint related calcs are in radians jest[link] = joints[link] * (PM_PI / 180); } for (genser->iterations = 0; genser->iterations < genser->max_iterations; genser->iterations++) { /* update the Jacobians */ for (link = 0; link < genser->link_num; link++) { go_link_joint_set(&genser->links[link], jest[link], &linkout[link]); } retval = compute_jfwd(linkout, genser->link_num, &Jfwd, &T_L_0); if (GO_RESULT_OK != retval) { rtapi_print("ERR kI - compute_jfwd (joints: %f %f %f %f %f %f), (iterations=%d)\n", joints[0],joints[1],joints[2],joints[3],joints[4],joints[5], genser->iterations); return retval; } retval = compute_jinv(&Jfwd, &Jinv); if (GO_RESULT_OK != retval) { rtapi_print("ERR kI - compute_jinv (joints: %f %f %f %f %f %f), (iterations=%d)\n", joints[0],joints[1],joints[2],joints[3],joints[4],joints[5], genser->iterations); return retval; } /* pest is the resulting pose estimate given joint estimate */ genser_kin_fwd(KINS_PTR, jest, &pest); // printf("jest: %f %f %f %f %f %f\n",jest[0],jest[1],jest[2],jest[3],jest[4],jest[5]); /* pestinv is its inverse */ go_pose_inv(&pest, &pestinv); /* Tdelta is the incremental pose from pest to pos, such that 0 L 0 . pest * Tdelta = pos, or L L L L L 0 .Tdelta = pestinv * pos L 0 L */ go_pose_pose_mult(&pestinv, haldata->pos, &Tdelta); /* We need Tdelta in 0 frame, not pest frame, so rotate it back. Since it's effectively a velocity, we just rotate it, and don't translate it. */ /* first rotate the translation differential */ go_quat_cart_mult(&pest.rot, &Tdelta.tran, &cart); dvw[0] = cart.x; dvw[1] = cart.y; dvw[2] = cart.z; /* to rotate the rotation differential, convert it to a velocity screw and rotate that */ go_quat_rvec_convert(&Tdelta.rot, &rvec); cart.x = rvec.x; cart.y = rvec.y; cart.z = rvec.z; go_quat_cart_mult(&pest.rot, &cart, &cart); dvw[3] = cart.x; dvw[4] = cart.y; dvw[5] = cart.z; /* push the Cartesian velocity vector through the inverse Jacobian */ go_matrix_vector_mult(&Jinv, dvw, dj); /* check for small joint increments, if so we're done */ for (link = 0, smalls = 0; link < genser->link_num; link++) { if (GO_QUANTITY_LENGTH == linkout[link].quantity) { if (GO_TRAN_SMALL(dj[link])) smalls++; } else { if (GO_ROT_SMALL(dj[link])) smalls++; } } if (smalls == genser->link_num) { /* converged, copy jest[] out */ for (link = 0; link < genser->link_num; link++) { // convert from radians back to angles joints[link] = jest[link] * 180 / PM_PI; } // rtapi_print("DONEkineInverse(joints: %f %f %f %f %f %f), (iterations=%d)\n", joints[0],joints[1],joints[2],joints[3],joints[4],joints[5], genser->iterations); return GO_RESULT_OK; } /* else keep iterating */ for (link = 0; link < genser->link_num; link++) { jest[link] += dj[link]; //still in radians } } /* for (iterations) */ rtapi_print("ERRkineInverse(joints: %f %f %f %f %f %f), (iterations=%d)\n", joints[0],joints[1],joints[2],joints[3],joints[4],joints[5], genser->iterations); return GO_RESULT_ERROR; } /* Extras, not callable using go_kin_ wrapper but if you know you have linked in these kinematics, go ahead and call these for your ad hoc purposes. FIXME-AJ: make genser->iterations a hal pin */ int genser_kin_inv_iterations(genser_struct * genser) { return genser->iterations; } /* FIXME-AJ: make genser->max_iterations a hal pin */ int genser_kin_inv_set_max_iterations(genser_struct * genser, int i) { if (i <= 0) return GO_RESULT_ERROR; genser->max_iterations = i; return GO_RESULT_OK; } /* FIXME-AJ: make genser->max_iterations a hal pin */ int genser_kin_inv_get_max_iterations(genser_struct * genser) { return genser->max_iterations; } int kinematicsHome(EmcPose * world, double *joint, KINEMATICS_FORWARD_FLAGS * fflags, KINEMATICS_INVERSE_FLAGS * iflags) { /* use joints, set world */ return kinematicsForward(joint, world, fflags, iflags); } KINEMATICS_TYPE kinematicsType() { return KINEMATICS_BOTH; } #ifdef RTAPI EXPORT_SYMBOL(kinematicsType); EXPORT_SYMBOL(kinematicsForward); EXPORT_SYMBOL(kinematicsInverse); MODULE_LICENSE("GPL"); int comp_id; int rtapi_app_main(void) { int res = 0, i; comp_id = hal_init("genserkins"); if (comp_id < 0) return comp_id; haldata = hal_malloc(sizeof(struct haldata)); if (!haldata) goto error; for (i = 0; i < GENSER_MAX_JOINTS; i++) { if ((res = hal_pin_float_newf(HAL_IO, &(haldata->a[i]), comp_id, "genserkins.A-%d", i)) < 0) goto error; *(haldata->a[i])=0; if ((res = hal_pin_float_newf(HAL_IO, &(haldata->alpha[i]), comp_id, "genserkins.ALPHA-%d", i)) < 0) goto error; *(haldata->alpha[i])=0; if ((res = hal_pin_float_newf(HAL_IO, &(haldata->d[i]), comp_id, "genserkins.D-%d", i)) < 0) goto error; *(haldata->d[i])=0; } KINS_PTR = hal_malloc(sizeof(genser_struct)); haldata->pos = (go_pose *) hal_malloc(sizeof(go_pose)); if (KINS_PTR == NULL) goto error; if (haldata->pos == NULL) goto error; if ((res= hal_param_s32_newf(HAL_RO, &(KINS_PTR->iterations), comp_id, "genserkins.last-iterations")) < 0) goto error; if ((res= hal_param_s32_newf(HAL_RW, &(KINS_PTR->max_iterations), comp_id, "genserkins.max-iterations")) < 0) goto error; KINS_PTR->max_iterations = GENSER_DEFAULT_MAX_ITERATIONS; A(0) = DEFAULT_A1; A(1) = DEFAULT_A2; A(2) = DEFAULT_A3; A(3) = DEFAULT_A4; A(4) = DEFAULT_A5; A(5) = DEFAULT_A6; ALPHA(0) = DEFAULT_ALPHA1; ALPHA(1) = DEFAULT_ALPHA2; ALPHA(2) = DEFAULT_ALPHA3; ALPHA(3) = DEFAULT_ALPHA4; ALPHA(4) = DEFAULT_ALPHA5; ALPHA(5) = DEFAULT_ALPHA6; D(0) = DEFAULT_D1; D(1) = DEFAULT_D2; D(2) = DEFAULT_D3; D(3) = DEFAULT_D4; D(4) = DEFAULT_D5; D(5) = DEFAULT_D6; hal_ready(comp_id); return 0; error: hal_exit(comp_id); return res; } void rtapi_app_exit(void) { hal_exit(comp_id); } #endif //building for userspace - we'll do a main() #ifdef ULAPI #include #include #include /* struct timeval */ #include /* gettimeofday() */ static double timestamp() { struct timeval tp; if (0 != gettimeofday(&tp, NULL)) { return 0.0; } return ((double) tp.tv_sec) + ((double) tp.tv_usec) / 1000000.0; } int main(int argc, char *argv[]) { #define BUFFERLEN 256 char buffer[BUFFERLEN]; int inverse = 1; int jacobian = 0; EmcPose pos = { {0.0, 0.0, 0.0}, 0.0, 0.0, 0.0 }; EmcPose vel = { {0.0, 0.0, 0.0}, 0.0, 0.0, 0.0 }; // will need this for // jacobian double joints[6] = { 0.0 }; double jointvels[6] = { 0.0 }; KINEMATICS_INVERSE_FLAGS iflags = 0; KINEMATICS_FORWARD_FLAGS fflags = 0; int t; int retval = 0, i; double start, end; // FIXME-AJ: implement ULAPI HAL version of the pins haldata = malloc(sizeof(struct haldata)); KINS_PTR = malloc(sizeof(genser_struct)); haldata->pos = (go_pose *) malloc(sizeof(go_pose)); for (i = 0; i < GENSER_MAX_JOINTS ; i++) { haldata->a[i] = malloc(sizeof(double)); haldata->alpha[i] = malloc(sizeof(double)); haldata->d[i] = malloc(sizeof(double)); } A(0) = DEFAULT_A1; A(1) = DEFAULT_A2; A(2) = DEFAULT_A3; A(3) = DEFAULT_A4; A(4) = DEFAULT_A5; A(5) = DEFAULT_A6; ALPHA(0) = DEFAULT_ALPHA1; ALPHA(1) = DEFAULT_ALPHA2; ALPHA(2) = DEFAULT_ALPHA3; ALPHA(3) = DEFAULT_ALPHA4; ALPHA(4) = DEFAULT_ALPHA5; ALPHA(5) = DEFAULT_ALPHA6; D(0) = DEFAULT_D1; D(1) = DEFAULT_D2; D(2) = DEFAULT_D3; D(3) = DEFAULT_D4; D(4) = DEFAULT_D5; D(5) = DEFAULT_D6; /* syntax is a.out {i|f # # # # # #} */ if (argc == 8) { if (argv[1][0] == 'f') { /* joints passed, so do interations on forward kins for timing */ for (t = 0; t < 6; t++) { if (1 != sscanf(argv[t + 2], "%lf", &joints[t])) { fprintf(stderr, "bad value: %s\n", argv[t + 2]); return 1; } } inverse = 0; } else if (argv[1][0] == 'i') { /* world coords passed, so do iterations on inverse kins for timing */ if (1 != sscanf(argv[2], "%lf", &pos.tran.x)) { fprintf(stderr, "bad value: %s\n", argv[2]); return 1; } if (1 != sscanf(argv[3], "%lf", &pos.tran.y)) { fprintf(stderr, "bad value: %s\n", argv[3]); return 1; } if (1 != sscanf(argv[4], "%lf", &pos.tran.z)) { fprintf(stderr, "bad value: %s\n", argv[4]); return 1; } if (1 != sscanf(argv[5], "%lf", &pos.a)) { fprintf(stderr, "bad value: %s\n", argv[5]); return 1; } if (1 != sscanf(argv[6], "%lf", &pos.b)) { fprintf(stderr, "bad value: %s\n", argv[6]); return 1; } if (1 != sscanf(argv[7], "%lf", &pos.c)) { fprintf(stderr, "bad value: %s\n", argv[7]); return 1; } inverse = 1; } else { fprintf(stderr, "syntax: %s {i|f # # # # # #}\n", argv[0]); return 1; } /* need an initial estimate for the forward kins, so ask for it */ if (inverse == 0) { do { printf("initial estimate for Cartesian position, xyzrpw: "); fflush(stdout); if (NULL == fgets(buffer, BUFFERLEN, stdin)) { return 0; } } while (6 != sscanf(buffer, "%lf %lf %lf %lf %lf %lf", &pos.tran.x, &pos.tran.y, &pos.tran.z, &pos.a, &pos.b, &pos.c)); } start = timestamp(); if (inverse) { retval = kinematicsInverse(&pos, joints, &iflags, &fflags); if (0 != retval) { printf("inv kins error %d\n", retval); } } else { retval = kinematicsForward(joints, &pos, &fflags, &iflags); if (0 != retval) { printf("fwd kins error %d\n", retval); } } end = timestamp(); printf("calculation time: %f secs\n", (end - start)); return 0; } /* end of if args for timestamping */ /* else we're interactive */ while (!feof(stdin)) { if (inverse) { if (jacobian) { printf("jinv> "); } else { printf("inv> "); } } else { if (jacobian) { printf("jfwd> "); } else { printf("fwd> "); } } fflush(stdout); if (NULL == fgets(buffer, BUFFERLEN, stdin)) { break; } if (buffer[0] == 'i') { inverse = 1; continue; } else if (buffer[0] == 'f') { inverse = 0; continue; } else if (buffer[0] == 'j') { jacobian = !jacobian; continue; } else if (buffer[0] == 'q') { break; } if (inverse) { if (jacobian) { if (12 != sscanf(buffer, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf", &pos.tran.x, &pos.tran.y, &pos.tran.z, &pos.a, &pos.b, &pos.c, &vel.tran.x, &vel.tran.y, &vel.tran.z, &vel.a, &vel.b, &vel.c)) { printf("?\n"); } else { //FIXME-AJ //disabled for now retval = jacobianInverse(&pos, &vel, joints, jointvels); printf("%f %f %f %f %f %f\n", jointvels[0], jointvels[1], jointvels[2], jointvels[3], jointvels[4], jointvels[5]); if (0 != retval) { printf("inv Jacobian error %d\n", retval); } else { //FIXME-AJ //disabled for now retval = jacobianForward(joints, jointvels, &pos, &vel); printf("%f %f %f %f %f %f\n", vel.tran.x, vel.tran.y, vel.tran.z, vel.a, vel.b, vel.c); if (0 != retval) { printf("fwd kins error %d\n", retval); } } } } else { if (6 != sscanf(buffer, "%lf %lf %lf %lf %lf %lf", &pos.tran.x, &pos.tran.y, &pos.tran.z, &pos.a, &pos.b, &pos.c)) { printf("?\n"); } else { retval = kinematicsInverse(&pos, joints, &iflags, &fflags); printf("%f %f %f %f %f %f\n", joints[0], joints[1], joints[2], joints[3], joints[4], joints[5]); if (0 != retval) { printf("inv kins error %d\n", retval); } else { retval = kinematicsForward(joints, &pos, &fflags, &iflags); printf("%f %f %f %f %f %f\n", pos.tran.x, pos.tran.y, pos.tran.z, pos.a, pos.b, pos.c); if (0 != retval) { printf("fwd kins error %d\n", retval); } } } } } else { if (jacobian) { if (12 != sscanf(buffer, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf", &joints[0], &joints[1], &joints[2], &joints[3], &joints[4], &joints[5], &jointvels[0], &jointvels[1], &jointvels[2], &jointvels[3], &jointvels[4], &jointvels[5])) { printf("?\n"); } else { //FIXME-AJ //disabled for now retval = jacobianForward(joints, jointvels, &pos, &vel); printf("%f %f %f %f %f %f\n", vel.tran.x, vel.tran.y, vel.tran.z, vel.a, vel.b, vel.c); if (0 != retval) { printf("fwd kins error %d\n", retval); } else { //FIXME-AJ //disabled for now retval = jacobianInverse(&pos, &vel, joints, jointvels); printf("%f %f %f %f %f %f\n", jointvels[0], jointvels[1], jointvels[2], jointvels[3], jointvels[4], jointvels[5]); if (0 != retval) { printf("inv kins error %d\n", retval); } } } } else { if (6 != sscanf(buffer, "%lf %lf %lf %lf %lf %lf", &joints[0], &joints[1], &joints[2], &joints[3], &joints[4], &joints[5])) { printf("?\n"); } else { retval = kinematicsForward(joints, &pos, &fflags, &iflags); printf("%f %f %f %f %f %f\n", pos.tran.x, pos.tran.y, pos.tran.z, pos.a, pos.b, pos.c); if (0 != retval) { printf("fwd kins error %d\n", retval); } else { retval = kinematicsInverse(&pos, joints, &iflags, &fflags); printf("%f %f %f %f %f %f\n", joints[0], joints[1], joints[2], joints[3], joints[4], joints[5]); if (0 != retval) { printf("inv kins error %d\n", retval); } } } } } } return 0; #undef ITERATIONS #undef BUFFERLEN } #endif /* ULAPI */