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ABSTRACT 
This paper studies people recommendations designed to 
help users find known, offline contacts and discover new 
friends on social networking sites. We evaluated four 
recommender algorithms in an enterprise social networking 
site using a personalized survey of 500 users and a field 
study of 3,000 users. We found all algorithms effective in 
expanding users’ friend lists. Algorithms based on social 
network information were able to produce better-received 
recommendations and find more known contacts for users, 
while algorithms using similarity of user-created content 
were stronger in discovering new friends. We also collected 
qualitative feedback from our survey users and draw several 
meaningful design implications. 
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ACM Classification Keywords 
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INTRODUCTION 
Social networking sites allow users to articulate their social 
networks by adding other users to their “friend lists”. 
Research shows that users connect to both friends they 
already know offline and new friends they discover on the 
site. For example, many users of popular social networking 
sites such as Facebook and MySpace primarily 
communicate with people they already know offline [1]. On 
the other hand, research on enterprise social networking [3] 
shows that users in a corporate context are interested in 
finding valuable contacts not yet known to them, or 
connecting to weak ties, in addition to staying in touch with 
their close colleagues. Given the size of social networking 
sites, finding known contacts and interesting new friends to 
connect with on the site can both be a challenge. 

One approach to address this problem is to proactively 
make personalized people recommendations on the site. 
Facebook has recently launched a feature, called “People 
You May Know”, which recommends people to connect 
with based on a “friend-of-a-friend” approach [14]. 
However, data on the effectiveness of this approach is not 
available. As a recommendation problem, recommending 
people on social networking sites is worth studying because 
it is different from traditional recommendations of books, 
movies, restaurants, etc. due to the social implications of 
“friending”. For example, before adding a friend, one often 
has to consider how the other person would perceive this 
action and whether he or she would acknowledge the 
friendship. Furthermore, because the friend list appears on 
one’s profile, one also has to consider how the new friend 
will be perceived by others on the site. These social 
dynamics can be obstacles in accepting recommendations, 
even when they are relevant and otherwise desirable. This 
problem could be more prominent if unknown or barely 
known people are recommended, because in those cases 
users often lack enough motivation to contact or reach out 
to the other person. However, despite the difficulty, 
connecting with weak ties or unknown but similar people 
can be more valuable to users than merely re-finding 
existing strong ties [6]. In contrast, recommendations of 
books, movies, restaurants etc. do not have such reciprocal 
social or impression management issues.  

In this paper we describe the results of an empirical study 
of a people recommender system for an enterprise social 
networking site. Our goal was to get a basic understanding 
of this area with a particular focus on the following two 
research questions: 

1) How effective are different algorithms in recommending 
people as potential friends, and what are their 
characteristics in terms of recommending known versus 
unknown people? 

2) Can a people recommender system effectively increase 
the number of friends a user has, and what would be the 
overall impact of such a recommender system on the site? 

To answer these questions, we designed and implemented a 
people recommender system for Beehive, an enterprise 
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social networking site within IBM, using four different 
algorithms. We conducted two separate experiments, a 
personalized survey and a controlled field study. The 
survey was targeted at a group of 500 users who were asked 
to answer questions related to their friending behavior, and 
to rate personalized recommendations created from each 
algorithm. In the controlled field study we deployed our 
people recommender as a feature on the site to 3,000 users. 

In the next section, we discuss how existing work relates to 
our research. We then provide a brief overview of Beehive, 
followed by a detailed description of the four algorithms 
chosen for our study. The next two major sections describe 
the results from the personalized survey and the controlled 
field study. We conclude with a discussion of our findings 
and possible future work. 

RELATED WORK 
There is a wealth of research on recommender systems. 
Many approaches employ the technique of collaborative 
filtering [10], which utilizes similarities of preferences 
among users to recommend items such as movies for a user 
to consume. These approaches do not rely on the actual 
content of the items, but instead require users to indicate 
preferences on them, usually in the form of ratings. 

Another body of research utilizes the content of items to 
make recommendations. Pazzani et al. [15] characterized 
websites by words contained on individual pages and built 
user profiles using websites the user considered “hot”. They 
applied a naïve Bayes classifier to recommend interesting 
websites based on the profile. Mooney et al. [13] followed a 
similar paradigm with a content-based recommender for 
books. Sen et al. [18] built a hybrid alert filtering system 
combining collaborative filtering techniques and the content 
features extracted from the alert message itself. 

Research has also been done using articulated social 
network structures for recommendations. For instance, 
Spertus et al. [19] made recommendations of online 
communities to users based on their current community 
membership, and compared several different similarity 
measures in a large study on the social networking site 
Orkut. Geyer et al. [5] built a system to recommend topics 
for self-descriptions using social network information, and 
showed that a social network-based recommender yielded 
better performance than simple content matching. Groh et 
al. [7] generated user neighborhood information from 
articulated social network structures and demonstrated that 
collaborative filtering based on such neighborhoods 
outperforms classic collaborative filtering methods. 

Many of the techniques mentioned above could potentially 
be used for recommending people on social networking 
sites. For example, methods utilizing content similarity can 
be directly adapted by computing similarity from profiles, 
photos, comments, etc. of users. Similarly, methods 
exploiting articulated social network structure are also 
readily applicable. In contrast, classic collaborative filtering 
does not directly apply because it recommends items in a 

heterogeneous network of users and items using ratings, 
while in our case we want to recommend users to users 
without requiring a concept of items or ratings. 

Research on expert-finding using social information is very 
relevant as well. McDonald [12] discussed leveraging social 
network information when finding knowledgeable 
colleagues for collaborations in the workplace. Ehrlich et al. 
[4] introduced a system which supports users who are 
searching for experts in their social network, using email 
and chat messages. However, compared to prior research, 
our focus is not on the user-directed task of finding an 
expert, but on recommending people on social networking 
sites for the purpose of establishing connections (“friends”) 
and communication, similar to Facebook’s “People You 
May Know” application [14]. In these cases, users are not 
necessarily actively looking for new friends even if they are 
open to meeting or connecting with them. 

Our people recommender could also be viewed as a 
concrete example of a "social matching system" as 
described in Terveen et al. [21]. Their work discusses issues 
closely related to our paper, and our comparison of different 
people recommendation algorithms in a large scale 
experiment could answer several questions laid out in their 
work. Because of the unique challenges of recommending 
people as illustrated in our introduction and in [21], we 
believe designing, implementing, deploying, and studying 
different recommenders can greatly help us understand and 
improve people recommendation systems. 

THE SOCIAL NETWORKING SITE  
Beehive is an enterprise social networking site within IBM. 
It was officially launched in September 2007 and had more 
than 38,000 users with an average of 8.2 friends per user at 
the time when we started our study in July 2008. Similar to 
other social networking sites, Beehive has an individual 
profile page for each user, and supports features like 
friending other people, setting status messages, sharing 
photos, lists, events, and commenting on users as well as on 
shared content. Beehive has experienced viral adoption 
since its launch and users share a wealth of personal and 
professional information on the site. For more details about 
activity on the site and various motivations for employees 
to participate in social networking in the enterprise see [3]. 

The concept of a “friend” in Beehive is more similar to 
Flickr than Facebook in that Beehive friends are directional, 
i.e. there could be a non-reciprocal friendship. Accordingly, 
instead of requiring prior consent by both people before a 
friend relation is established, one can connect to any user 
on the site right away.  The target user will be notified by 
email and given the option to connect back. Note that 
throughout this paper, we will use the term “connected” to 
describe the state of a user having added another user as a 
friend, and “connect to” / “friending” for the action of 
adding another user as a friend. 

In order to facilitate friending and in particular friending of 
unknown users, Beehive also has an introduction feature, 
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where a user can request to be introduced to another user 
through Beehive. The user can specify the recipient of the 
introduction, add shared content of common interest, and 
add a message to be sent with the request. Beehive will then 
send out the introduction and let the recipient decide how to 
respond and whether to make the requester a friend.  

PEOPLE RECOMMENDATION ALGORITHMS 
For our study, we evaluated four different algorithms. Our 
choice was driven by a number of considerations. First, 
following our discussion in the Related Work Section, we 
focused on algorithms that utilize social network structure 
and those based on content similarity, because they have 
been successfully used in related fields [5, 7, 13, 14, 15, 18] 
and would likely yield recommendations of great variety 
and coverage due to their different underlying mechanisms. 
Second, when choosing between different alternatives 
within each type, we preferred well-established algorithms 
of that type, so that whatever differences we observe in the 
experiment can be attributed to the type of the algorithm 
and not to a very particular technique used in that specific 
algorithm of choice. Finally, considering the potential 
obstacles to adding friends as discussed in the introduction, 
we required that all our algorithms be able to provide 
additional information as explanations to users, to explain 
why a person was recommended and thus increase the 
users’ motivation to friend the recommended person. 

Algorithm 1: Content Matching  
Our content matching algorithm is based on the intuition 
that “if we both post content on similar topics, we might be 
interested in getting to know each other”. In other words, 
the algorithm strives to find users associated with similar 
content on Beehive. This approach is closely related to 
finding documents of similar content in the information 
retrieval field [17]. 

Following a paradigm commonly used for information 
retrieval, we first create a bag-of-words representation of 
each user, using textual content both from within Beehive 
and from our corporate directory. From Beehive, we extract 
words from profile entries and status messages of users, as 
well as the title, description, tags, and any textual content 
associated with their photos and shared lists. From the 
corporate directory, we extract the job title and the city of 
the user’s work location. All words are stemmed using a 
Porter stemmer [16], and then filtered using a customized 
stop word list containing about 550 common English 
words. All remaining word stems associated with a user u 
are used to create a word vector uV =( )1(wuv ,…, )( mwuv ) 
to describe u, where m is the total number of distinct words 
used in all included texts and each )( iwuv  describes the 
strength of u’s interest in word iw . The value of )( iwuv  is 
calculated using a term-frequency inverse-user-frequency 
weighting, a direct adaptation of TF-IDF [17]: 

uTF ( iw )= (#uses of iw  by u )/(#all words used by u ) 

uIDF ( iw )=log[(#all users)/(#users using iw  at least once)] 

)( iwuv = uTF  ( iw ) ⋅ uIDF  ( iw ) 

The similarity of two users a and b is then measured by the 
cosine similarity of their word vectors aV  and bV . 
Intuitively this means a and b would be considered similar 
if they share many common keywords in their associated 
content, and even more so if only a few users share those 
keywords. Users similar to the recipient user u are 
recommended in decreasing order of similarity. As an 
explanation for a recommendation c, we show up to 10 top 
words w  whose dot product )(wuv ⋅ )(wcv  is among the 
highest in all words shared. Intuitively they are the 
strongest common words shared by u and c. On Beehive we 
were able to compute at least one content based 
recommendation for 99.1% of all users.  

We also analyzed newer and more sophisticated content 
similarity algorithms, including Latent Semantic Analysis 
[2] and Probabilistic Latent Semantic Analysis [11]. 
However, in a preliminary test they did not yield 
significantly better results. Moreover, since they cannot 
easily provide an intuitive explanation for recommendations 
like common keywords, we decided against using them. 

Algorithm 2: Content-plus-Link (CplusL) 
Our content-plus-link algorithm enhances the content 
matching algorithm with social link information derived 
from social network structure. The motivation behind this 
algorithm is that by disclosing a network path to a weak tie 
or unknown person, the recipient of the recommendation 
will be more likely to accept the recommendation. The 
content-plus-link algorithm computes similarity in the same 
way as the content matching algorithm described in the 
previous section. However, instead of recommending users 
with top similarity scores, we boost the similarity of a 
candidate user c and u by 50% if a valid social link from u 
to c exists, i.e. content matches with less strength in 
keyword overlap but with a social link between c and u can 
be ranked higher than content matches with strong keyword 
overlap but no link in the social network.  

A valid social link is defined as a sequence of three or four 
users, the first being the recipient of the recommendation 
and the last being the recommended user. Every two 
consecutive users a  and b  in the sequence must satisfy at 
least one of the following conditions: 

1. a  connects to b  
2. a  has commented on b  
3. b  connects to a  

This definition guarantees that a social link exists between 
two users if and only if there is at least a minimum level of 
acquaintance and interactions between them or their friends. 
An example of such a link between user Alice and Charles 



would be “Alice has commented on Bob, who is considered 
a friend by Charles.” 1 

By increasing the similarity scores of recommendation 
candidates with valid links, this algorithm favors people in 
close social network proximity to the user over people more 
disconnected from the user in the social network. For 
recommendations with a valid link, besides the common 
words generated from the content matching technique, we 
also show the social link as an explanation, including the 
type of interactions of all users in the link between user u 
and candidate c. On average 77.8% of the top 10 
recommendations computed with this algorithm in our 
experiments contain valid social link information. 

Algorithm 3: Friend-of-Friend (FoF) 
In contrast to the previous algorithm, the friend-of-friend 
algorithm leverages only social network information of 
friending based on the intuition that “if many of my friends 
consider Alice a friend, perhaps Alice could be my friend 
too”. Many social network analysis approaches have 
adopted similar ideas to find neighborhoods and paths 
within the network [5, 6, 7]. This particular variant that 
recommends friends of a friend is interesting not only 
because of the clear intuition behind it, but also because, as 
implied in the official Facebook blog [14], it is the primary 
algorithmic foundation of the “People You May Know” 
feature on Facebook, which is one of the few known people 
recommenders deployed on a social networking site. 

Formally speaking, if we define predicate F(a,b) to be true 
if and only if b is a friend of a for users a and b on Beehive, 
the algorithm can be described as follows: for a user u 
being the recipient of the recommendation, its 
recommendation candidate set is defined as 

)(uRC = {user c | ∃ user a  s.t.  ),( auF  and ),( caF }. 

For each candidate c ∈ )(uRC , its mutual friends2 set is 

),( cuMF = {user a | ),( auF  and ),( caF }, 

which represents the friends of u that connect to c and thus 
serve as a bridge between u and c. We then define the score 
of each candidate c for recipient u as the size of MF(u,c). 

                                                           
1  We did not include the case of b  commenting on a  
because we previously discovered spamming through 
commenting. Including the case would lead to a small 
group of “spammers” being the top recommended people. 
Similarly, we did not include links that resulted from 
connecting behavior by a small number of 
disproportionately active users because they have friended a 
majority of users on the site and would otherwise link many 
unrelated people. 
2 While strictly speaking they are not necessarily mutual 
friends because of the non-reciprocal friendship on 
Beehive, we call it this for simplicity reasons. 

The candidates are recommended to u in decreasing order 
of their score. For a single recommended candidate c, we 
supply the mutual friends in MF(u,c) as the explanation for 
recommending c. Note that, because the algorithm requires 
existing friends, it cannot generate recommendations for 
people with no or a limited number of friends. We were 
able to compute at least one recommendation for 57.2% of 
all Beehive users.  

Algorithm 4: SONAR  
This algorithm is based on the SONAR system, which 
aggregates social relationship information from different 
public data sources within IBM [8, 9]. In this paper we use 
SONAR to aggregate relationship information from the 
following seven data sources within our Intranet: (1) 
organizational chart, (2) publication database, (3) patent 
database, (4) friending system, (5) people tagging system, 
(6) project wiki, and (7) blogging system. A relationship is 
indicated if within that data source two people have 
somehow interacted with each other, such as co-authoring a 
paper or leaving comments on each others’ blog. 

For each of these data sources SONAR computes a 
normalized relationship score in the range of [0,1] between 
two people, where 0 indicates no relationship and 1 
indicates the strongest relationship. These scores are then 
aggregated to a unified single score by equally weighting 
each data source [8]. Given a user u, SONAR returns a list 
of users related to u and their aggregated relationship score 
with u, ordered by this score. The number of interactions in 
each data source is used to provide explanations. For 
example, from the publication database an explanation 
could be “You two have co-authored 2 papers”. 

In essence, SONAR incorporates all information available 
within IBM that implies an explicit acquaintance between 
pairs of people, and ranks them based on the strength and 
frequency of their interactions on record. While SONAR 
runs as a service in IBM, the above algorithm can be easily 
replicated in other applications. As a minimum basic data 
source, enterprises typically have a corporate directory with 
an organizational chart. But SONAR can be extended with 
additional data sources through a plug-in model. With the 
data sources configured within IBM, SONAR was able to 
provide relationship information for almost all users. 
However, after eliminating existing friends, we were able to 
create at least one recommendation for 87.7% of all 
Beehive users. 

EXPERIMENT I: PERSONALIZED SURVEY 
We conducted a personalized online survey on Beehive in 
order to get a detailed assessment and comparison of our 
four algorithms. We also hoped to understand our users’ 
needs, and in particular, whether recommending people is a 
desired feature and how many users hope to discover new 
friends on Beehive. 

Methodology 
We invited 500 active users to participate in a within-
subject study, i.e. every user was exposed to all four 



algorithms. Subjects were randomly selected from all users 
satisfying the following criteria: First, they must have 
logged into Beehive during the week preceding the start of 
the survey. Second, they must have enough data in Beehive 
so that we can generate at least 10 recommendations using 
every algorithm. Third, users must have at least 5 words in 
their associated content that can be used by the content 
based algorithms, and 3 friends each for the FoF algorithm, 
so that there is a reasonable amount of data for all 
algorithms to work with. As shown in Table 1, different 
algorithms have small overlap in their top 10 
recommendations for the 500 selected users except for the 
two content-based algorithms, which use the same content 
matching technique. 

 Content CplusL FoF SONAR 

Content  52.8% 1.8% 8.3% 

CplusL   3.3% 9.6% 

FoF    13.1% 

Table 1. Overlap ratios between recommendations generated 
by different algorithms.  

The survey for each selected user, presented on a single 
web page, contained 12 recommendations in total, 3 from 
each algorithm.3 To control for ordering effects, individual 
recommendations were presented in a regular and mirrored 
Latin square sequence, each sequence started randomly 
with a different algorithm. The 12 recommendations we 
presented were selected from top ranked recommendation 
candidates generated by each algorithm. To avoid duplicate 
recommendations due to overlap between algorithms, if a 
candidate had already been recommended by another 
algorithm before, the next highest ranked candidate from 
the same algorithm would be shown instead.  

For each recommendation, we showed a photo, the job title 
and the work location of that person, as well as the 
explanation generated by the algorithm. The user could also 
click a link to view the profile of the recommended person 
in a separate window. For each recommendation, we asked 
the following questions: 

• Do you already know this person? [yes/no] 
• Is this a good recommendation? [yes/no] 
• Did the reason we chose this person help you make your 

decision? [yes/no] 
• What action would you like to take? [single choice] 

o Connect to this person 
o Be introduced to this person 
o Nothing 

• Additional feedback? [open ended] 

                                                           
3 Note that all of the algorithms filtered away the people a 
user is already connected to. 

We also asked users more general questions at the 
beginning and the end of the survey, regarding whether 
finding people to connect to is difficult, their interest in 
meeting new people on the site, the kind of information that 
would make them more likely connect to someone they do 
not know yet, and whether they consider people 
recommendations a desired feature for the site. 

Results 
Of the 500 users, 415 logged in and 258 submitted their 
survey form. The recommendation response data was 
analyzed on a per user basis, i.e. we first average each 
user’s responses for each algorithm then summarize the 
responses over all users who have at least one valid 
response for every algorithm. Because of missing responses 
in the survey, the actual sample size of users for some 
questions dropped to 230.  

Understanding users’ need 
We argued that people recommendations on social 
networking sites can help users find the right people to 
communicate with or connect to. In our survey 95% of the 
users considered people recommendations to be useful and 
would like to see them as a feature on the site. Our survey 
also quantitatively confirms DiMicco et al [3] in that users 
on Beehive are interested in connecting to weak ties and 
meeting new people: 61.6% said they are interested in 
meeting new people, 31% said maybe and 7.4% said no. 

When asked what kind of information would make them 
more likely to connect to an unknown person, 75.2% of the 
users chose common friends, 74.4% said common content 
(e.g. photos, lists, interests, etc.), 39.2% indicated 
geographical location of the person, 27% said the division 
within IBM, and 14.5% chose “other” 4 . Information 
typically listed as “other” included work/business 
information (e.g. “customers in common” and “business 
effort that is similar or relevant to my team's”) and 
skills/expertise (e.g. “reputation in their subject matter” and 
“they have expressed a skill in an area I could use help 
discovering/learning”). According to the data, friends and 
content in common play an important role in decision 
making and thus, support our design of the content-plus-
link algorithm. 

Known vs. unknown, Good vs. not good 
For every recommendation, users were able to indicate 
whether or not they already knew that person and they 
could rate the recommendation as good or not good. Figure 
1 shows a breakdown of the results by algorithm. The 
percentages of unknown people recommended by each 
algorithm are shown above the horizontal center line and 
the percentages of known people below. The chart also 
shows the percentages of good versus not good in two 

                                                           
4 Users were able to select more than one and up to five 
types of information including “other”. Users chose 2.3 
items on average. 



different colors, broken down by known and unknown 
recommendations. 

As we originally expected, the pure content matching 
algorithm recommends mostly unknown people. SONAR, 
which relies heavily on explicit relationship data, 
recommends mostly known people. On average each user 
already knows 85.9% of the people recommended by 
SONAR, followed by the friend-of-friend algorithm with 
60.6%. In contrast, users only know 36.2% of the 
recommendations from the content-plus-link algorithm, and 
22.5% of those from the content matching algorithm 
(F[3,711] = 213.5, p < .001). Post-hoc comparison (LSD) 
showed that the percentages for each algorithm were 
significantly different from each other (p < .001). These 
results confirm the intuition that the more explicit 
relationship information an algorithm leverages, the more 
known people it would recommend. 
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Figure 1. Known vs. unknown, Good vs. not good. 

Overall, our users rated 82.5% of the SONAR 
recommendations as good, followed by 79.2% for the 
friend-of-friend, 56.7% for the content-plus-link and 49.6% 
for the content matching algorithm (F[3,705] = 69.1, p < 
.001). While there was no significant difference between 
SONAR and friend-of-friend, post-hoc comparison (LSD) 
showed that they have a significantly higher percentage of 
good recommendations than the two content-based 
algorithms (p < .001). Also, the percentage of “good” 
recommendations from the content-plus-link algorithm is 
significantly higher than basic content matching (p < .005). 
Overall, this suggests that the more known 
recommendations an algorithm produces, the more likely 
users are to consider those recommendations good. 

When looking only at recommendations of known people 
(Figure 1, below the center line), we can see that most of 
those recommendations were considered good for all 
algorithms (around 90% for each algorithm). In other 
words, users considered recommendations of known people 
to be good, no matter how they were computed and what 

kinds of explanations were provided. Indeed, user feedback 
for recommendations rated as good and known, across 
algorithms, cited not the specific explanation provided but 
how good the recommendation was based on how well they 
knew the person: “Very nice catch here. I know [name] 
from when he first interviewed at Watson (and went to 
Almaden),” “[name] is a good friend and previous 
colleague I would like to stay connected with.”  

In contrast, the situation for unknown recommendations is 
very different in that more recommendations are considered 
to be not good. The number of “not good” 
recommendations increases from right to left, i.e. the 
content-based algorithm produces the highest number of 
recommendations not considered good. One could argue 
that the more strangers an algorithm recommends, the more 
likely users will reject or not like the recommendations. We 
did sometimes find recommendations being rated as not 
good for this reason alone: “I’d prefer to know them before 
being introduced to another stranger in the same city,” and 
“I generally want to know someone at least by reputation or 
interaction before making a connection.”  

However, not knowing a person was not always an obstacle 
to rating a recommendation as good. The content matching 
algorithm also produced the highest number of good 
unknown recommendations, i.e. an average user found 
30.1% recommendations to be both good and unknown at 
the same time. Content-plus-link and friend-of-friend 
algorithms followed with 24.9% and 23.8%, respectively, 
followed by SONAR with only 6.6% good unknown 
recommendations (F[3,705] = 37.1, p < .001). Post-hoc 
comparison (LSD) showed that the content matching had a 
significantly higher percentage than the other three 
algorithms (p < .05), and SONAR had a significantly lower 
percentage than the other three (p < .001).  

While unknown recommendations were not consistently 
rated good, users did provide positive feedback about some 
unknown recommendations (“good find, I'll comment on his 
favorite music hive5” and “Connected to lots of the same 
folks; I should know her!” ), leaving us unable to draw a 
simple conclusion as with known recommendations. 
Therefore, we analyzed the user feedback looking 
specifically for themes related to “good” recommendations. 
Users found all kinds of recommendations and explanations 
valuable: “I find the recommendations based on tags (or 
keywords?) or non-direct shared connections most 
interesting” and “Useful – especially the mutual 
connections links.” Users also confirmed our intuition that 
explanations were not only helpful but necessary: “I 
connect to people for a wide variety of contexts but not just 
because…,” “Always state why you are recommending 
someone,” and “I have to have a legitimate reason to 
connect to someone.” 

In particular, there seemed to be a minimum threshold of 
information necessary to rate a recommendation as “good.”, 
and we heard this when that threshold was not met: “Her 



profile did not have enough interesting items for me to do a 
‘cold call’ at this time” and “The keywords in common 
caused me to at least look at his profile. We share some 
interests, but not enough to get connected at this time. Good 
try.” All algorithms suffered from this at times, whether by 
not providing enough information (“the matching of only 
one keyword is a bit low for making recommendations, isn't 
it?”) or not enough information of value (“I am not close 
with those 5 mutual connections…” ). The keywords in 
particular seemed to suffer from the latter and were often 
considered “random”, “irrelevant,” “WWWAAAAYYYY too 
much noise,” or “too generic to be helpful.” Nevertheless, 
the users spoke more highly of keywords when they were 
coupled with network relationships, as in the Content-Plus-
Link algorithm: “Similar to [..] Facebook [..] This is richer, 
since it ties into common interests/tags,” and “At least two 
keyword matches (with keywords that really interest me) 
and only one degree of separation -- that to me is a good 
connection.” And more generally of their need to be 
coupled with more information: “recommendations must go 
beyond tagging and be multi-dimensional.” Obviously this 
threshold is different for different people, as one user said, 
“Do NOT use obvious connections, i.e. People Management 
Relationships” while another thinks “Org[anizational] 
structure recommendations are great.” But, in general, 
users seemed to want the recommender to provide as much 
potentially useful information as possible, of all types, to 
help them decide whether a recommendation was good. 

Immediate actions resulted from recommendations 
For every recommendation, users were also able to take an 
immediate action as described in our survey above. Figure 2 
shows the percentages of connection and introduction 
actions for each algorithm per user compared to the overall 
percentage of recommendations rated good. 

As expected, the number of actions taken on 
recommendations for different algorithms follows the same 
trend as the number of good recommendations. The 
majority of good recommendations resulted in either direct 
connection or introduction requests. On average 66.0% of 
the recommendations from the SONAR, 57.1% from the 
friend-of-friend, 42.4% from the content-plus-link and 
32.8% from the content matching algorithm resulted in 
actions (F[3,705] = 63.8, p < .001). Post-hoc comparison 
(LSD) showed that every algorithm is different from all 
others (p < .001). 

Note that for all algorithms, the percentage of 
recommendations resulting in actions is consistently lower 
than the percentage of good recommendations, i.e. a good 
recommendation does not necessarily result in an action. 
There are a number of possible explanations. For example, 
users might consider known people as good 
recommendations simply because the algorithm found a 
known person. However, that does not necessarily mean 
that a user would consider the person a friend. Or, as for 
unknown people recommendations, users might find them 
good but nonetheless not be interested in contacting to 

those people at that moment. Qualitative feedback from our 
survey is supportive of both explanations: “Lots of people I 
know through being on the same program I don’t interact 
with enough to want them in my contacts list,” or “Because 
of the strength of mutual connections, I feel this is a good 
recommendation. I simply do not choose to connect at this 
time.” And that the threshold for an action is even higher 
than that for rating a recommendation as good: “I’d be 
interested in checking out his profile, but probably not in 
connecting,” and “I have a large network already. It is 
difficult to keep up with existing critical contacts. Need to 
be very judicious in discerning value proposition of new 
contacts.” 
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Figure 2. Good recommendations that resulted in actions. 

We looked at individual feedback for recommendations 
marked as “good” or “known” that did not result in a 
connection action, as well as other “anomalous” responses 
such as marking a recommendation as known but not good. 
We found a variety of common reasons across these cases, 
including many where users said the recommended person 
had resigned, retired, or otherwise left IBM. There were 
other cases where those higher in the organizational 
structure were obviously known, but connection was not an 
option: “I wouldn’t connect to an executive without a 
personal relationship or a compelling reason,” “I feel 
awkward connecting to my 2nd line,” and “This person is 
[an] influential senior executive – using this criteria for 
connection would result in 1000’s of people having access 
to this person.” Some users described how they knew the 
recommended people, and more specifically knew those 
users have a reputation for “collecting colleagues” on 
Beehive, and thus decided not to connect. 

We had originally sought to offer the introduction option to 
facilitate friending, especially for recommendations of 
unknown people. Our data show that most introduction 
requests were indeed made to unknown people. It is 
interesting to note that the ratio of introduction versus 
connection actions is higher for algorithms that produce a 
high number of unknown people recommendations. From 
right to left in Figure 2, 23.5% of all actions taken on the 
content matching algorithm were introductions, followed by 
17.2% for content-plus-link, 12.8% for friend-of-friend, and 
4.2% for SONAR. And we did receive positive feedback in 



cases in which introductions were used: “Neale has one of 
those job roles that mean he might come in handy to know 
someday…,” “This is an interesting recommendation, I 
would like to see how this progresses,” and even “I’m 
coming around to the idea that Beehive could be a decent 
mentor connection system.”  

However, the low usage of introductions and additional 
user feedback suggests that even the two actions we 
offered, introduction and connection, were not granular 
enough. Users suggested a number of alternate actions for a 
good person recommendation: “I wouldn’t mind being able 
to save people of interest that I could work on meeting 
through more conventional means,” “maybe have a way to 
separate my ‘top shelf’ connections from more casual 
ones,” or “Need some method to specify interesting 
candidates – kind of like virtual speed dating.” Many 
suggested the use of a third person: “I would prefer if some 
one I know introduces a new person to me (e.g. Linked In),” 
or “Potentially a good recommendation, but I would not 
connect to her [..] without a person in common that 
recommended her to me.” 

One final theme that emerged was that the recommender’s 
quantitative assessment might be overly strict in terms of 
success. For cases where a recommendation was rated as 
not good, unknown, and produced no action it would be 
judged as a failure. However they were not necessarily seen 
as such by some users who were merely undecided at rating 
time (“I do not know whether I will connect to this person 
or not,”). And particularly that the recommendation might 
be useful at a later time: “Might be a good connection in the 
future for job networking,” or “It would be a good 
recommendation if I had a need for such a person.” 

EXPERIMENT II: CONTROLLED FIELD STUDY 
The first experiment invited users to participate in a survey.  
In our second experiment, we wanted to test the algorithms 
in a more natural setting.  We deployed the four different 
recommender algorithms to a larger group of users on the 
site. The deployment of different recommenders allowed us 
to investigate how they can actually help people find 
friends during daily usage. And by comparing these users to 
a control group that did not receive recommendations we 
can test their effectiveness in increasing the number of 
friends and their impact on overall user activity on the site. 

Methodology 
For this experiment we randomly selected 3,000 users using 
similar criteria as in Experiment I. This time we required 
users to have logged into Beehive during the preceding 60 
days instead of 1 week. The experiment was carried out as a 
between-subjects study during a 3-week period. We divided 
the 3,000 users randomly into 5 groups, each with 600 
users. Four of the five groups were experimental groups, 
each one getting recommendations from a single algorithm 
only, while the remaining 600 subjects were a control group 
that did not get any recommendations. As in Experiment I, 
we guaranteed at least 10 recommendations of each type for 
all users, though those in the experimental groups only saw 

recommendations of one type. Also, whenever possible we 
computed more than 10 recommendations, up to a total of 
30 for each user.  

During the experiment, users in the experimental groups 
saw a new recommender widget on their Beehive home 
page, as shown in Figure 3.  

 
Figure 3. People recommender widget on Beehive showing a 

recommendation generated by the CpL algorithm. 

The widget shows one recommendation a time, starting 
from the highest ranked ones. Each recommendation shows 
photo, job title, and work location of the person and the 
explanation generated by the algorithm. Users can also 
open a separate window to check the profile of the person. 
Users can respond to the recommendation by choosing one 
of three actions: connect to the person, ask to be introduced, 
and decline by choosing “not good for me”. After 
responding, the widget will refresh and show the next 
recommendation. The widget also refreshes each time a 
user visits their home page to increase their chances of 
viewing different recommendations. In the email messages 
sent to users as part of their normal daily/weekly updates of 
Beehive, we included a personalized recommendation as well 
as a link that would take them to their home page and show 
that recommendation, allowing them to respond. 

To balance the extra attention that recommendations get by 
occupying prime real estate in the experimental groups, we 
advertised various friending features and actions in the 
control group at the same place in the user interface and 
through email notifications. 

Results 
Of the 3,000 users, 1,710 users logged in during the 
experiment. 620 users of those in the experimental groups 
participated by responding to 7,451 recommendations. Of 
those 620, 122 were from the content matching group, 131 
from the content-plus-link group, 157 from the friend-of-
friend group, and 210 from the SONAR group. 

Effectiveness of recommender algorithms 
We measured user responses to our recommendations in a 
way similar to our survey. As expected, the per-user 



percentage of recommendations resulting in connection 
actions for different algorithms (shown in Table 2) follows 
the same trend as in the survey (F(3,413) = 17.6, p < .001). 
Post-hoc comparison (LSD) showed that SONAR again has 
a significantly higher connection action rate than the other 
three algorithms (p < .005). The connection action rate of 
the friend-of-friend algorithm is also significantly higher 
than the content matching algorithm (p < .001). 

SONAR FoF CplusL Content 

59.7% 47.7% 40.0% 30.5% 

Table 2. Recommendations resulting in connect actions. 

It is worth noting that, in contrast to the survey, users rarely 
chose the introduction option as a response - less than one 
percent of the 7,451 responses were introduction requests. 
One possible reason for the difference could be that, while 
we explained directly the introduction feature in the survey, 
here users had to mouse-over the “what is this?” link as 
shown in Figure 3 to see the explanation. It seems that 
instead of mousing-over as we had hoped, many chose not 
to bother and simply ignored the feature. 

Separate from responding, users can also click a link in our 
widget to view the profile of the recommended person. 
How often users did this is interesting insofar as it might 
indicate the interestingness and possibly the novelty of a 
recommendation, since a user may choose not to view the 
profile because of either a lack of interest or familiarity 
with the person. Because the content matching algorithm 
recommends mostly unknown people, we expected a higher 
number of such views for that algorithm compared to other 
algorithms. Indeed, for each user 8% of content matching 
recommendations resulted in such immediate profile views 
compared to only 2.9% for SONAR. The difference in 
view-profile percentage is significant (F[3,605] = 7.0, p < 
.001). Post-hoc comparison (LSD) showed that the content 
matching and CplusL algorithms have significantly higher 
percentages than the other two (p < .05) 5. 

Impact of people recommendations 
The immediate goal of recommending people on a social 
networking site is to increase a user’s network of friends. 
We compared the number of friends before and after the 
experiment in each group and found a significant group x 
before/after interaction effect (F[4,2995] = 15.0, p < .001). 
Post-hoc comparison (LSD) showed that all our algorithms 
significantly increased the number of friends compared to 
the control group. SONAR was most effective with an 
increase of 13% (3.64 more friends on average per user), 
followed by the other algorithms as shown in Figure 4. We 

                                                           
5 Note that in order to reduce noise in the estimate of per-
user connection rate, we excluded users with less than 4 
recommendation responses in its calculation. Similarly for 
per-user view-profile rate, users who have been shown less 
than 4 recommendations were also excluded. 

also saw an increase of 5% (1.27 more friends on average 
per user) in the control group, which can possibly be 
attributed to the advertisement of friend-related features. 

We had also expected that people recommendations would 
impact user activity on the site in general. Indeed, when 
comparing the number of page views on Beehive during the 
3-week period of the experiment with the 3-week period 
before the experiment, we found that users in experimental 
groups viewed an average of 13.7% more pages during the 
experiment (3.13 more page views), while control group 
users viewed 24.4% less pages during the experiment (6.34 
less page views). Note that the overall page views across 
the entire site dropped by 27.5% during that period. We 
have found the experiment/control x before/after interaction 
effect to be significant (F[1,2998] = 9.2, p < .005), i.e. 
people recommendations were effective in increasing 
browsing activity of users. We also observed an increase in 
content and comment creation in the experimental groups 
compared to the control group, although the number of 
items created in the 3-week period per user was too low to 
observe any significant difference.  
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Figure 4. Increase in number of friends. 

DISCUSSION AND CONCLUSION 
The results from both the personalized survey and the large 
field study on Beehive, show that the four algorithms we 
compared are effective in making people recommendations 
and can significantly increase the number of friends of a 
user on the site. This not only furthers our understanding in 
practical social matching systems [21], but also enables us 
to understand the effectiveness and characteristics of 
different information sources and algorithms for the 
purpose of people recommendation. 

When comparing algorithms, we can roughly put our four 
algorithms into two categories. Those based more on social 
relationship information (FoF and SONAR), and those 
based more on content similarity (Content and CplusL). In 
our experiment, relationship based algorithms outperform 
content similarity ones in terms of user response. This result 
could partly be attributed to the fact that both content 
similarity algorithms employ a simple keyword matching 
scheme, whereas SONAR takes advantage of the rich 
relationship data in IBM that might not be available to that 
extent elsewhere. As a result, in cases where more 
sophisticated content similarity can be computed and 



relationship information is less available, the advantage of 
relationship-based algorithms might not be as large as 
observed in this work. 

The results described in this paper also show that 
relationship-based algorithms are better at finding known 
contacts whereas content similarity algorithms were 
stronger at discovering new friends. As shown in Figure 1, 
the more relationship information an algorithm uses the 
more known contacts and the less new friends it discovers. 
In general, this suggests that on social networking sites, 
relationship-based algorithms would perform particularly 
well for newer users in finding known offline contacts that 
have not yet been added to their online social network. In 
particular, FoF can expand their contact list from a few 
existing contacts, while a SONAR-like aggregation can take 
advantage of additional data, including commenting, 
tagging, or organizational relationships, which are often 
available within organizations. However, for more 
established users, relationship-based algorithms would 
either run out of people to recommend or base themselves 
on social relationships that are too weak to be meaningful. 
In contrast, content similarity algorithms will still be able to 
find new interesting people. Hence, one potentially 
promising way to combine the strengths of both types of 
algorithms is to leverage relationship based algorithms 
initially to build up a network quickly by finding known 
people and, as the network grows, complement them with 
content similarity based algorithms. Such an approach 
might even have an additional benefit of increasing new 
users’ trust in the system because, as indicated in [20], 
people trust recommenders more if they see familiar items 
recommended. 

For future research, beyond developing better recommender 
algorithms, one could look into new applications of people 
recommendations on social networking sites, such as 
leveraging them for recommending content, based on the 
intuition that “if I like that person I might also be interested 
in his/her content.” Another possibility is to investigate 
whether people recommendations can help bootstrap 
newcomers, addressing adoption issues of social 
networking sites.  
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