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Abstract

Investigates the relationship between three factors of working memory (storage and processing, relational integration, and
supervision) and four factors of intelligence (reasoning, speed, memory, and creativity) using structural equation models. Relational
integration predicted reasoning ability at least as well as the storage-and-processing construct. Supervision, measured as specific
switch costs, was not related to intelligence, but general switch costs were moderately correlated to the reasoning factor. The results
question the view of working memory as a device for storage and processing, and the executive-attention account of working
memory. They are better explained by theories describing working memory as a system for building relational representations
through temporary bindings between component representations.
© 2008 Elsevier Inc. All rights reserved.
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Measures of working memory capacity (WMC) have
been shown repeatedly to be excellent predictors of
intelligence, in particular reasoning ability (for reviews
see Ackerman, Beier, & Boyle, 2005; Conway, Kane, &
Engle, 2003; Kane, Hambrick, & Conway, 2005;
Oberauer, Schulze, Wilhelm, & Süβ, 2005). We have
proposed a model of the factorial structure of WMC that
distinguishes three cognitive functions: concurrent stor-
age and processing, relational integration (previously
called coordination), and supervision (Oberauer, Süβ,
Wilhelm, & Wittmann, 2003). The first function, con-
current storage and processing, captures the commonly
accepted definition of WMC. It is usually assessed with
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complex span tasks in which participants must remem-
ber a number of items over a brief period, and perform a
processing task in between or after encoding the me-
mory items. Relational integration refers to the ability
of building new relations between elements and thereby
creating structural representations (Waltz et al., 1999).
The elements can be held in memory, but can also be
given perceptually. Examples are the construction of a
mental model of a spatial array from a description
(Byrne & Johnson-Laird, 1989), grasping an interaction
from a statistical graph (Halford, Baker, McCredden, &
Bain, 2004), or “seeing” a constellation in a collection of
stars. Supervision refers to the control of cognitive pro-
cesses by goal representations; it includes the prevention
of distraction, the setting of response criteria, and the
shifting of task sets. These control processes are usually
subsumed under the concept of executive functions.
functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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In a comprehensive factor-analytic study (Oberauer
et al., 2003) we found the storage and processing factor
and the relational-integration factor (called “coordina-
tion capacity” in that paper) to be highly correlated but
distinguishable. Supervision, as measured by a task-set
switching paradigm (Rogers & Monsell, 1995), was
only weakly correlated with the other two factors. This
result led us to suggest that WMC should be concep-
tualized as consisting of two closely related aspects,
concurrent storage and processing and relational in-
tegration; supervision is better regarded as a separate
construct.

The purpose of this article is to investigate how the
two functional factors of WMC and the supervision
factor relate to factors of intelligence. Previous work on
the WMC-intelligence relation has nearly exclusively
used storage-and-processing tasks to measureWMC (for
an exception see Süβ, Oberauer, Wittmann, Wilhelm, &
Schulze, 2002). When defined in this way, WMC can
account for approximately half the variance in tests of
reasoning or fluid intelligence (Kane et al., 2004).
We believe that measuring WMC only through storage-
and-processing tasks is an unfortunate narrowing of the
empirical representation of the construct. One goal of
this article is to redress this unwarranted restriction of
scope.

We predict that the relational-integration factor
contributes to the prediction of reasoning ability over
and above conventional storage-and-processing tasks.
This prediction is justified by two converging theore-
tical arguments. One line of argument starts from an
analysis of demands posed by typical working memory
tasks (Oberauer, 2005b). These tasks require short-term
maintenance of a small set of elements and of relations
between elements. For example, remembering a list
of words in order requires remembering the words, and
each word's relation to a list position. Other tasks re-
quire memory for digits and their relations to spatial
locations (e.g., the “memory updating” tasks used by
Oberauer, Süβ, Schulze, Wilhelm, & Wittmann,
2000). Short-term memory for new, arbitrary relations
requires a mechanism for quickly establishing and up-
dating temporary bindings. Based on experimental work
(Wheeler & Treisman, 2002) and simulations of tem-
porary bindings in neural networks (Raffone & Wolters,
2001) we argue that the brain has a limited capacity for
upholding multiple bindings simultaneously. We believe
that this limiting factor is reflected in working memory
capacity (Oberauer & Kliegl, 2006).

Our second line or argument derives from an analysis
of demands posed by reasoning tasks. We found that
reasoning tasks have in common the requirement to
Please cite this article as: Oberauer, K. et al., Which working memory
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build new relational representations (Oberauer, Süβ,
Wilhelm, & Sander, 2007). For example, inductive rea-
soning tasks such as series completion require that
people construct a representation of the relations be-
tween elements of the series, and transfer that repre-
sentation to a later segment of the series to generate the
next element. Deductive reasoning tasks require that
people construct mental models of the combined pre-
mises to derive a valid conclusion (Johnson-Laird,
1999). Planning requires the construction of hierarchical
structures of goals and sequential structures of actions.
To construct new relational representations, elements
must be bound to each other, or to argument roles in
relations (Halford, Wilson, & Phillips, 1998). Therefore,
a limit on the number bindings that can be upheld
simultaneously posits a limit on the complexity of new
relational representations, and thereby limits our reason-
ing ability. We believe that that limit underlies the
common variance of WMC tasks and reasoning tests. In
the present study we test the hypothesis that tasks that
measure relational integration directly predict reasoning
ability at least as well as conventional storage-and-
processing tasks.

Our hypothesis about why WMC is closely related to
reasoning can be contrasted with two other popular
views. One is that WMC tasks and reasoning tasks have
in common the requirement of simultaneous storage and
processing of information (e.g., Case, 1985; Daneman
& Carpenter, 1980). To test this view, we compare the
predictive power of relational-integration tasks with a
storage component (thus matching the description of
“simultaneous storage and processing”) with that of
parallel tasks without a storage component. The storage-
and-processing view predicts that only the tasks with a
storage component should be good predictors of rea-
soning, whereas we predict that the storage demand
makes little difference for the predictive power of rela-
tional-integration tasks for reasoning tests.

The other alternative is the hypothesis that WMC and
fluid intelligence both reflect the efficiency of executive
attention, that is, the ability to maintain goals and goal-
relevant information in the face of distraction (Kane &
Engle, 2002). The task-switching paradigm represented
by our supervision factor reflects one aspect of exe-
cutive attention. It does not, in contrast, require the
construction of complex new relations. Thus, whereas
the executive-function view of WMC predicts that the
supervision factor should contribute substantially to the
prediction of reasoning ability, our view does not en-
gender that prediction.

Friedman et al. (2006) have recently found that only
one of three factors reflecting executive functions, the
functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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one called updating, predicts measures of fluid intelli-
gence. The updating factor is formed by tasks that are
virtually identical to tasks that emerged as markers of
WMC in a psychometric study (Oberauer et al., 2000),
and therefore we regard the updating factor as a WMC
factor. Neither the task-set switching factor nor the in-
hibition factor predicted fluid intelligence in the Fried-
man et al. study. We investigate whether this negative
result can be confirmed for task-set switching as a pre-
dictor, using a differentiated set of intelligence factors as
criteria.

1. Method

The present data come from the study first reported in
Oberauer et al. (2003). That report focused exclusively on the
structure of WMC.

1.1. Participants

Participants were 135 students from the University of
Mannheim. Their mean age was 25.8 years (SD=3.8), 44%
were female. Four participants were excluded due to missing
data.

1.2. Materials and procedure

1.2.1. WMC and supervision tasks
There were four tasks for assessing concurrent storage and

processing (SP), eight tasks for measuring relational integra-
tion (RI), and four tasks for measuring supervision (SUP),
described in detail in Oberauer et al. (2003). All tasks were
computer based. The SP tasks all followed the same schema:
after sequential presentation of a variable number of items to
be remembered in correct order, participants worked on an
unrelated choice reaction time (CRT) task for 5 s, trying to
complete as many trials as possible. After that, the memory
items were recalled on an answer sheet. There was one task
using words, one using numbers, and two tasks using different
kinds of visual–spatial material (arrows and partially filled
matrices). The CRT tasks always used material from the same
content domain as the memory material. Performance was
scored by counting the number of items recalled in their
correct positions.

There were four pairs of RI tasks, one using words, one
using numbers, and two using visuo-spatial materials. Each
task was realized in a no-memory version, in which the ele-
ments to be integrated were continuously visible on the screen,
and a memory version in which some or all of the elements
were presented only briefly and then had to be remembered. In
the no-memory version of the verbal task, called monitoring-
verbal, participants saw one word in each cell of a 3×3 grid.
Every 2 s a randomly chosen word was replaced by a new
word. Participants had to press the space bar if three words in a
row, a column, or a diagonal rhymed with each other. In the
memory version, the grid was reduced to a cross with 5 cells,
Please cite this article as: Oberauer, K. et al., Which working memory
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and each word was removed after being presented, so that
participants had to remember the last word presented in each
cell, and decide whether these words formed a rhyming row or
column. The numerical tasks, monitoring-numerical, followed
the same procedure. Here, three-digit numbers were presented
instead of the words, and participants had to press the space bar
when they detected a row, column, or diagonal in which the
numbers shared the last digit. Performance in the monitoring
tasks was scored as the number of hits minus the number of
false alarms.

The first spatial task, flight control, involved monitoring
the trajectories of five to nine triangles (representing airplanes)
moving in different directions across the screen. Whenever one
airplane was about to crash into another plane or a mountain
(represented by brown patches) participants were to stop the
video and redirect one airplane. Each stop came at a small cost,
but each lost airplane incurred a large cost, so that a good score
could be obtained by intervening if and only if necessary to
prevent crashes. In the memory version, the mountains were
displayed only briefly before onset of the movements in each
trial and had to be remembered; in the no-memory version they
remained visible. Performance was scored by counting the
number of plane crashes (reverse-coded so that higher scores
reflect better performance). For the second spatial task, finding
squares, the screen was covered by a 10×10 grid. In the no-
memory version, between eight and twelve dots were placed in
randomly selected cells. Every 1.5 s two of the dots moved to
randomly selected new locations. Participants had to press the
space bar whenever four dots formed a square. In the memory
version, participants saw between 6 and 10 dots in a sequence
and then had to decide whether four of them formed a square if
they were visible simultaneously. Performance in the no-
memory version was scored as hits minus false alarms, and
performance in the memory version was the number of correct
decisions across 20 trials.

The RI tasks were all constructed to tap the ability of
mentally building and integrating multiple relations between
given elements (i.e., the rhyming relations or final-digit iden-
tity relation in the monitoring tasks, the spatial relations be-
tween airplanes and mountains in flight control, the relations
between dots in finding squares). These tasks not only require
the detection of pair-wise relations between given elements,
but the integration of several relations into the representation
of a new configuration. The manipulation of memory demand
served to investigate whether a demand on the storage function
of working memory was a necessary condition for capturing
the source of variance that WMC tasks have in common with
each other and with intelligence measures.

Supervision was assessed by indicators of task-set switching
costs computed from four versions of the paradigm of Rogers
andMonsell (1995). Stimuli were presented in one quadrant of a
2×2 grid, with successive stimuli moving clockwise through the
grid. Participants performed one of two speeded two-choice
tasks on each stimulus; one task had to be used for stimuli in the
upper two quadrants and the other for stimuli in the lower two
quadrants. Thereby, every second reaction involved a task
switch. In addition to these mixed-task blocks, the two tasks
functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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were also administered in two separate pure blocks. Specific
switch costs were computed as difference in log-transformed
reaction times (RTs) between switch and no-switch trials in the
mixed blocks. General switch costs were computed as the
difference between RTs in no-switch trials and mean RTs in the
two corresponding pure blocks (again after log-transformation of
RTs). There was one mixed block and two pure blocks for each
of four types of materials, words, numbers, arrows, and partially
filled matrices.

1.2.2. Intelligence test
We used the test for the Berlin Intelligence Structure (BIS)

model (Jäger, Süβ, & Beauducel, 1997; for an English de-
scription see Süβ & Beauducel, 2005). The test consists of a
large number of different task types, classified according to
two dimensions. On the content dimension, verbal, numerical,
and visual–spatial contents are distinguished. On the func-
tional dimension there are four factors, reasoning, creativity,
memory, and speed. Each of the 12 cells of the model was
tested by three task types. The task types were administered in
an order that maximizes changes between contents and func-
tions; each task type consisted of one or two pages in a booklet
and was time limited.

1.2.3. Data treatment
Before computing general and specific switch costs, RTs

from correct responses were logarithmically transformed, so
that switch costs reflect proportional increases in RTs. Switch
Fig. 1. Left side: Structure of SEM model for intelligence. Large ovals repr
empty ovals represent error terms. Right side: Structure of SEM model for w
integration, and supervision (Sup). The manifest variables are Mon = monito
cost; suffixes: v = verbal, n = numeric, s1 and s2 refer to the two kinds of sp
switch costs as manifest variables for supervision, and with composites of me
integration (second column in Table 2).
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costs were then z-transformed and reverse-coded so that high
values reflect better performance. All scores from the WMC
and the BIS tasks were z-transformed. BIS task scores were
combined into three composite scores for each functional
category (i.e., reasoning, creativity, memory, and speed). Each
composite consisted of one task from each content domain
so that content-related variance was suppressed through ag-
gregation (Wittmann, 1988). These composites were used as
manifest variables in the structural equation models. For rela-
tional integration we computed four composites by averaging
the z-scores from the memory and the no-memory version of
each task type. Reliability estimates and descriptive statistics
of the WMC data are given in Table 2 of Oberauer et al.
(2003).

2. Results

We analyzed the data through a series of structural equation
models (the full correlation matrix is given in the Appendix A).
First, separate measurement models for intelligence and for the
WMC and supervision variables were established. Intelligence
was modeled by four correlated factors representing the
functional factors of the BIS (Fig. 1, left). The measurement
model for WMC and supervision (Fig. 1, right) was the one
presented in Oberauer et al. (2003). We explored two ways of
specifying the supervision factor, using either the four general
switch cost scores or the four specific switch costs as
indicators. Moreover, we explored three versions of specifying
esent latent factors, rectangles represent manifest variables, and small
orking memory. The factors are storage and processing (SP), relational
ring task, Fcontr = flight control, Fsq = finding squares, Swi = switch
atial material. The parameter estimates are for the model with specific
mory and no-memory task versions as manifest variables for relational

functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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Table 1
Fit statistics for structural equation models

Model Chi2 (df ) CFI RMSEA SRMR

Intelligence 77 (48) .954 .068 .063
WMC (RI-full, SSwi) 55 (49) .984 .031 .053
WMC (RI-full, GSwi) 53 (49) .988 .025 .057
WMC (RI-no mem, SSwi) 73 (49) .931 .062 .060
WMC (RI-no mem, GSwi) 60 (49) .960 .042 .059
WMC (RI-mem, SSwi) 46 (49) 1.0 0 .049
WMC (RI-mem, GSwi) 54 (49) .984 .027 .060
Intelligence+WMC

(RI-full, SSwi)
318 (229) .925 .055 .069

Intelligence+WMC
(RI-full, GSwi)

321 (229) .919 .056 .068

Intelligence+WMC
(RI-no mem, SSwi)

344 (229) .899 .062 .073

Intelligence+WMC
(RI-no mem, GSwi)

331 (229) .905 .059 .070

Intelligence+WMC
(RI-mem, SSwi)

298 (229) .938 .048 .068

Intelligence+WMC
(RI-mem, GSwi)

319 (229) .917 .055 .068

Note: WMC (SSwi) = working memory capacity model including
supervision factor defined by specific switch costs; WMC (Gswi) =
version with general switch costs. RI-full = relational-integration
factor defined by full set of tasks; RI-no mem = relational-integration
factor defined by no-memory task versions only, RI-mem = relational-
integration factor defined by memory task versions only. Correspond-
ing correlation and regression models had identical fits. CFI =
comparative fit index, recommended to be N .95; RMSEA = root mean
square error of approximation, recommended to be b .06; SRMR =
standardized root mean residual, recommended to be b .08 (Hu &
Bentler, 1999).

Table 3
Correlations between latent factors of intelligence and working
memory, and regression weights for working memory factors
predicting intelligence factors

Reasoning Speed Memory Creativity

Correlations
Storage and processing .81 .40 .66 .28
Relational integration (full) .94 .64 .58 .47
RI-no memory .88 .63 .59 .48
RI-memory .92 .51 .52 .40
Supervision (SSwi) (.21) (.13) (.18) (− .17)
Supervision (GSwi) .34 (.15) .34 (.07)

Regression weights WMC → Intelligence
Storage and processing (.28) (− .18) (.59) (− .17)
Relational integration (full) .71 .80 (.06) .64
Supervision (SSwi) (− .10) (− .05) (− .03) − .33
Supervision (GSwi) (.08) (− .08) (.25) (− .11)

Note: The supervision factor was implemented with either general
switch costs (GSwi) or specific switch costs (SSwi) as indicators. “RI-
no memory” refers to the relational-integration factor using only the
no-memory task versions as indicators; RI-memory is the RI factor
using only the memory task versions. Correlations in parentheses were
not significant at .05 as determined through a bootstrap procedure with
2000 samples (bias-corrected percentile method).
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the RI factor, one using the composites of memory and no-
memory versions of each task as indicators, one using only
the no-memory versions, and one using only the memory
versions. All six measurement models had good fits to the data
Table 2
Loadings of tasks on working memory factors in different model versions

Tasks RI-full GSwi RI-full SSwi RI-no mem, GSwi

SP-v .52 .46 .52
SP-n .45 .50 .44
SP-s1 .73 .76 .72
SP-s2 .65 .64 .66
Mon-v .69 .58 .62
Mon-n .74 .69 .61
Fcontr .53 .62 .51
Fsq .59 .60 .63
Swi-v .54 .40 .54
Swi-n .75 .77 .74
Swi-s1 .56 .77 .57
Swi-s2 .08 .54 .08

Note: Column headers represent different model versions, specifying the tas
respectively; RI = relational integration (full = all tasks, no mem = no-memo
general switch costs. For task labels see Fig. 1.

Please cite this article as: Oberauer, K. et al., Which working memory
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(see Table 1). The loadings of the six models are presented in
Table 2.

We combined the measurement models for intelligence and
for WMC to investigate the correlations between the latent
factors of both sides; these correlations are presented in
Table 3. The results of these analyses can be summarized as
follows:

Storage and processing (SP) was correlated mostly with the
reasoning factor, replicating earlier results (Süβ et al., 2002),
but also quite substantially with the memory factor — prob-
ably because the SP factor reflects performance in memory
tasks. Relational integration (RI) was correlated even higher
RI-no mem, SSwi RI-mem, GSwi RI-mem, SSwi

.52 .52 .51

.44 .44 .44

.73 .75 .75

.66 .64 .64

.62 .71 .69

.61 .74 .74

.52 .50 .51

.63 .29 .29

.39 .56 .39

.76 .74 .77

.78 .55 .77

.54 .08 .54

ks used to define the relational integration and the supervision factor,
ry tasks, mem = memory tasks), SSwi = specific switch costs, GSwi =

functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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Fig. 2. Model correlating residuals (disturbances) of RI and reasoning (dRI = residual of RI; dR = residual of reasoning). The parameter estimates are
for the model with specific switch costs as manifest variables for supervision, and with composites of memory and no-memory task versions as
manifest variables for relational integration.

1 We thank Roberto Colom for suggesting this analysis.
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than SP with reasoning, and substantially also with the other
three intelligence factors. Constraining the model so that the
correlations of SP and RI with reasoning were equal did not
lead to a significant loss of fit (ΔChi2=2.2, Δdf=1). There-
fore, the correlations of SP and of RI with reasoning were
statistically indistinguishable. They were both in the upper
range of correlations between measures of WMC and reason-
ing observed in previous studies (Kane et al., 2005). Super-
vision, defined as specific switch costs, was not correlated
significantly with any intelligence factor. Supervision, defined
as general switch costs, showed a small correlation with
reasoning and with memory.

SP and RI were strongly correlated, and therefore we
investigated whether they contributed independently to the
intelligence factors by running regression models, in which the
correlations were replaced by directed paths from working
memory factors to intelligence factors. The regression weights
are shown in the bottom half of Table 3. The only significant
paths, determined by bootstrap analysis, were from RI to
reasoning, speed, and creativity, and from supervision (specific
switch costs) to creativity (with a negative coefficient, re-
flecting a suppressor effect). The paths from SP and from
supervision (specific switch costs) to reasoning could be fixed
to zero without significant loss of fit (ΔChi2=2.3, Δdf=2).

We also investigated whether the correlations between the
RI factor and the other factors in the model were diminished
when RIwas defined solely through the no-memory versions of
the RI tasks. This RI factor's correlations with the intelligence
factors were hardly diminished relative to the full RI factor, or
relative to the RI factor defined through only the memory task
versions (see Table 3, rows with “RI-no-memory” and “RI-
Please cite this article as: Oberauer, K. et al., Which working memory
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memory”, respectively). The correlations of the no-memory RI
factor with SP was somewhat smaller (r=.65, compared to .78
for the full RI factor), and that with supervision, defined
through general switch costs, was somewhat larger (r=.40
compared to .31 for the full RI factor); the correlation with
supervision (specific switch costs) remained unchanged (.28).
The RI-memory factor correlated somewhat higher than the full
RI factor with SP (r=.85), and moderately with specific switch
costs (r=.26) and general switch costs (r=.20).

Another way of testing whether the RI factor accounted for
variance in reasoning over and above that accounted for by SP
and Supervision is to compute an RI residual and relate it to the
reasoning factor.1 Fig. 2 represents the model structure: RI is
predicted by SP and Supervision, and the disturbance of the RI
factor represents the residual variance of RI that is not shared
with SP or with Supervision. Reasoning is predicted by SP
and Supervision. The residual variance of reasoning is
correlated with the residual of RI. This correlation was large
and significant in all four model versions tested (see Table 4).

We were concerned that the high correlation of RI with
reasoning might in part be mediated by shared variance of
processing speed, because the RI tasks all involved some degree
of time pressure. We used an extension of the model structure of
Fig. 2 to test this hypothesis: A factor representing processing
speedwas added as a further predictor of the reasoning factor and
of the RI factor, thereby removing the speed-related variance
from the residuals of both constructs. In one variant, we used the
processing speed factor of the BIS in this function, and in another
variant, we introduced a speed factor defined by the eight pure
functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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Table 4
Test of models with RI-residual as predictor of reasoning

Model version Chi2 (df ) CFI RMSEA SRMR Correlation (SE) ΔChi2

RI-full, Sswi 109.8 (83) .956 .050 .0767 .88 (.19) 12.6
RI-full, GSwi 106.5 (83) .958 .047 .0587 .85 (.28) 9.0
RI-no-memory, SSwi 125.7 (83) .924 .063 .0794 .79 (.36) 11.5
RI-no-memory, GSwi 105.1 (83) .955 .045 .0604 .73 (.33) 6.9

Legend: RI: relational integration; SSwi: supervision factor defined by specific switch costs; GSwi: supervision factor defined by general switch
costs; RI-full: RI factor defined by all RI tasks; RI-no memory: RI factor defined by no-memory tasks only; Correlation = correlation coefficient
between residual of RI and residual of reasoning (with bootstrap standard error); ΔChi2: increase of Chi2 when correlation between residuals is
removed (Δdf=1). All ΔChi2 are significant at pb .01.
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blocks of choice RT tasks (i.e., the no-switching baseline
measures of the task-switching tests). Both variants were applied
to the four models in Table 4. Across the resulting eight models,
the correlation between the reasoning residual and the RI
residual ranged from .62 to .86. We conclude that RI and
reasoning share a substantial portion of variance that is neither
related to SP nor to processing speed.
3. Discussion

Our results provide strong evidence for the hypoth-
esis that the common variance of WMC and reasoning
centrally includes the ability to form new structural
representations (Oberauer et al., 2007). The RI tasks
were explicitly constructed to capture this construct, and
they have proven to be at least as good as dual-task
combinations of storage and concurrent processing in
predicting reasoning. The predictive power of RI was
retained even with tasks that did not require any storage
in the traditional sense of maintaining information that is
no longer perceptually available. SP tasks have so far
dominated psychometric research on WMC. Therefore,
the success of RI tasks is considerable progress in
refining the construct WMC, and in developing a more
profound understanding of individual differences in
reasoning ability. Two further studies following up on
the present one, using the no-memory versions of our RI
tasks, replicated their strong correlation with tests of
reasoning ability (Buehner, Krumm, & Pick, 2005;
Buehner, Krumm, Ziegler, & Pluecken, 2006). In
contrast, supervision, measured by general or specific
switch costs, contributed very little to the explanation of
intelligence. This finding replicates Friedman et al.
(2006) and strengthens our contention that WMC should
not be equated with executive functions.

These findings have far-reaching implications for our
view of working memory and intelligence. The tradi-
tional interpretation of the relationship between working
memory and fluid intelligence or reasoning is that
working memory provides resources for simultaneous
storage and processing, that is, the ability to remember
Please cite this article as: Oberauer, K. et al., Which working memory
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information not currently present in the environment,
and to manipulate this or other information at the same
time. Both abilities are arguably required in many
complex tasks — for example, remembering intermedi-
ate results while carrying out further operations in multi-
step mental arithmetic tasks (Hitch, 1978). On this
account, however, it is hard to understand why rela-
tional-integration tasks without any demand on storage
should predict reasoning so well. The main difference
between specifying the RI factor through memory task
versions and specifying it through no-memory task
versions was that in the former case, the factor correlated
more with SP, confirming that the variation of memory in
the RI tasks was effective. This variation had little effect,
however, on the RI factor's correlation with reasoning or
the other intelligence factors.We conclude that a demand
on short-term storage is not a necessary feature of a good
measure of WMC. Other research (Colom, Rebollo,
Abad, & Shih, 2006; Oberauer et al., 2000) has already
shown that a processing component is no necessary
feature either. Thus, “simultaneous storage and proces-
sing” is a good description for one effective and very
popular class of tasks used to measure WMC, but it
should not be used to define WMC as a construct.

This is not to say that our RI tasks capture all there is to
the construct WMC, and that SP tasks are redundant.
Rather, we argue that the construct WMC should be
conceptualized in a broader way than before, and
operationalized by a broader set of tasks. The present RI
tasks were intentionally designed to be different from
conventional SP tasks, with the goal to establish a separate
factor of RI besides SP, and to test the hypothesis that
despite their dissimilarity with SP tasks, RI tasks predict
reasoning ability. The finding that both our RI tasks and
the SP tasks, despite their superficial dissimilarity, share a
large amount of variance and account for large amounts of
variance in reasoning, raises the need for a conceptualiza-
tion of WMC that covers both kinds of tasks.

One might object— as suggested by one anonymous
reviewer— that our finding of a high correlation between
RI and reasoning is trivial because we predict the criterion
functions predict intelligence? Intelligence (2008), doi:10.1016/j.

http://dx.doi.org/10.1016/j.intell.2008.01.007
http://dx.doi.org/10.1016/j.intell.2008.01.007


3 In a further round of reviews, the anonymous reviewer raised the
following points: (1) The strong relationship between WMC, defined as
SP, and reasoning offers a parsimonious reductionist explanation of
reasoning in terms of a lower-order processing mechanism (i.e., storage
and processing) that does not include relational processing. Including RI
into the concept ofWMC renders theWMC construct more complex and
blurs the boundary betweenWMC and reasoning, because reasoning also
involves relational processing. (2) It can be argued that the relational
processing involved in our RI tasks is very similar to the relational
processing necessary in analogical reasoning tasks such as those used by
Sternberg (1985) to measure the “inference” component (i.e., discovering
the relationship between the first 2 terms of an analogy). (3) The RI factor
may have unique components of variance beyond relational processing,
but that claim would have to be demonstrated more unequivocally.In
response to (1) we point out that recent experimental work is just
beginning to unravel the processes involved in typical SP tasks such as the
complex span task (Barrouillet, Bernardin, & Camos, 2004; Hudjetz &
Oberauer, 2007; Unsworth & Engle, 2007), and the emerging picture is
far from simple. One insight emerging clearly from a careful analysis of
errors on the complex span task is that it involves setting up temporary
bindings between memory list items and representations of their serial
positions (Unsworth&Engle, 2006). Thus, the complex span task already
involves relational processing, among other things, and we argue that this
is why they correlate highlywith reasoning andwith ourRI tasks.What is
new about our RI tasks is that they were intentionally constructed to
measure relational integration, and therefore they are arguably purer
measures of what we think is the common source of variance of WMC
and reasoning. In response to (2) we fully agree that discovering the
relation between two terms in an analogy is the same kind of relational
processing as ismeasured in our RI tasks. Yet we insist thatWMC is not a
limit on processing individual relations but on integrating relations, and
this is what is measured by the RI tasks. Analogy tasks also require
integrating relations, but this is necessary only in the next step, where the
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by another instance of the criterion. The argument raised
by the reviewer is twofold: (1) the RI factor correlated
more with reasoning than with SP, and therefore it should
be regarded as part of the reasoning construct rather than
as part of an extended WMC construct, and (2) the RI
tasks involved cognitive components that have been
argued to be involved in reasoning tasks, too, in particular
the detection of relations between given elements, as
captured by Spearman's (1927) notion of “eduction of
relations” and by the “inference” component in Stern-
berg's (1985) componential theory. We believe that both
arguments are unconvincing.

In response to (1) we argue that a variable does not
become part of the reasoning construct simply because it
is highly correlated with a reasoning factor. Constructs
such as reasoning ability andWMC are not just vectors in
factor space, they also have a conceptual meaning.
Reasoning, for instance, is well defined in philosophy
and cognitive psychology as deriving a conclusion from
given information by a rationally justifiable line of
argument; the argument forms are often classified as
deductive, inductive, and abductive (Wilhelm, 2005). If a
variable correlates highly with reasoning ability but does
not match the definition of the construct, it cannot be
argued to represent reasoning. Our monitoring tasks
clearly don't involve inductive, deductive, or abductive
inferences, they don't even involve deriving a conclusion,
not to speak of a rational argument. Subsuming them
under the reasoning construct simply because of their high
correlation with reasoning ability would mean to blame
the predictor for its success. In contrast, it is conceptually
fully justified to regard the RI factor as part of the WMC
construct because the RI tasks were constructed to capture
a theoretically justified extension of the concept ofWMC.

In response to (2) we fully acknowledge that others
before us have noticed the central role of relations in
reasoning.2 This does not imply that every task
involving the representation and processing of relations
is by definition a reasoning task— as argued above, the
concept of reasoning involves more than processing of
relations. Representing and processing relations is one
of several characteristics of reasoning tasks— as shown
most clearly by the fact that “inference” is one of several
components Sternberg (1985) assumes to underlie
reasoning performance. Individual differences in all
these characteristics or components could be responsible
2 It is worth mentioning in this context that “eduction of relations”
and the “inference” component in Sternberg's theory refer to the
discovery of relations, a process that lies at the heart of inductive
reasoning but seems to be less involved in deductive reasoning. In
Sternberg's componential theory, “inference” is not among the
components assumed for deductive reasoning.

Please cite this article as: Oberauer, K. et al., Which working memory
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for individual differences in reasoning ability, and it is
far from trivial to show that the ability to represent
relations is an important predictor. Moreover, whereas
previous authors highlighted the role of relations, our
hypothesis goes beyond these ideas by emphasizing the
integration of relations. Tasks that only require proces-
sing of individual relations don't qualify as RI tasks and
therefore should not be as good predictors of reasoning
as comparable tasks that require relational integration.
For instance, we predict that tasks such as deciding
which of two numbers is larger, or whether two given
words rhyme, are not as good predictors of reasoning
ability as our RI tasks. In fact, many tasks measuring the
Speed component of the BIS are of this kind, and Speed
correlates less with reasoning than RI does.3

Our findings support a view of working memory that
goes beyond its characterization of a system for temporary
relation between the first two terms is applied to the third term to complete
the analogy — Sternbergs components “mapping” and “application”.
This is why, in our view, analogy tasks correlate with WMC. In response
to (3) we readily concede that the evidence for the construct validity of the
RI tasks asmeasures of relational integration, as opposed to processing of
individual relations, is only preliminary, and it is crucial to follow up our
study with experimental and correlational research testing this claim.

functions predict intelligence? Intelligence (2008), doi:10.1016/j.
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storage and processing. We assume that working memory
primarily serves to integrate information — whether
perceptually given or memorial — and construct new
relational representations from them (Halford et al., 2004;
Oberauer et al., 2007; Waltz et al., 1999). Relational
representations also underlie performance in complex
tasks such as text comprehension and reasoning. Building
new relational representations requires a mechanism for
temporary binding of the elements that are integrated,
either by binding them to positions in a common cognitive
coordinate system or by binding them directly to each
other. The common denominator of working memory and
other complex tasks such as reasoning could be the
capacity to build and maintain such bindings (Oberauer,
2005a; Wilhelm & Oberauer, 2006).

This binding hypothesis can also explain why SP tasks
are successful measures ofWMC. Typical SP tasks can be
regarded as one instance of relational integration:
Participants usually must report back a memory list in
order, and representing an ordered list is a special case of a
relational representation. Many contemporary models of
serial-order recall represent order through bindings
between each item and its position on a temporal or
ordinal context representation (e.g., Burgess & Hitch,
1999). Bindings between memory items and their
contexts become particularly important when other
representations not belonging to the memory set are also
highly activated. For example, in the complex span
procedure (Conway et al., 2005) encoding of memory
items alternates with processing of other material that
should not be recalled. Items to be recalled must be
distinguished from those involved in the processing task
by binding the former but not the latter to a context
representation that serves as a cue for recall. Likewise, in
situations with high proactive interference, bindings
between the currently relevant memory items to a context
representing the present list is necessary to distinguish
these items from previous, no longer relevant lists. This
explains why immediate-memory tasks correlate more
with measures of WMC when proactive interference is
strong (Bunting, 2006; Kane & Engle, 2000).
Please cite this article as: Oberauer, K. et al., Which working memory
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An alternative, widely endorsed view is that WMC
reflects the efficiency of executive attention (Kane &
Engle, 2002). This view could cover the RI tasks by
arguing that relational integration requires the control of
attention such that the elements to be integrated are
attended to simultaneously. The executive-attention ac-
count, however, has difficulties in explaining the lack of a
strong relationship between task-set switching and
reasoning, because task-set switching is a prototypical
executive-control task. Kane and Engle (2002, p. 638)
define executive attention as the “capability whereby
memory representations are maintained in a highly active
state in the presence of interference, and these representa-
tions may reflect action plans, goal states, or task relevant
stimuli in the environment”. Task-set switching requires
maintaining one goal state and its associated action plan
highly active in the presence of interference from the
other, currently not relevant goal state and action plan.
General switch costs reflect the amount of continuous
interference from the currently irrelevant task set, whereas
specific switch costs reflect the efficiency of the executive
system in changing relative levels of activation between
the two goal states and action plans, that is, the efficiency
of controlling attention on a moment-to-moment basis.
Thus, task switching matches perfectly the definition of
executive attention, yet its efficiency correlated only
weakly with other measures of WMC and with reasoning
in the present study.

A modified version of the executive attention view of
Kane and Engle (2002), however, could be reconciled
with the binding hypothesis bymaking the following two
assumptions: (1) Building and maintaining bindings of
multiple elements requires simultaneous attention to
these elements, and (2)WMC reflects the ability to direct
attention to multiple elements at the same time.
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Legend: S = BIS-speed; M = BIS-memory; C = BIS-creativity; R = BIS-reasoning; SP = storage and processing (v = verbal, n = numerical,
s = spatial); Mon = monitoring (v = verbal, n =numerical); Fcontr= flight control, Fsq = finding squares (no suffix: combined memory and no-
memory score, nm = no-memory, m = memory); SSwi = specific switch costs, GSwi =general switch costs (v = verbal, n = numerical, s = spatial)
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