
“Make New Friends, but Keep the Old” – Recommending
People on Social Networking Sites

Jilin Chen*, Werner Geyer**, Casey Dugan**, Michael Muller**, Ido Guy***
*University of Minnesota

200 Union Street SE
Minneapolis, MN 55455

jilin@cs.umn.edu

**IBM T.J Watson Research
One Rogers Street

Cambridge, MA 02116
{werner.geyer, cadugan,

michael_muller}@us.ibm.com

***IBM Haifa Research Lab
Mt. Carmel

Haifa 31905, Israel
ido@il.ibm.com

ABSTRACT
This paper studies people recommendations designed to
help users find known, offline contacts and discover new
friends on social networking sites. We evaluated four
recommender algorithms in an enterprise social networking
site using a personalized survey of 500 users and a field
study of 3,000 users. We found all algorithms effective in
expanding users’ friend lists. Algorithms based on social
network information were able to produce better-received
recommendations and find more known contacts for users,
while algorithms using similarity of user-created content
were stronger in discovering new friends. We also collected
qualitative feedback from our survey users and draw several
meaningful design implications.

Author Keywords
Social networking, friend, recommender system

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation (e.g., HCI):
Group and Organization Interfaces.

INTRODUCTION
Social networking sites allow users to articulate their social
networks by adding other users to their “friend lists”.
Research shows that users connect to both friends they
already know offline and new friends they discover on the
site. For example, many users of popular social networking
sites such as Facebook and MySpace primarily
communicate with people they already know offline [1]. On
the other hand, research on enterprise social networking [3]
shows that users in a corporate context are interested in
finding valuable contacts not yet known to them, or
connecting to weak ties, in addition to staying in touch with
their close colleagues. Given the size of social networking
sites, finding known contacts and interesting new friends to
connect with on the site can both be a challenge.

One approach to address this problem is to proactively
make personalized people recommendations on the site.
Facebook has recently launched a feature, called “People
You May Know”, which recommends people to connect
with based on a “friend-of-a-friend” approach [14].
However, data on the effectiveness of this approach is not
available. As a recommendation problem, recommending
people on social networking sites is worth studying because
it is different from traditional recommendations of books,
movies, restaurants, etc. due to the social implications of
“friending”. For example, before adding a friend, one often
has to consider how the other person would perceive this
action and whether he or she would acknowledge the
friendship. Furthermore, because the friend list appears on
one’s profile, one also has to consider how the new friend
will be perceived by others on the site. These social
dynamics can be obstacles in accepting recommendations,
even when they are relevant and otherwise desirable. This
problem could be more prominent if unknown or barely
known people are recommended, because in those cases
users often lack enough motivation to contact or reach out
to the other person. However, despite the difficulty,
connecting with weak ties or unknown but similar people
can be more valuable to users than merely re-finding
existing strong ties [6]. In contrast, recommendations of
books, movies, restaurants etc. do not have such reciprocal
social or impression management issues.

In this paper we describe the results of an empirical study
of a people recommender system for an enterprise social
networking site. Our goal was to get a basic understanding
of this area with a particular focus on the following two
research questions:

1) How effective are different algorithms in recommending
people as potential friends, and what are their
characteristics in terms of recommending known versus
unknown people?

2) Can a people recommender system effectively increase
the number of friends a user has, and what would be the
overall impact of such a recommender system on the site?

To answer these questions, we designed and implemented a
people recommender system for Beehive, an enterprise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 3–9, 2009, Boston, MA, USA.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

social networking site within IBM, using four different
algorithms. We conducted two separate experiments, a
personalized survey and a controlled field study. The
survey was targeted at a group of 500 users who were asked
to answer questions related to their friending behavior, and
to rate personalized recommendations created from each
algorithm. In the controlled field study we deployed our
people recommender as a feature on the site to 3,000 users.

In the next section, we discuss how existing work relates to
our research. We then provide a brief overview of Beehive,
followed by a detailed description of the four algorithms
chosen for our study. The next two major sections describe
the results from the personalized survey and the controlled
field study. We conclude with a discussion of our findings
and possible future work.

RELATED WORK
There is a wealth of research on recommender systems.
Many approaches employ the technique of collaborative
filtering [10], which utilizes similarities of preferences
among users to recommend items such as movies for a user
to consume. These approaches do not rely on the actual
content of the items, but instead require users to indicate
preferences on them, usually in the form of ratings.

Another body of research utilizes the content of items to
make recommendations. Pazzani et al. [15] characterized
websites by words contained on individual pages and built
user profiles using websites the user considered “hot”. They
applied a naïve Bayes classifier to recommend interesting
websites based on the profile. Mooney et al. [13] followed a
similar paradigm with a content-based recommender for
books. Sen et al. [18] built a hybrid alert filtering system
combining collaborative filtering techniques and the content
features extracted from the alert message itself.

Research has also been done using articulated social
network structures for recommendations. For instance,
Spertus et al. [19] made recommendations of online
communities to users based on their current community
membership, and compared several different similarity
measures in a large study on the social networking site
Orkut. Geyer et al. [5] built a system to recommend topics
for self-descriptions using social network information, and
showed that a social network-based recommender yielded
better performance than simple content matching. Groh et
al. [7] generated user neighborhood information from
articulated social network structures and demonstrated that
collaborative filtering based on such neighborhoods
outperforms classic collaborative filtering methods.

Many of the techniques mentioned above could potentially
be used for recommending people on social networking
sites. For example, methods utilizing content similarity can
be directly adapted by computing similarity from profiles,
photos, comments, etc. of users. Similarly, methods
exploiting articulated social network structure are also
readily applicable. In contrast, classic collaborative filtering
does not directly apply because it recommends items in a

heterogeneous network of users and items using ratings,
while in our case we want to recommend users to users
without requiring a concept of items or ratings.

Research on expert-finding using social information is very
relevant as well. McDonald [12] discussed leveraging social
network information when finding knowledgeable
colleagues for collaborations in the workplace. Ehrlich et al.
[4] introduced a system which supports users who are
searching for experts in their social network, using email
and chat messages. However, compared to prior research,
our focus is not on the user-directed task of finding an
expert, but on recommending people on social networking
sites for the purpose of establishing connections (“friends”)
and communication, similar to Facebook’s “People You
May Know” application [14]. In these cases, users are not
necessarily actively looking for new friends even if they are
open to meeting or connecting with them.

Our people recommender could also be viewed as a
concrete example of a "social matching system" as
described in Terveen et al. [21]. Their work discusses issues
closely related to our paper, and our comparison of different
people recommendation algorithms in a large scale
experiment could answer several questions laid out in their
work. Because of the unique challenges of recommending
people as illustrated in our introduction and in [21], we
believe designing, implementing, deploying, and studying
different recommenders can greatly help us understand and
improve people recommendation systems.

THE SOCIAL NETWORKING SITE
Beehive is an enterprise social networking site within IBM.
It was officially launched in September 2007 and had more
than 38,000 users with an average of 8.2 friends per user at
the time when we started our study in July 2008. Similar to
other social networking sites, Beehive has an individual
profile page for each user, and supports features like
friending other people, setting status messages, sharing
photos, lists, events, and commenting on users as well as on
shared content. Beehive has experienced viral adoption
since its launch and users share a wealth of personal and
professional information on the site. For more details about
activity on the site and various motivations for employees
to participate in social networking in the enterprise see [3].

The concept of a “friend” in Beehive is more similar to
Flickr than Facebook in that Beehive friends are directional,
i.e. there could be a non-reciprocal friendship. Accordingly,
instead of requiring prior consent by both people before a
friend relation is established, one can connect to any user
on the site right away. The target user will be notified by
email and given the option to connect back. Note that
throughout this paper, we will use the term “connected” to
describe the state of a user having added another user as a
friend, and “connect to” / “friending” for the action of
adding another user as a friend.

In order to facilitate friending and in particular friending of
unknown users, Beehive also has an introduction feature,

rjpinnell
Highlight

where a user can request to be introduced to another user
through Beehive. The user can specify the recipient of the
introduction, add shared content of common interest, and
add a message to be sent with the request. Beehive will then
send out the introduction and let the recipient decide how to
respond and whether to make the requester a friend.

PEOPLE RECOMMENDATION ALGORITHMS
For our study, we evaluated four different algorithms. Our
choice was driven by a number of considerations. First,
following our discussion in the Related Work Section, we
focused on algorithms that utilize social network structure
and those based on content similarity, because they have
been successfully used in related fields [5, 7, 13, 14, 15, 18]
and would likely yield recommendations of great variety
and coverage due to their different underlying mechanisms.
Second, when choosing between different alternatives
within each type, we preferred well-established algorithms
of that type, so that whatever differences we observe in the
experiment can be attributed to the type of the algorithm
and not to a very particular technique used in that specific
algorithm of choice. Finally, considering the potential
obstacles to adding friends as discussed in the introduction,
we required that all our algorithms be able to provide
additional information as explanations to users, to explain
why a person was recommended and thus increase the
users’ motivation to friend the recommended person.

Algorithm 1: Content Matching
Our content matching algorithm is based on the intuition
that “if we both post content on similar topics, we might be
interested in getting to know each other”. In other words,
the algorithm strives to find users associated with similar
content on Beehive. This approach is closely related to
finding documents of similar content in the information
retrieval field [17].

Following a paradigm commonly used for information
retrieval, we first create a bag-of-words representation of
each user, using textual content both from within Beehive
and from our corporate directory. From Beehive, we extract
words from profile entries and status messages of users, as
well as the title, description, tags, and any textual content
associated with their photos and shared lists. From the
corporate directory, we extract the job title and the city of
the user’s work location. All words are stemmed using a
Porter stemmer [16], and then filtered using a customized
stop word list containing about 550 common English
words. All remaining word stems associated with a user u
are used to create a word vector uV =()1(wuv ,…,)(mwuv)
to describe u, where m is the total number of distinct words
used in all included texts and each)(iwuv describes the
strength of u’s interest in word iw . The value of)(iwuv is
calculated using a term-frequency inverse-user-frequency
weighting, a direct adaptation of TF-IDF [17]:

uTF (iw)= (#uses of iw by u)/(#all words used by u)

uIDF (iw)=log[(#all users)/(#users using iw at least once)]

)(iwuv = uTF (iw) ⋅ uIDF (iw)

The similarity of two users a and b is then measured by the
cosine similarity of their word vectors aV and bV .
Intuitively this means a and b would be considered similar
if they share many common keywords in their associated
content, and even more so if only a few users share those
keywords. Users similar to the recipient user u are
recommended in decreasing order of similarity. As an
explanation for a recommendation c, we show up to 10 top
words w whose dot product)(wuv ⋅)(wcv is among the
highest in all words shared. Intuitively they are the
strongest common words shared by u and c. On Beehive we
were able to compute at least one content based
recommendation for 99.1% of all users.

We also analyzed newer and more sophisticated content
similarity algorithms, including Latent Semantic Analysis
[2] and Probabilistic Latent Semantic Analysis [11].
However, in a preliminary test they did not yield
significantly better results. Moreover, since they cannot
easily provide an intuitive explanation for recommendations
like common keywords, we decided against using them.

Algorithm 2: Content-plus-Link (CplusL)
Our content-plus-link algorithm enhances the content
matching algorithm with social link information derived
from social network structure. The motivation behind this
algorithm is that by disclosing a network path to a weak tie
or unknown person, the recipient of the recommendation
will be more likely to accept the recommendation. The
content-plus-link algorithm computes similarity in the same
way as the content matching algorithm described in the
previous section. However, instead of recommending users
with top similarity scores, we boost the similarity of a
candidate user c and u by 50% if a valid social link from u
to c exists, i.e. content matches with less strength in
keyword overlap but with a social link between c and u can
be ranked higher than content matches with strong keyword
overlap but no link in the social network.

A valid social link is defined as a sequence of three or four
users, the first being the recipient of the recommendation
and the last being the recommended user. Every two
consecutive users a and b in the sequence must satisfy at
least one of the following conditions:

1. a connects to b
2. a has commented on b
3. b connects to a

This definition guarantees that a social link exists between
two users if and only if there is at least a minimum level of
acquaintance and interactions between them or their friends.
An example of such a link between user Alice and Charles

would be “Alice has commented on Bob, who is considered
a friend by Charles.” 1

By increasing the similarity scores of recommendation
candidates with valid links, this algorithm favors people in
close social network proximity to the user over people more
disconnected from the user in the social network. For
recommendations with a valid link, besides the common
words generated from the content matching technique, we
also show the social link as an explanation, including the
type of interactions of all users in the link between user u
and candidate c. On average 77.8% of the top 10
recommendations computed with this algorithm in our
experiments contain valid social link information.

Algorithm 3: Friend-of-Friend (FoF)
In contrast to the previous algorithm, the friend-of-friend
algorithm leverages only social network information of
friending based on the intuition that “if many of my friends
consider Alice a friend, perhaps Alice could be my friend
too”. Many social network analysis approaches have
adopted similar ideas to find neighborhoods and paths
within the network [5, 6, 7]. This particular variant that
recommends friends of a friend is interesting not only
because of the clear intuition behind it, but also because, as
implied in the official Facebook blog [14], it is the primary
algorithmic foundation of the “People You May Know”
feature on Facebook, which is one of the few known people
recommenders deployed on a social networking site.

Formally speaking, if we define predicate F(a,b) to be true
if and only if b is a friend of a for users a and b on Beehive,
the algorithm can be described as follows: for a user u
being the recipient of the recommendation, its
recommendation candidate set is defined as

)(uRC = {user c | ∃ user a s.t.),(auF and),(caF }.

For each candidate c ∈)(uRC , its mutual friends2 set is

),(cuMF = {user a |),(auF and),(caF },

which represents the friends of u that connect to c and thus
serve as a bridge between u and c. We then define the score
of each candidate c for recipient u as the size of MF(u,c).

1 We did not include the case of b commenting on a
because we previously discovered spamming through
commenting. Including the case would lead to a small
group of “spammers” being the top recommended people.
Similarly, we did not include links that resulted from
connecting behavior by a small number of
disproportionately active users because they have friended a
majority of users on the site and would otherwise link many
unrelated people.
2 While strictly speaking they are not necessarily mutual
friends because of the non-reciprocal friendship on
Beehive, we call it this for simplicity reasons.

The candidates are recommended to u in decreasing order
of their score. For a single recommended candidate c, we
supply the mutual friends in MF(u,c) as the explanation for
recommending c. Note that, because the algorithm requires
existing friends, it cannot generate recommendations for
people with no or a limited number of friends. We were
able to compute at least one recommendation for 57.2% of
all Beehive users.

Algorithm 4: SONAR
This algorithm is based on the SONAR system, which
aggregates social relationship information from different
public data sources within IBM [8, 9]. In this paper we use
SONAR to aggregate relationship information from the
following seven data sources within our Intranet: (1)
organizational chart, (2) publication database, (3) patent
database, (4) friending system, (5) people tagging system,
(6) project wiki, and (7) blogging system. A relationship is
indicated if within that data source two people have
somehow interacted with each other, such as co-authoring a
paper or leaving comments on each others’ blog.

For each of these data sources SONAR computes a
normalized relationship score in the range of [0,1] between
two people, where 0 indicates no relationship and 1
indicates the strongest relationship. These scores are then
aggregated to a unified single score by equally weighting
each data source [8]. Given a user u, SONAR returns a list
of users related to u and their aggregated relationship score
with u, ordered by this score. The number of interactions in
each data source is used to provide explanations. For
example, from the publication database an explanation
could be “You two have co-authored 2 papers”.

In essence, SONAR incorporates all information available
within IBM that implies an explicit acquaintance between
pairs of people, and ranks them based on the strength and
frequency of their interactions on record. While SONAR
runs as a service in IBM, the above algorithm can be easily
replicated in other applications. As a minimum basic data
source, enterprises typically have a corporate directory with
an organizational chart. But SONAR can be extended with
additional data sources through a plug-in model. With the
data sources configured within IBM, SONAR was able to
provide relationship information for almost all users.
However, after eliminating existing friends, we were able to
create at least one recommendation for 87.7% of all
Beehive users.

EXPERIMENT I: PERSONALIZED SURVEY
We conducted a personalized online survey on Beehive in
order to get a detailed assessment and comparison of our
four algorithms. We also hoped to understand our users’
needs, and in particular, whether recommending people is a
desired feature and how many users hope to discover new
friends on Beehive.

Methodology
We invited 500 active users to participate in a within-
subject study, i.e. every user was exposed to all four

algorithms. Subjects were randomly selected from all users
satisfying the following criteria: First, they must have
logged into Beehive during the week preceding the start of
the survey. Second, they must have enough data in Beehive
so that we can generate at least 10 recommendations using
every algorithm. Third, users must have at least 5 words in
their associated content that can be used by the content
based algorithms, and 3 friends each for the FoF algorithm,
so that there is a reasonable amount of data for all
algorithms to work with. As shown in Table 1, different
algorithms have small overlap in their top 10
recommendations for the 500 selected users except for the
two content-based algorithms, which use the same content
matching technique.

 Content CplusL FoF SONAR

Content 52.8% 1.8% 8.3%

CplusL 3.3% 9.6%

FoF 13.1%

Table 1. Overlap ratios between recommendations generated
by different algorithms.

The survey for each selected user, presented on a single
web page, contained 12 recommendations in total, 3 from
each algorithm.3 To control for ordering effects, individual
recommendations were presented in a regular and mirrored
Latin square sequence, each sequence started randomly
with a different algorithm. The 12 recommendations we
presented were selected from top ranked recommendation
candidates generated by each algorithm. To avoid duplicate
recommendations due to overlap between algorithms, if a
candidate had already been recommended by another
algorithm before, the next highest ranked candidate from
the same algorithm would be shown instead.

For each recommendation, we showed a photo, the job title
and the work location of that person, as well as the
explanation generated by the algorithm. The user could also
click a link to view the profile of the recommended person
in a separate window. For each recommendation, we asked
the following questions:

• Do you already know this person? [yes/no]
• Is this a good recommendation? [yes/no]
• Did the reason we chose this person help you make your

decision? [yes/no]
• What action would you like to take? [single choice]

o Connect to this person
o Be introduced to this person
o Nothing

• Additional feedback? [open ended]

3 Note that all of the algorithms filtered away the people a
user is already connected to.

We also asked users more general questions at the
beginning and the end of the survey, regarding whether
finding people to connect to is difficult, their interest in
meeting new people on the site, the kind of information that
would make them more likely connect to someone they do
not know yet, and whether they consider people
recommendations a desired feature for the site.

Results
Of the 500 users, 415 logged in and 258 submitted their
survey form. The recommendation response data was
analyzed on a per user basis, i.e. we first average each
user’s responses for each algorithm then summarize the
responses over all users who have at least one valid
response for every algorithm. Because of missing responses
in the survey, the actual sample size of users for some
questions dropped to 230.

Understanding users’ need
We argued that people recommendations on social
networking sites can help users find the right people to
communicate with or connect to. In our survey 95% of the
users considered people recommendations to be useful and
would like to see them as a feature on the site. Our survey
also quantitatively confirms DiMicco et al [3] in that users
on Beehive are interested in connecting to weak ties and
meeting new people: 61.6% said they are interested in
meeting new people, 31% said maybe and 7.4% said no.

When asked what kind of information would make them
more likely to connect to an unknown person, 75.2% of the
users chose common friends, 74.4% said common content
(e.g. photos, lists, interests, etc.), 39.2% indicated
geographical location of the person, 27% said the division
within IBM, and 14.5% chose “other” 4 . Information
typically listed as “other” included work/business
information (e.g. “customers in common” and “business
effort that is similar or relevant to my team's”) and
skills/expertise (e.g. “reputation in their subject matter” and
“they have expressed a skill in an area I could use help
discovering/learning”). According to the data, friends and
content in common play an important role in decision
making and thus, support our design of the content-plus-
link algorithm.

Known vs. unknown, Good vs. not good
For every recommendation, users were able to indicate
whether or not they already knew that person and they
could rate the recommendation as good or not good. Figure
1 shows a breakdown of the results by algorithm. The
percentages of unknown people recommended by each
algorithm are shown above the horizontal center line and
the percentages of known people below. The chart also
shows the percentages of good versus not good in two

4 Users were able to select more than one and up to five
types of information including “other”. Users chose 2.3
items on average.

different colors, broken down by known and unknown
recommendations.

As we originally expected, the pure content matching
algorithm recommends mostly unknown people. SONAR,
which relies heavily on explicit relationship data,
recommends mostly known people. On average each user
already knows 85.9% of the people recommended by
SONAR, followed by the friend-of-friend algorithm with
60.6%. In contrast, users only know 36.2% of the
recommendations from the content-plus-link algorithm, and
22.5% of those from the content matching algorithm
(F[3,711] = 213.5, p < .001). Post-hoc comparison (LSD)
showed that the percentages for each algorithm were
significantly different from each other (p < .001). These
results confirm the intuition that the more explicit
relationship information an algorithm leverages, the more
known people it would recommend.

30.1% 24.9% 23.8%
6.6%

47.5%
38.9%

15.5%

7.6%

75.9%

55.4%

31.8%
19.5%

3.0%

4.4%

5.2%

10.0%

Content CplusL FoF SONAR

K

no
w

n

 U

nk
no

w
n

Rated Good

Rated Not Good

Figure 1. Known vs. unknown, Good vs. not good.

Overall, our users rated 82.5% of the SONAR
recommendations as good, followed by 79.2% for the
friend-of-friend, 56.7% for the content-plus-link and 49.6%
for the content matching algorithm (F[3,705] = 69.1, p <
.001). While there was no significant difference between
SONAR and friend-of-friend, post-hoc comparison (LSD)
showed that they have a significantly higher percentage of
good recommendations than the two content-based
algorithms (p < .001). Also, the percentage of “good”
recommendations from the content-plus-link algorithm is
significantly higher than basic content matching (p < .005).
Overall, this suggests that the more known
recommendations an algorithm produces, the more likely
users are to consider those recommendations good.

When looking only at recommendations of known people
(Figure 1, below the center line), we can see that most of
those recommendations were considered good for all
algorithms (around 90% for each algorithm). In other
words, users considered recommendations of known people
to be good, no matter how they were computed and what

kinds of explanations were provided. Indeed, user feedback
for recommendations rated as good and known, across
algorithms, cited not the specific explanation provided but
how good the recommendation was based on how well they
knew the person: “Very nice catch here. I know [name]
from when he first interviewed at Watson (and went to
Almaden),” “[name] is a good friend and previous
colleague I would like to stay connected with.”

In contrast, the situation for unknown recommendations is
very different in that more recommendations are considered
to be not good. The number of “not good”
recommendations increases from right to left, i.e. the
content-based algorithm produces the highest number of
recommendations not considered good. One could argue
that the more strangers an algorithm recommends, the more
likely users will reject or not like the recommendations. We
did sometimes find recommendations being rated as not
good for this reason alone: “I’d prefer to know them before
being introduced to another stranger in the same city,” and
“I generally want to know someone at least by reputation or
interaction before making a connection.”

However, not knowing a person was not always an obstacle
to rating a recommendation as good. The content matching
algorithm also produced the highest number of good
unknown recommendations, i.e. an average user found
30.1% recommendations to be both good and unknown at
the same time. Content-plus-link and friend-of-friend
algorithms followed with 24.9% and 23.8%, respectively,
followed by SONAR with only 6.6% good unknown
recommendations (F[3,705] = 37.1, p < .001). Post-hoc
comparison (LSD) showed that the content matching had a
significantly higher percentage than the other three
algorithms (p < .05), and SONAR had a significantly lower
percentage than the other three (p < .001).

While unknown recommendations were not consistently
rated good, users did provide positive feedback about some
unknown recommendations (“good find, I'll comment on his
favorite music hive5” and “Connected to lots of the same
folks; I should know her!”), leaving us unable to draw a
simple conclusion as with known recommendations.
Therefore, we analyzed the user feedback looking
specifically for themes related to “good” recommendations.
Users found all kinds of recommendations and explanations
valuable: “I find the recommendations based on tags (or
keywords?) or non-direct shared connections most
interesting” and “Useful – especially the mutual
connections links.” Users also confirmed our intuition that
explanations were not only helpful but necessary: “I
connect to people for a wide variety of contexts but not just
because…,” “Always state why you are recommending
someone,” and “I have to have a legitimate reason to
connect to someone.”

In particular, there seemed to be a minimum threshold of
information necessary to rate a recommendation as “good.”,
and we heard this when that threshold was not met: “Her

profile did not have enough interesting items for me to do a
‘cold call’ at this time” and “The keywords in common
caused me to at least look at his profile. We share some
interests, but not enough to get connected at this time. Good
try.” All algorithms suffered from this at times, whether by
not providing enough information (“the matching of only
one keyword is a bit low for making recommendations, isn't
it?”) or not enough information of value (“I am not close
with those 5 mutual connections…”). The keywords in
particular seemed to suffer from the latter and were often
considered “random”, “irrelevant,” “WWWAAAAYYYY too
much noise,” or “too generic to be helpful.” Nevertheless,
the users spoke more highly of keywords when they were
coupled with network relationships, as in the Content-Plus-
Link algorithm: “Similar to [..] Facebook [..] This is richer,
since it ties into common interests/tags,” and “At least two
keyword matches (with keywords that really interest me)
and only one degree of separation -- that to me is a good
connection.” And more generally of their need to be
coupled with more information: “recommendations must go
beyond tagging and be multi-dimensional.” Obviously this
threshold is different for different people, as one user said,
“Do NOT use obvious connections, i.e. People Management
Relationships” while another thinks “Org[anizational]
structure recommendations are great.” But, in general,
users seemed to want the recommender to provide as much
potentially useful information as possible, of all types, to
help them decide whether a recommendation was good.

Immediate actions resulted from recommendations
For every recommendation, users were also able to take an
immediate action as described in our survey above. Figure 2
shows the percentages of connection and introduction
actions for each algorithm per user compared to the overall
percentage of recommendations rated good.

As expected, the number of actions taken on
recommendations for different algorithms follows the same
trend as the number of good recommendations. The
majority of good recommendations resulted in either direct
connection or introduction requests. On average 66.0% of
the recommendations from the SONAR, 57.1% from the
friend-of-friend, 42.4% from the content-plus-link and
32.8% from the content matching algorithm resulted in
actions (F[3,705] = 63.8, p < .001). Post-hoc comparison
(LSD) showed that every algorithm is different from all
others (p < .001).

Note that for all algorithms, the percentage of
recommendations resulting in actions is consistently lower
than the percentage of good recommendations, i.e. a good
recommendation does not necessarily result in an action.
There are a number of possible explanations. For example,
users might consider known people as good
recommendations simply because the algorithm found a
known person. However, that does not necessarily mean
that a user would consider the person a friend. Or, as for
unknown people recommendations, users might find them
good but nonetheless not be interested in contacting to

those people at that moment. Qualitative feedback from our
survey is supportive of both explanations: “Lots of people I
know through being on the same program I don’t interact
with enough to want them in my contacts list,” or “Because
of the strength of mutual connections, I feel this is a good
recommendation. I simply do not choose to connect at this
time.” And that the threshold for an action is even higher
than that for rating a recommendation as good: “I’d be
interested in checking out his profile, but probably not in
connecting,” and “I have a large network already. It is
difficult to keep up with existing critical contacts. Need to
be very judicious in discerning value proposition of new
contacts.”

63.2%

49.8%

35.1%
25.1%

82.6% 79.3%

56.8%
49.6%

2.8%

7.3%

7.3%

7.7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

SONAR FofF CplusL Content

Good
Introduce
Connect

Figure 2. Good recommendations that resulted in actions.

We looked at individual feedback for recommendations
marked as “good” or “known” that did not result in a
connection action, as well as other “anomalous” responses
such as marking a recommendation as known but not good.
We found a variety of common reasons across these cases,
including many where users said the recommended person
had resigned, retired, or otherwise left IBM. There were
other cases where those higher in the organizational
structure were obviously known, but connection was not an
option: “I wouldn’t connect to an executive without a
personal relationship or a compelling reason,” “I feel
awkward connecting to my 2nd line,” and “This person is
[an] influential senior executive – using this criteria for
connection would result in 1000’s of people having access
to this person.” Some users described how they knew the
recommended people, and more specifically knew those
users have a reputation for “collecting colleagues” on
Beehive, and thus decided not to connect.

We had originally sought to offer the introduction option to
facilitate friending, especially for recommendations of
unknown people. Our data show that most introduction
requests were indeed made to unknown people. It is
interesting to note that the ratio of introduction versus
connection actions is higher for algorithms that produce a
high number of unknown people recommendations. From
right to left in Figure 2, 23.5% of all actions taken on the
content matching algorithm were introductions, followed by
17.2% for content-plus-link, 12.8% for friend-of-friend, and
4.2% for SONAR. And we did receive positive feedback in

cases in which introductions were used: “Neale has one of
those job roles that mean he might come in handy to know
someday…,” “This is an interesting recommendation, I
would like to see how this progresses,” and even “I’m
coming around to the idea that Beehive could be a decent
mentor connection system.”

However, the low usage of introductions and additional
user feedback suggests that even the two actions we
offered, introduction and connection, were not granular
enough. Users suggested a number of alternate actions for a
good person recommendation: “I wouldn’t mind being able
to save people of interest that I could work on meeting
through more conventional means,” “maybe have a way to
separate my ‘top shelf’ connections from more casual
ones,” or “Need some method to specify interesting
candidates – kind of like virtual speed dating.” Many
suggested the use of a third person: “I would prefer if some
one I know introduces a new person to me (e.g. Linked In),”
or “Potentially a good recommendation, but I would not
connect to her [..] without a person in common that
recommended her to me.”

One final theme that emerged was that the recommender’s
quantitative assessment might be overly strict in terms of
success. For cases where a recommendation was rated as
not good, unknown, and produced no action it would be
judged as a failure. However they were not necessarily seen
as such by some users who were merely undecided at rating
time (“I do not know whether I will connect to this person
or not,”). And particularly that the recommendation might
be useful at a later time: “Might be a good connection in the
future for job networking,” or “It would be a good
recommendation if I had a need for such a person.”

EXPERIMENT II: CONTROLLED FIELD STUDY
The first experiment invited users to participate in a survey.
In our second experiment, we wanted to test the algorithms
in a more natural setting. We deployed the four different
recommender algorithms to a larger group of users on the
site. The deployment of different recommenders allowed us
to investigate how they can actually help people find
friends during daily usage. And by comparing these users to
a control group that did not receive recommendations we
can test their effectiveness in increasing the number of
friends and their impact on overall user activity on the site.

Methodology
For this experiment we randomly selected 3,000 users using
similar criteria as in Experiment I. This time we required
users to have logged into Beehive during the preceding 60
days instead of 1 week. The experiment was carried out as a
between-subjects study during a 3-week period. We divided
the 3,000 users randomly into 5 groups, each with 600
users. Four of the five groups were experimental groups,
each one getting recommendations from a single algorithm
only, while the remaining 600 subjects were a control group
that did not get any recommendations. As in Experiment I,
we guaranteed at least 10 recommendations of each type for
all users, though those in the experimental groups only saw

recommendations of one type. Also, whenever possible we
computed more than 10 recommendations, up to a total of
30 for each user.

During the experiment, users in the experimental groups
saw a new recommender widget on their Beehive home
page, as shown in Figure 3.

Figure 3. People recommender widget on Beehive showing a

recommendation generated by the CpL algorithm.

The widget shows one recommendation a time, starting
from the highest ranked ones. Each recommendation shows
photo, job title, and work location of the person and the
explanation generated by the algorithm. Users can also
open a separate window to check the profile of the person.
Users can respond to the recommendation by choosing one
of three actions: connect to the person, ask to be introduced,
and decline by choosing “not good for me”. After
responding, the widget will refresh and show the next
recommendation. The widget also refreshes each time a
user visits their home page to increase their chances of
viewing different recommendations. In the email messages
sent to users as part of their normal daily/weekly updates of
Beehive, we included a personalized recommendation as well
as a link that would take them to their home page and show
that recommendation, allowing them to respond.

To balance the extra attention that recommendations get by
occupying prime real estate in the experimental groups, we
advertised various friending features and actions in the
control group at the same place in the user interface and
through email notifications.

Results
Of the 3,000 users, 1,710 users logged in during the
experiment. 620 users of those in the experimental groups
participated by responding to 7,451 recommendations. Of
those 620, 122 were from the content matching group, 131
from the content-plus-link group, 157 from the friend-of-
friend group, and 210 from the SONAR group.

Effectiveness of recommender algorithms
We measured user responses to our recommendations in a
way similar to our survey. As expected, the per-user

percentage of recommendations resulting in connection
actions for different algorithms (shown in Table 2) follows
the same trend as in the survey (F(3,413) = 17.6, p < .001).
Post-hoc comparison (LSD) showed that SONAR again has
a significantly higher connection action rate than the other
three algorithms (p < .005). The connection action rate of
the friend-of-friend algorithm is also significantly higher
than the content matching algorithm (p < .001).

SONAR FoF CplusL Content

59.7% 47.7% 40.0% 30.5%

Table 2. Recommendations resulting in connect actions.

It is worth noting that, in contrast to the survey, users rarely
chose the introduction option as a response - less than one
percent of the 7,451 responses were introduction requests.
One possible reason for the difference could be that, while
we explained directly the introduction feature in the survey,
here users had to mouse-over the “what is this?” link as
shown in Figure 3 to see the explanation. It seems that
instead of mousing-over as we had hoped, many chose not
to bother and simply ignored the feature.

Separate from responding, users can also click a link in our
widget to view the profile of the recommended person.
How often users did this is interesting insofar as it might
indicate the interestingness and possibly the novelty of a
recommendation, since a user may choose not to view the
profile because of either a lack of interest or familiarity
with the person. Because the content matching algorithm
recommends mostly unknown people, we expected a higher
number of such views for that algorithm compared to other
algorithms. Indeed, for each user 8% of content matching
recommendations resulted in such immediate profile views
compared to only 2.9% for SONAR. The difference in
view-profile percentage is significant (F[3,605] = 7.0, p <
.001). Post-hoc comparison (LSD) showed that the content
matching and CplusL algorithms have significantly higher
percentages than the other two (p < .05) 5.

Impact of people recommendations
The immediate goal of recommending people on a social
networking site is to increase a user’s network of friends.
We compared the number of friends before and after the
experiment in each group and found a significant group x
before/after interaction effect (F[4,2995] = 15.0, p < .001).
Post-hoc comparison (LSD) showed that all our algorithms
significantly increased the number of friends compared to
the control group. SONAR was most effective with an
increase of 13% (3.64 more friends on average per user),
followed by the other algorithms as shown in Figure 4. We

5 Note that in order to reduce noise in the estimate of per-
user connection rate, we excluded users with less than 4
recommendation responses in its calculation. Similarly for
per-user view-profile rate, users who have been shown less
than 4 recommendations were also excluded.

also saw an increase of 5% (1.27 more friends on average
per user) in the control group, which can possibly be
attributed to the advertisement of friend-related features.

We had also expected that people recommendations would
impact user activity on the site in general. Indeed, when
comparing the number of page views on Beehive during the
3-week period of the experiment with the 3-week period
before the experiment, we found that users in experimental
groups viewed an average of 13.7% more pages during the
experiment (3.13 more page views), while control group
users viewed 24.4% less pages during the experiment (6.34
less page views). Note that the overall page views across
the entire site dropped by 27.5% during that period. We
have found the experiment/control x before/after interaction
effect to be significant (F[1,2998] = 9.2, p < .005), i.e.
people recommendations were effective in increasing
browsing activity of users. We also observed an increase in
content and comment creation in the experimental groups
compared to the control group, although the number of
items created in the 3-week period per user was too low to
observe any significant difference.

3.64

2.98

2.3 2.16

1.27

0

0.5

1

1.5

2

2.5

3

3.5

4

SONAR FoF Content CplusL Control
Figure 4. Increase in number of friends.

DISCUSSION AND CONCLUSION
The results from both the personalized survey and the large
field study on Beehive, show that the four algorithms we
compared are effective in making people recommendations
and can significantly increase the number of friends of a
user on the site. This not only furthers our understanding in
practical social matching systems [21], but also enables us
to understand the effectiveness and characteristics of
different information sources and algorithms for the
purpose of people recommendation.

When comparing algorithms, we can roughly put our four
algorithms into two categories. Those based more on social
relationship information (FoF and SONAR), and those
based more on content similarity (Content and CplusL). In
our experiment, relationship based algorithms outperform
content similarity ones in terms of user response. This result
could partly be attributed to the fact that both content
similarity algorithms employ a simple keyword matching
scheme, whereas SONAR takes advantage of the rich
relationship data in IBM that might not be available to that
extent elsewhere. As a result, in cases where more
sophisticated content similarity can be computed and

relationship information is less available, the advantage of
relationship-based algorithms might not be as large as
observed in this work.

The results described in this paper also show that
relationship-based algorithms are better at finding known
contacts whereas content similarity algorithms were
stronger at discovering new friends. As shown in Figure 1,
the more relationship information an algorithm uses the
more known contacts and the less new friends it discovers.
In general, this suggests that on social networking sites,
relationship-based algorithms would perform particularly
well for newer users in finding known offline contacts that
have not yet been added to their online social network. In
particular, FoF can expand their contact list from a few
existing contacts, while a SONAR-like aggregation can take
advantage of additional data, including commenting,
tagging, or organizational relationships, which are often
available within organizations. However, for more
established users, relationship-based algorithms would
either run out of people to recommend or base themselves
on social relationships that are too weak to be meaningful.
In contrast, content similarity algorithms will still be able to
find new interesting people. Hence, one potentially
promising way to combine the strengths of both types of
algorithms is to leverage relationship based algorithms
initially to build up a network quickly by finding known
people and, as the network grows, complement them with
content similarity based algorithms. Such an approach
might even have an additional benefit of increasing new
users’ trust in the system because, as indicated in [20],
people trust recommenders more if they see familiar items
recommended.

For future research, beyond developing better recommender
algorithms, one could look into new applications of people
recommendations on social networking sites, such as
leveraging them for recommending content, based on the
intuition that “if I like that person I might also be interested
in his/her content.” Another possibility is to investigate
whether people recommendations can help bootstrap
newcomers, addressing adoption issues of social
networking sites.

REFERENCES
1. Boyd, d. m., & Ellison, N. B. 2007. Social network

sites: Definition, history, and scholarship. Journal of
Computer-Mediated Communication, 13(1), article 11.

2. Deerwester, S., Dumais, S., Furnas, G.W., Landauer,
T.K., Harshman, R. 1990. Indexing by Latent Semantic
Analysis. J. of Amer. Soc. Info. Sci. 41 (6): 391–407.

3. DiMicco, J., Millen, D., Geyer, W., Dugan, C.,
Brownholtz, B. 2008. Motivations for Social
Networking at Work. ACM CSCW’08.

4. Ehrlich, K., Lin, C., and Griffiths-Fisher, V. 2007.
Searching for experts in the enterprise: combining text
and social network analysis. Proc. Group'07, 117-126.

5. Geyer, W., Dugan, C., Millen, D., Muller, M., Freyne, J.
2008. Recommending Topics for Self-Descriptions in
Online User Profiles. ACM RecSys’08.

6. Granovetter, M. 1973. Strength of weak ties. Amer. J.
Sociology 78 (1973), 1360-1380.

7. Groh, G., & Ehmig, C. 2007. Recommendations in
Taste Related Domains: Collaborative Filtering vs.
Social Filtering. Proc. ACM Group’07. 127-136.

8. Guy, I., Jacovi, M., Meshulam, N., Ronen, I., Shahar, E.
2008. Public vs. Private – Comparing Public Social
Network Information with Email. ACM CSCW’08.

9. Guy, I., Jacovi, M., Shahar, E., Meshulam, N., Soroka,
V., Farrell, S. 2008. Harvesting with SONAR: the value
of aggregating social network information. Proc. ACM
CHI’08. 1017-1026.

10. Herlocker , J. L., Konstan, J.A. , Riedl, J. 2000.
Explaining collaborative filtering recommendations.
Proc. ACM CSCW’00. 241-250.

11. Hofmann, T. 1999. Probabilistic Latent Semantic
Analysis. UAI'99.

12. McDonald, D. W. 2003. Recommending collaboration
with social networks: a comparative evaluation. Proc. of
ACM CHI'03, 593-600.

13. Mooney, R. J., & Roy, L. 2000. Content-based book
recommending using learning for text categorization.
Proc ACM DL’00.195–204.

14. Official Facebook Blog:
http://blog.facebook.com/blog.php?post=15610312130.

15. Pazzani, M. J., Muramatsu, J., & Billsus, D. 1996.
Syskill webert: Identifying interesting web sites.
AAAI/IAAI, Vol. 1, 54-61.

16. Porter, M.F. 1980. An algorithm for suffix stripping.
Program, 14(3). 130-137.

17. Salton, G & Buckley, C. 1988. "Term-weighting
approaches in automatic text retrieval". Information
Processing & Management 24 (5): 513-523.

18. Sen, S., Geyer, W., Muller, M., Moore, M., Brownholtz,
B., Wilcox, E., & Millen, D.R. 2006. FeedMe: a
collaborative alert filtering system. Proc. ACM
CSCW’06. 89-98.

19. Spertus, E., Sahami, M., and Buyukkokten, O. 2005.
Evaluating similarity measures: a large-scale study in
the Orkut social network. Proc. SIGKDD'05. 678-684.

20. Swearingen, K. and Sinha, R. 2002. Interaction Design
for Recommender Systems. Proc. DIS'02.

21. Terveen, L. and McDonald, D. W. 2005. Social
matching: A framework and research agenda. ACM
Trans. Comput.-Hum. Interact. 12, 3. 401-434

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

