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The characterization of the topological architecture of complex
networks underlying the structural and functional organization of
the brain is a basic challenge in neuroscience. However, direct
evidence for anatomical connectivity networks in the human brain
remains scarce. Here, we utilized diffusion tensor imaging
deterministic tractography to construct a macroscale anatomical
network capturing the underlying common connectivity pattern of
human cerebral cortex in a large sample of subjects (80 young
adults) and further quantitatively analyzed its topological properties
with graph theoretical approaches. The cerebral cortex was divided
into 78 cortical regions, each representing a network node, and 2
cortical regions were considered connected if the probability of
fiber connections exceeded a statistical criterion. The topological
parameters of the established cortical network (binarized) re-
semble that of a ‘‘small-world’’ architecture characterized by an
exponentially truncated power-law distribution. These character-
istics imply high resilience to localized damage. Furthermore, this
cortical network was characterized by major hub regions in
association cortices that were connected by bridge connections
following long-range white matter pathways. Our results are
compatible with previous structural and functional brain networks
studies and provide insight into the organizational principles of
human brain anatomical networks that underlie functional states.
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Introduction

The human brain is a complex system that is capable of

generating and integrating information from multiple sources

with high efficiency (Sporns et al. 2004). Characterization of

the global architecture of the anatomical connectivity patterns

in the human brain is therefore crucial because it could

increase our understanding of how functional brain states

emerge from their underlying structural substrates and provide

new insights into the association of brain function deficits with

underlying structural disruption in brain disorders (Sporns et al.

2005).

Although the single neuron is the basic element of the brain,

constructing and analyzing anatomical networks at the level of

the neuron are unrealistic, given the huge amount of neurons

(~1011) in the human brain. Currently, anatomically segregated

brain regions containing large population of neurons with

similar cytoarchitecture or functional involvement and in-

terregional pathways possibly represent the most appropriate

organizational level for the brain network analyses (Sporns et al.

2005). At this level, several anatomical networks have been

established using chemical tract-tracing methods but are

limited to the brain of mammalia such as the cat and primate

(Felleman and van Essen 1991; Scannell and Young 1993;

Young 1993). Further network analyses have revealed that

these anatomical networks contain many nontrivial topological

properties such as the existence of clusters of brain regions

(Hilgetag, Burns, et al. 2000; Honey et al. 2007) and hierarchical

organization (Hilgetag et al. 1996; Hilgetag, O’Neill, et al. 2000).

It has been also demonstrated (Sporns and Zwi 2004) that these

mammalian cortical networks have a ‘‘small-world’’ topology

that is characterized by greater local interconnectivity or

cliquishness as compared with a ‘‘random’’ network and smaller

characteristic path length linking individual nodes as compared

with a ‘‘regular’’ network (Watts and Strogatz 1998). However,

the direct evidence for anatomical connectivity networks in the

human brain remains scarce, even at a macroscale, mainly due

to the fact that most invasive experimental methods (e.g.,

chemical tracing) used in the animal brain cannot be directly

applied to the human brain (Crick and Jones 1993). Recently,

Sporns et al. (2005) have referred to the comprehensive,

detailed structural description of the network with elements

and connections forming the human brain as the ‘‘human

connectome’’ and advocated urgent research efforts in this area.

Recent advances in modern neuroimaging techniques have

allowed for noninvasive investigation of human brain networks.

Using neurophysiological data (e.g., functional magnetic reso-

nance imaging [fMRI], electroencephalography [EEG], magneto-

encephalography [MEG]), several research groups have

established the functional brain networks in humans and further

reported important characteristics of these networks, such as

small-world attributes (Stam 2004; Stam et al. 2007; Eguiluz et al.

2005; Salvador et al. 2005a; Achard et al. 2006; Micheloyannis

et al. 2006). Recently, He et al. (2007) established a human brain

morphological network with cortical thickness measurement as

a proxy for connectivity and observed network topology

compatible with the functional brain networks. Considerable

progress has been made in looking into the brain anatomical

circuitry with the development of diffusion MRI that can

characterize the orientation of white matter (WM) fiber bundles

by detecting underlying water molecule diffusion (for a review,

see Le Bihan 2003). Specifically, diffusion tractography methods

(also called fiber tracking) were developed to investigate the

brain anatomical connectivity in vivo. Deterministic ‘‘streamline’’

tractography using diffusion tensor imaging (DTI) infers the

continuity of fiber bundles from voxel to voxel (Mori and van Zijl

2002). Alongwithmultiple manual/automatic regions of interest

(ROIs) selection, DTI deterministic tractography is capable of

noninvasive visualization of major WM tracts faithful to the

known WM anatomy (Catani et al. 2002; Wakana et al. 2004).
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Recently, probabilistic diffusion tractography methods, which

focus on the connectivity probabilities rather than the actual

WM pathways between voxels, have also been developed

(Behrens et al. 2003; Parker and Alexander 2005).

To our knowledge, there are only 2 recent studies using

diffusion MRI to investigate human brain anatomical networks.

The first effort was made by Hagmann et al. (2007), in which

small-world topologywas first confirmed in anatomical networks

of individual brains. This initial study included 2 subjects and

defined network nodes subject-specifically at a voxel population

level (i.e., thousands of small ROIs) rather than a regional level,

which makes the brain anatomical network less comparable

across subjects. The second study, from Iturria-Medina et al.

(2008), established aweighted anatomical network for individual

brains using diffusion MRI-based ‘‘anatomical connection prob-

abilities’’ in a group of subjects (n = 20) and further reported

a broad range of the network characteristics, such as small-world

properties and efficiency. Under this probabilistic scheme,

however, a nonzero connection probability value was assigned

to many brain region pairs, even those that other technologies

suggest are unlikely to be connected (e.g., left frontal and right

occipital cortex). Given the relatively low sensitivity of diffusion

techniques, additional large data set studies are necessary.

The objective of this studywas to utilize DTI on a large sample

of healthy subjects (80 young adults) to 1) construct a macro-

scale anatomical connectivity network in human cerebral cortex

and 2) further analyze its underlying topological properties.

Notably, we aimed to establish a population-based anatomical

network capturing the underlying common connectivity pattern

of the cerebral cortex (i.e., backbone) across young healthy

adults, rather than a subject-specific and very detailed network

for an entire individual brain. To do this, the entire cerebral

cortex was first parcellated into multiple cortical regions (each

region was defined as a network node) using the automated

anatomical labeling (AAL) (Tzourio-Mazoyer et al. 2002), and the

resulting regions can be classified as the primary, association,

paralimbic, or limbic cortex (Mesulam 2000). The network

connectionswere then inferred fromDTI tractography.With the

constructed cortical network, graph theoretical approaches

were further employed to examine the topological character-

istics of the network. Specifically, the present study would

determine: 1) whether this population-based cortical network

has a small-world architecture and a specific connectivity

distribution, 2) whether the cortical network includes vital

hub nodes/bridge edges, and 3) whether the topological

characteristics of the network are compatible with those of

previous non-DTI brain networks studies.

Materials and Methods

Subjects
The present study included 80 right-handed young adults (males/

females: 38/42; age: 18--31 years) who were selected from a large

developmental data set (Lebel et al. 2008). The subjects were recruited

through advertising on campus and in local communities, most of them

are Caucasian ( >75%). All subjects have no history of neurological or

psychiatric disorders. Informed consent was obtained from each

subject, and our protocol was approved by the University of Alberta

Health Research Ethics Board.

MRI Acquisition
All scans were performed on the same Siemens Sonata 1.5T MRI scanner

(Siemens Medical Systems, Erlangen, Germany). Diffusion tensor images

were acquired by using a twice-refocused single-shot Echo-Planar Imaging-

based sequence: coverage of the whole brain, 3-mm slice thickness with

no interslice gap, 40 axial slices, time repetition (TR) = 6400 ms, echo time

(TE) = 88 ms, 6 diffusion directions with b = 1000 s/mm2, number of

excitations (NEX) = 8, in-plane acquisition matrix = 128 3 128 with 75%

phase partial Fourier (zero filled and interpolated to 256 3 256), field of

view (FOV) = 220 3 220 mm2, and scan time = 6:06 min. The voxel size

of diffusion-weighted images was trilinearly interpolated to 1-mm

isotropic dimension during postprocessing. Three-dimensional (3D) T1-

weighted images with high resolution were obtained by a magnetization

prepared rapid acquisition gradient-echo (MPRAGE) sequence with the

following parameters: 1-mm slice thickness with no interslice gap, 144

axial slices, TR = 1890 ms, TE = 4.38 ms, time to inversion = 1100 ms,

NEX = 1, in-plane acquisition matrix = 256 3 192, FOV = 256 3 192

mm2, and scan time = 6:03min.

The Construction of the Anatomical Connectivity Network

Network Node Definition

Node definition is important in the brain network construction as the

node is the most basic element of a network (Sporns et al. 2005). In this

study, we employed the AAL template (Tzourio-Mazoyer et al. 2002) to

parcellate the cerebral cortex into 78 cortical regions (39 for each

hemisphere, see Supplementary Table 1), each representing a node of

the cortical network. For each subject, the parcellation process was

conducted in the DTI native space. To do this, each individual

structural image (i.e., T1-weighted MP--RAGE image) was first coregis-

tered to the b0 image in the DTI space using a linear transformation

(Fig. 1). The transformed structural image was then mapped to the T1
template of ICBM152 in the Montreal Neurological Institute (MNI)

space using a nonlinear transformation. The resulting inverse trans-

formation was then used to warp the AAL mask from the MNI space to

the DTI native space in which the discrete labeling values were

preserved by using a nearest neighbor interpolation method (Fig. 1).

Both the linear and nonlinear mappings were implemented in the SPM5

package (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).

Interregional Anatomical Connections by DTI Tractography

The distortion of diffusion-weighted images due to eddy currents was

first corrected using an affine registration (Woods et al. 1998). The

diffusion tensor matrix was then calculated voxel-by-voxel and

diagonalization was performed to yield 3 eigenvalues and eigenvectors

(Basser and Pierpaoli 1996). The DTI tractography was further

implemented using a continuous streamline-tracking algorithm as

follows (Mori et al. 1999). Briefly, the structural T1-weighted image

was first classified into gray matter (GM), WM, and cerebrospinal fluid

(CSF) in SPM5. Then all fiber bundles of the brain were reconstructed

with DTI studio-2.5 (Johns Hopkins University, Baltimore, MD) by

selecting all WM voxels as seed voxels for fiber tracking. In each voxel,

the orientation of the largest component of the diagonalized diffusion

tensor was assumed to represent the orientation of the dominant fiber

bundles. The tracking was initiated from the center of the seed voxel

and proceeded along its fiber bundle orientation. When the track left

the current voxel and entered that one, the proceeding direction was

changed to the fiber bundle orientation of the neighboring voxel. This

tracking procedure continued until a voxel classified as GM or CSF was

reached or the turning angle between adjacent voxels was greater than

45 degrees. Notably, we did not adopt the so-called ‘‘single tracking

approach’’, which initiates fiber tracking only from specific ROIs.

Instead, we chose the so-called ‘‘exhaustive search approach’’ in which

fiber tracking is first performed from all voxels and then fiber bundles

crossing (or ending in) specific ROIs are selected. This approach has

been demonstrated to be more practical to handle the branching

problem of WM tracts (Mori and van Zijl 2002).

Under the tracking criterion above, the trajectories of all fiber

bundles were restricted to WM voxels. Fiber bundles were considered

linked to a cortical region if one of the fiber bundle’s end points was

adjacent to the cortical region. Notably, each cortical mask of the AAL

template is not a pure cortical GM mask but includes tissues from both

cortical GM and subcortical WM (Tzourio-Mazoyer et al. 2002). The

inclusion of subcortical WM allowed us to determine whether fiber
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Figure 1. A flowchart for the construction of the cortical anatomical network in the human brain using DTI tractography. (1) Rigid coregistration from T1-weighted structural MRI
(a) to DTI native space (c, DTI color-coded map; red: left to right; green: anterior to posterior; blue: inferior to superior) for each subject. (2) Nonlinear registration from the
resultant structural MRI to T1 template of ICBM152 in the MNI space (b), resulting in a nonlinear transformation (T). (3) Applying the inverse transformation (T�1) to the AAL
template in the MNI space (d), resulting in the subject-specific AAL mask in the DTI native space (f). All registrations were implemented in the SPM5 package. (4) Reconstructing
all the WM fibers (e) in the whole brain by using DTI deterministic tractography. (5) Determining the WM fibers connecting every pair of cortical regions for each subject. (6)
Identifying the population-based cortical network matrix (g, blue: 1; blank: 0) by applying nonparametric sign test to every pair of cortical regions (P\ 0.05, Bonferroni corrected).
For more details, see Materials and Methods. R, right; L, left. The abbreviations of the cortical regions were established by Achard et al. (2006) and are included as the
Supplementary Table 1.
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bundles were linked to a cortical region using the corresponding AAL

mask directly. But fiber bundles may be chosen erroneously if an AAL

mask contained too many WM voxels that are not truly adjacent to the

cortex. To address this issue, WM voxels in the raw AAL cortical mask

were removed if no cortical voxels existed within their 2-mm cubic

neighborhood. Using the refined cortical masks, 2 cortical regions were

considered as ‘‘anatomically connected’’ if fiber bundles with 2 end

points located in their respective masks were present. For each subject,

the number of existing fiber bundles connecting every pair of regions

was counted. It should be noted that the number of fiber bundles was

used only to indicate the existence/absence of fiber bundles, and not to

represent the connectivity strength or probability, as the fiber bundle

numbers are strongly dependent on the tracking algorithm, image

resolution, etc. Notably, probabilistic tractography can also be used to

identify the cortical connections but was not an option for our current

study as our data were only acquired with 6 diffusion directions.

Anatomical Connectivity Network Across Population

Given the individual variability of brain anatomy (Thompson et al. 1996;

Amunts et al.1999; Westbury et al. 1999), it is not surprising that

anatomical connectivity between regions differs across subjects. In this

study, we focused on the connections that were most consistent across

subjects, that is, the backbone network. To identify the highly

consistent cortical connections, a nonparametric one-tailed sign test

was applied. For each pair of cortical regions, the sign test was

performed with the null hypothesis that there is no existing

connection, that is, ‘‘fiber bundle number = 0.’’ The Bonferroni method

was used to correct for multiple comparisons (i.e., 78 3 77/2 = 3003

pairs of regions) at P < 0.05 (Fig. 1). The sign test was chosen because

of doubts about the validity of absolute fiber bundle number estimates

and to minimize inclusion of false positives. The use of this conservative

statistical criterion generated a symmetric binarized matrix that

captured underlying anatomical connectivity patterns in the human

cerebral cortex. In the current study, we focused on a simpler on--off

connectivity pattern. This binarized network could potentially be

further developed to a weighted one in the future.

The Cortical Network Topological Analysis

Evaluation of the Small-World Property

Small-world measures of a network (clustering coefficient, Cp, and

characteristic path length, Lp) were originally proposed by Watts and

Strogatz (1998). Briefly, the Cp is the average of the clustering

coefficients over all nodes in a network, where the clustering

coefficient Ci of a node i is defined as the number of existing

connections among the node’s neighbors divided by all their possible

connections. Cp quantifies the extent of local cliquishness or local

efficiency of information transfer of a network (Watts and Strogatz

1998; Latora and Marchiori 2001). The Lp of a network is measured

here by using a ‘‘harmonic mean’’ distance between pairs proposed by

Newman (2003), that is, the reciprocal of the average of the

reciprocals. Lp quantifies the ability of parallel information propagation

or global efficiency (in terms of 1/Lp) of a network (Latora and

Marchiori 2001). A real network would be considered small world if it

meets the following criteria: c =C real
p

.
C rand
p � 1 and k = Lrealp

.
Lrandp � 1

(Watts and Strogatz 1998), where C rand
p and Lrandp are the mean

clustering coefficient and characteristic path length of 1000 matched

random networks that preserve the same number of nodes, edges, and

degree distribution as the real network (Maslov and Sneppen 2002;

Sporns and Zwi 2004). Of note, these topological parameters may

change with the selection of statistical threshold. When the statistical

criterion is stiffened, fewer connections will survive, leading to a sparser

network. To test the effect of thresholding, we repeatedly calculated

the topological parameters as a function of the statistical thresholds (P

value range: 1--10
–6).

Betweenness Centrality

The betweenness of a node Bnode
i or an edge B

edge
i is defined as the

number of shortest paths between pairs of other nodes that pass

through the node or the edge (Freeman 1977; Girvan and Newman

2002). Bnode
i and B

edge
i are global centrality measures that capture the

influence of a node or edge over information flow between other nodes

in the network. Bnode
i and B

edge
i were first calculated using the

MatlabBGL package (http://www.stanford.edu/~dgleich/programs/

matlab_bgl/). The normalized betweenness was then calculated as

bnode
i =Bnode

i

�
<Bnode > or b

edge
i =Bedge

i

.
<Bedge >, where <Bnode > and

<Bedge > were the average node or edge betweenness of the network,

respectively. The nodes or edges with the largest normalized

betweenness values were considered pivotal nodes (i.e., hubs) or

edges (i.e., bridges) in the network. Specifically, nodes or edges were

identified as the hubs or bridges in the cortical network if their

betweenness values were at least one standard deviation (SD) greater

than the average betweenness of the network (i.e., bnode
i

>mean + SD or

b
edge
i

>mean + SD).

Vulnerability

The vulnerability is widely used to quantitatively measure the damage

on the network performance caused by the simulated failure of its

elements (Costa et al. 2007). To calculate the vulnerability of an

individual node or edge in the cortical network, we removed the nodes

or edges one by one from the network and calculated the changes in

the mean shortest path length (i.e., global efficiency) of resulting

network by Vi = 1003
�
Lp – L#p

��
Lp%, where Lp is the shortest path

length of the real brain network and L#p is the shortest path length of

the brain network after removing the node or edge. To test the effects

of hubs/bridges and non-hubs/non-bridges on the network perfor-

mance, we compared the vulnerability values of these 2 groups using a 2-

sample t-test. Notably, vulnerability and betweenness centrality are 2

important measures for characterizing the influence of nodes/edges in

a network. In many cases, a node/edge with high betweenness has more

vulnerability. However, the nodes/edges with higher betweenness

centrality are not necessarily more vulnerable because vulnerability

quantifies the node/edge influence from a distinct aspect as compared

with betweenness.

Topological Distribution

Small-world networks can be classified into different categories (e.g.,

power-law, exponential, and exponentially truncated power-law)

according to their node degree (degree of a node is the number of

connections linking the node) distribution (Amaral et al. 2000), each

showing different network behavior such as degree of resilience to

targeted attacks (Albert et al. 2000; Achard et al. 2006). Here, we

examined the node degree distribution of the human cortical

anatomical network. Additionally, we also investigated the node and

edge betweenness distribution of the cortical network. These features

have not been examined in previous brain network studies. Three

possible forms of distribution were fitted to the probability of degree,

node, and edge betweenness: a power-law, p(x) ~ x
a–1; an exponential,

p(x) ~ exp(x/xc); and an exponentially truncated power-law, p(x) ~ x
a–1

exp(x/xc). Here a cumulative distribution was used to reduce the

effects of noise on this smaller data set (Strogatz 2001), and goodness-

of-fit was tested using R
2 values (a value closer to 1 indicates a better

fitting).

Results

Connections of Human Cortical Network via Fiber
Bundles

Under our statistical criterion (P < 0.05, Bonferroni corrected),

329 pairs of cortical regions showed significant anatomical

connectivity in our study population of young adults. The

connection indicates the existence of DTI deterministic

tractography-derived fiber bundles between the cortical

regions. The cortical network WM is mostly comprised of

association (intrahemispheric) and commissural fibers (in-

terhemispheric), in terms of classic WM anatomy (Nolte

1993). The projection fibers connecting the cortex with

noncortical structures (e.g., brainstem and thalamus, etc.) are

not involved in our cortical network.

Cerebral Cortex March 2009, V 19 N 3 527
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Figure 2 illustrates some examples of interregional cortical

connections, involving 4 short WM tracts (Fig. 2a--d) and 9

major WM tracts (Fig. 2e--m, the genu of corpus callosum [CC],

body of CC, splenium of CC, inferior longitudinal fasciculus

[ILF], arcuate fasciculus [AF], superior longitudinal fasciculus

[SLF], uncinate fasciculus [UF], cingulum, and inferior fron-

tooccipital fasciculus [IFO]). The cortical regions linked by

these tracts in the cortical network are listed in Figure 2. For

the major WM tracts (Fig. 2e--m), their 3D trajectory and linked

cortical regions are faithful to the postmortem WM anatomy

(Crosby et al. 1962) as well as the human WM anatomy from

previous DTI studies (Wakana et al. 2004).

Human Cortical Network and Its Topological Property

Seventy-eight cortical regions and 329 identified interconnec-

tions constitute a binarized cortical network with a sparsity of

~11% (329 interconnections of 3003 potential between-region

connections), in which there are no isolated nodes (i.e.,

cortical regions).

Is the Human Cortical Network Small World?

The clustering coefficient of the cortical network

(Ccortex
p = 0:49) is approximately 4 times that of a comparable

random network (C rand
p = 0:12), whereas the path length

(Lcortexp = 2:32) is approximately equivalent to the random

Figure 2. Examples of cortical connections and their corresponding WM fibers in one subject. The 13 selected cortical connection examples included 4 short WM tracts (a--d)
and 9 well-known major WM tracts (e--g, CC; h, ILF; i, AF; j, SLF; k, UF; l, cingulum; m, IFO) that are well identified with DTI deterministic tractography. As well, the linked cortical
regions for each selected connection are listed with the abbreviations in the Supplementary Table 1. It should be noted that the fiber bundles shown here are only a part of
a specific major WM tract, rather than the entire tract.
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network (Lrandp = 2:02). The relationship between the Cp and Lp
(c = 4.07; k = 1.15) fits the definition of a small-world network

(Watts and Strogatz 1998). To test for robustness, we divided all

80 subjects into 2 groups (40 subjects for each group, age

matched) and calculated the split-half reliability. The cortical

networks were constructed with the same criterion listed in

the Materials and Methods for the 2 groups. The resulting

networks of the 2 subgroups showed high similarities (group 1:

k = 4.63, c = 1.16; group 2: k = 4.69, c = 1.17; node-betweenness

correlation: R = 0.90, P < 10
–29), suggesting the reliability of our

method. In Table 1, we listed the topological parameters across

studies in which small-world properties have been consistently

demonstrated in the human brain networks at a regional level.

To determine whether the human anatomical cortical net-

works had the small-world properties at other statistical

thresholds, we further plotted the topological parameters as

a function of P value threshold (Fig. 3). As the threshold

becomes lower (i.e., more conservative statistical criterion),

the clustering coefficient increases rapidly, whereas the

average path length changes little (Fig. 3). Overall, the small-

worldness of the cortical anatomical network tends to increase

as the P value threshold decreases. However, it is currently

difficult to determine a definitive statistical criterion during the

construction of human brain networks (Achard et al. 2006; He

et al. 2007). The small-world characteristic shown here

indicates that cortical anatomical networks of the human brain

have greater local interconnectivity or cliquishness and short

mean distance between cortical regions.

Betweenness Centrality of Node/Edge in the Network

Betweenness centrality is an important metric that can be used

to determine the relative importance of a node or edge within

a network and identify the pivotal nodes/edges in the complex

network. Figure 4 illustrates the topological map of the human

cortical network in conjunction with node/edge betweenness

(for a full list of parameters for all nodes, see Supplementary

Table 2). We found that node betweenness of left hemisphere

is linearly correlated with that of right hemisphere (t = 6.2, P <

10
–6) although with a rightward asymmetry on average (Fig. 5).

The absolute connectivity pattern and the betweenness

centrality showed large hemispheric differences for some

individual regions (e.g., middle occipital gyrus [MOG] and

superior occipital gyrus [SOG]) (Figs 1g and 5). Further, nodes

or edges are identified as the hubs or bridges in the cortical

network if their betweenness values are at least one SD greater

than the average betweenness of the network (i.e.,

bnode
i

>mean+ SD orb
edge
i

>mean + SD). Tables 2 and 3 summarize

the hub nodes and bridge edges, respectively. The identified

hub nodes (9 in total, Figs 4 and 6 and Table 2) include 8

regions of the heteromodal or unimodal association cortex

(bilateral precuneus [PCUN], bilateral MOG, bilateral dorsolat-

eral superior frontal gyrus [SFGdor], right SOG, and right medial

superior frontal gyrus [SFGmed]) and 1 region of the primary

cortex (right calcarine cortex). The identified bridge edges (43

in total, Fig. 4 and Table 3) include 11 interhemispheric, 17

interlobe, and 15 intralobe connections that are mainly

associated with several major WM tracts (e.g., CC, IFO, ILF,

Table 1
Topological parameters of human brain networks at a macroscale level

Human brain network (regional level) N Cp Lp c k Topological distribution

Anatomical network (the present study) 78 0.49 2.32 4.07 1.15 Exponentially truncated power-law distribution (degree and betweenness)
Anatomical network (Iturria-Medina et al. 2008) 90 Not reported Not reported 1.85 1.12 Exponentially truncated power-law distribution (degree)
Morphological network (He et al. 2007) 54 0.30 3.05 2.36 1.15 Exponentially truncated power-law distribution (degree)
Functional network (Salvador et al. 2005a) 45 0.25 2.82 2.08 1.09 Not reported
Functional network (Achard et al. 2006) 90 0.53 2.49 2.37 1.09 Exponentially truncated power-law distribution (degree)

Note: N, Cp, and Lp denote the number of nodes, clustering coefficient, and mean shortest path length of the real brain networks, respectively. c represents the ratio of the clustering coefficient between
the brain networks to the constructed random networks. k denotes the ratio of the mean shortest path length between the brain networks to the constructed random networks. Of note, these

parameters are quantitatively incomparable across the studies due to the diversity of network construction approaches (e.g., different node/edge definition criterion). Nonetheless, these studies

consistently demonstrate that human brain networks have small-world attributes (i.e., meet the criterion: c » 1 and k � 1).

Figure 3. The topological parameters as a function of the statistical threshold. (a) The sparsity of the cortical anatomical networks decreases as the P value threshold lowers
(i.e., more conservative statistical criterion). (b) The clustering coefficient ratio (gamma) increases as the P value threshold lowers. (c) The path length ratio (lambda) shows little
change as the P value threshold lowers. Overall, the small-worldness of the cortical anatomical network tends to increase as a function of lowering the P value threshold. The
cortical anatomical network also exhibits small-world attributes even under very relaxing statistical criterion. The black arrow indicates the values of topological parameter of the
human cortical network under our conservative statistical criterion (P\ 0.05, Bonferroni corrected, which corresponds to 0.05/(78 3 77/2) 5 0.05/3003 ~1 3 10�5 without
correction).
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SLF, and cingulum). Moreover, most of the bridge edges are

linked to association cortex regions with high node-between-

ness centrality (i.e., hub regions) (Fig. 4).

Vulnerability

To simulate the effects of individual node or edge ‘‘lesions’’ on

the performance of the cortical network, we calculated the

vulnerability values (Vi) of each node and edge. We found that

eliminating the hubs/bridges resulted in significantly higher

vulnerability than eliminating non-hubs/non-bridges (hubs vs.

non-hubs, t (76) = 7.13, P < 10
–9; bridges vs. non-bridges, t (327)

= 12.5, P < 10
–28), which highlights the importance of these

hubs/bridges in transferring information flow of the human

cortical network.

Figure 4. The topological map of human cortical network. In the map, nodes represent brain cortical regions and lines represent the DTI tractography--derived anatomical
connections between regions. Circle size (i.e., diameter) represents the magnitude of normalized node-betweenness centrality (Table 2 and Supplementary Table 2). Association,
primary, and paralimbic cortex regions are marked as red, blue, and green, respectively. Dark solid lines represent bridge connections with high normalized edge-betweenness
values (Table 3). The geometric distance between regions on the drawing space approximately corresponds to the shortest path length between them. The network was
visualized with the Pajek software with slight manual adjustment for the locations of brain regions (Batagelj and Mrvar 1998). For the abbreviations of the regions, see
Supplementary Table 1.

Table 2
Cortical regions identified as hub nodes in the human cortical network and their properties

Hub regions Class bnodei ki Ci Li Vnodei Identified as a hub in previous human brain networks studies

PCUN.R Association 6.19 20 0.27 1.74 2.47 Anatomicala and functionalb networks
MOG.L Association 5.56 17 0.34 1.88 1.97 Functional networksb

PCUN.L Association 4.97 19 0.29 1.78 2.09 Anatomicalaand functionalb networks
SFGdor.R Association 2.90 11 0.35 2.13 0.78 Anatomicala, functionalb and morphologicalc networks
SFGdor.L Association 2.84 11 0.38 2.08 0.77 Anatomicala, functionalband morphologicalc networks
SOG.R Association 2.73 13 0.54 1.93 0.85 Functionalb and morphologicalc networks
SFGmed.R Association 2.53 13 0.35 1.96 0.76 Morphologicalc networks
MOG.R Association 2.31 12 0.44 2.10 0.44 Functionalbnetworks
CAL.R Primary 2.25 13 0.56 1.95 0.77 Functionalbnetworks

The hub regions (bnodei [meanþ SD) in the cortical network are listed in a descending order of normalized node-betweenness centrality. The cortical regions are classified as primary, association, or

paralimbic as described by Mesulam (2000). bnodei , ki, Ci, Li, and V
node
i denote the normalized betweenness, degree, clustering coefficient, shortest path length, and vulnerability of region i, respectively.

For description of the abbreviated names, see Supplementary Table 1, and for a full list of network parameters for all regions, see Supplementary Table 2. For an intuitive sense of spatial pattern of node

betweenness and the hub-node locations on the cerebral cortex, see Figure 6.
aIturria-Medina et al. (2008).
bAchard et al. (2006).
cHe et al. (2007).
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Topological Distribution

In the present study, we found that node degree distributions

of the cortical network in the human brain, as well as the node/

edge--betweenness distribution, were best fitted by the

exponentially truncated power-law form (i.e., p(x) ~ x
a–1

exp(x/xc)) (Fig. 7). The estimated parameters are as follows:

node degree, estimated exponent a = 1.66, and cutoff degree

knode
c = 3:65 (Fig. 7a); node betweenness, estimated exponent a =

0.96, and cutoff betweenness Bnode
c =76:93 (Fig. 7b); edge

betweenness, estimated exponent a = 1.10, and cutoff

betweenness Bedge
c = 18:95 (Fig. 7c). These exponentially

truncated power-law distribution models indicate that the

cortical network includes some pivotal nodes (i.e., hubs) and

edges (i.e., bridges) but prevents the existence of huge hubs or

bridges with too much load.

Discussion

In this study, DTI tractography was employed to construct

a macroscale anatomical network that captures the underlying

common connectivity pattern of human cerebral cortex (i.e.,

backbone) across a large population (N = 80) of healthy young

adults. The constructed cortical network had a prominent

small-world topological organization and an exponentially

truncated power-law topological distribution. Also, this cortical

network was characterized by pivotal regions (i.e., hubs)

predominantly in association cortex that were connected by

pivotal connections (i.e., bridges) mainly following long-range

WM tracts. These results further our understanding of the

large-scale topological organization of the human anatomical

cortical network.

Node Definition of the Human Anatomical Cortical
Network

The term ‘‘connectome’’ was proposed recently by Sporns et al.

(2005), referring to the comprehensive, detailed anatomical

description of the network with elements and connections

forming the human brain. The key issue for compiling the

connectome is how to define basic structural elements of the

human brain in terms of network nodes and edges. The cortical

network nodes in our study were defined using the AAL

template, which divides each cerebral hemisphere into 45

regions according to functional and anatomical criteria

(Tzourio-Mazoyer et al. 2002), and has been used in previous

human brain functional (Salvador et al. 2005a, 2005b; Achard

et al. 2006) and anatomical (Iturria-Medina et al. 2008) network

studies. Although the AAL template includes both cortical and

deep GM structures, such as the thalamus and the amygdala,

our current network was confined to the cortical system (i.e.,

39 regions per hemisphere) because of the relatively large

errors associated with defining basal structures during mapping

AAL mask from the MNI space to native space and the difficulty

Table 3
Cortical connections identified as bridges in the human cortical network and their properties

Region A Region B Class Adjacent bedgei Vedgei Potentially involved
major WM tracts

SOG.R MOG.L Inter-H N 5.16 0.357 CC
SFGdor.L SFGdor.R Inter-H N 4.79 0.332 CC
MOG.L CAL.R Inter-H N 4.29 0.331 CC
ORBinf.L MOG.L Inter-L N 3.96 0.428 IFO
SPG.L PCUN.R Inter-H N 3.83 0.376 CC
PoCG.L PCUN.L Intra-L Y 3.81 0.290 SLF I
MOG.L STG.L Inter-L N 3.79 0.336 ILF
MOG.R STG.R Inter-L N 3.67 0.202 ILF
PoCG.R PCUN.R Intra-L Y 3.64 0.326 SLF I
SFGmed.R PCUN.R Inter-L N 3.37 0.232 Cingulum
PCUN.L ACG.L Inter-L N 3.37 0.403 Cingulum
SFGdor.L PreCG.L Intra-L Y 3.21 0.277 SLF I
ANG.R SOG.R Inter-L Y 3.16 0.222 SLF II
ORBinf.R LING.R Inter-L N 3.08 0.368 IFO
HES.R STG.R Intra-L Y 3.01 1.702 N/A
PCUN.R MOG.R Inter-L N 2.99 0.218 N/A
REC.L ORBinf.L Intra-L Y 2.74 0.255 N/A
ORBsup.L INS.L Inter-L Y 2.46 0.272 N/A
PCUN.R ACG.R Inter-L N 2.44 0.206 Cingulum
MOG.L MTG.L Inter-L Y 2.41 0.209 N/A
OLF.R TPOmid.R Inter-L N 2.41 0.208 UF
PCUN.L PHG.L Inter-L N 2.40 0.223 Cingulum
ORBsup.R SFGdor.R Intra-L Y 2.40 0.235 N/A
OLF.R SFGmed.R Intra-L N 2.29 0.166 N/A
PCUN.R PHG.R Inter-L N 2.29 0.232 Cingulum
CAL.L LING.R Inter-H N 2.28 0.201 CC
CAL.R FFG.R Intra-L N 2.24 0.210 N/A
SPG.R PCUN.R Intra-L Y 2.11 0.148 SLF I
SFGdor.R SFGmed.L Inter-H N 2.11 0.146 CC
PCL.R PCUN.L Inter-H N 2.08 0.165 CC
ORBmid.R LING.R Inter-L N 2.00 0.281 IFO
SPG.R SOG.R Inter-L Y 1.98 0.096 N/A
MFG.R SFGmed.R Intra-L N 1.98 0.169 N/A
PCUN.L CAL.R Inter-H N 1.97 0.169 CC
ORBsup.R TPOmid.R Inter-L N 1.97 0.187 UF
PCUN.L SOG.R Inter-H N 1.97 0.152 CC
SFGdor.R IFGoperc.R Intra-L N 1.96 0.164 N/A
MOG.L CUN.R Inter-H N 1.93 0.168 CC
HES.L STG.L Intra-L Y 1.92 0.187 N/A
ORBsup.L SFGmed.L Intra-L Y 1.86 0.171 N/A
SFGdor.L IFGtriang.L Intra-L N 1.85 0.152 N/A
PCUN.R CAL.L Inter-H N 1.85 0.188 CC
SFGdor.R IFGtriang.R Intra-L N 1.84 0.152 N/A

Note: Inter-H, interhemispheric; Inter-L, interlobe; Intra-L, intralobe; R, right; L, left. The bridge

connections (bedgei [meanþ SD) in the cortical network are listed in a descending order of

normalized edge-betweenness centrality. Hub regions identified in Table 2 are indicated by bold

text and shading. The connections are classified as Inter-H, Inter-L, and Intra-L. As well, it was

specified for each connection whether the linked cortical regions are spatially adjacent (i.e., yes/

no). The Inter-H, Inter-L, and nonadjacent are in bold, suggesting the long-range anatomical

connections in terms of approximate spatial distance. bedgei denotes the normalized betweenness

of connection i, and Vedgei denotes the vulnerability of connection i. The potentially involved major

WM tracts for these bridge connections are listed in the rightmost column. N/A has been listed

for cases where it is unclear or ambiguous for either the long - or short-range WM tracts.

Figure 5. The relation between the node betweenness of left and right hemispheres.
Each circle represents one cortical region (39 in total). The black line indicates
the linear-fitted curve and the dash lines indicate 95% confidence interval. The
node betweenness of left hemisphere is linearly correlated with that of right
hemisphere (t 5 6.2, P \ 10�6). Of note, the absolute betweenness centrality
of some individual cortical regions (e.g., MOG and SOG) demonstrates large
hemispheric asymmetry.
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of defining the adjacent WM to basal structures that is required

in our method. In contrast, Hagmann et al. (2007) proposed

a data-driven method to partition the WM--GM interface,

resulting in thousands of small ROIs as the network nodes.

This scheme potentially avoids grouping together pieces of GM

that are functionally different but makes it hard to compare the

network across subjects because the ROIs are subject specific.

In future studies, it might be more meaningful to define the

cortical nodes based on a finer myeloarchitectonic feature.

Edge Definition of the Human Anatomical Cortical
Network

The organization of WM tracts has been previously investigated

using invasive techniques such as dissection, histological

staining, and axonal tracing (Kobbert et al. 2000). The existing

mammalian (e.g., cat and primate) large-scale connectivity

networks are mainly based on these invasive techniques

(Felleman and van Essen 1991; Scannell and Young 1993; Young

1993). Recently, noninvasive DTI has been developed, which is

capable of providing 2 types of information: the extent of water

diffusion anisotropy and its orientation (Basser and Pierpaoli

1996). The former is widely used to evaluate the integrity of

underlying brain tissue (for a review, see Beaulieu 2002) and the

latter can be indirectly utilized to reconstruct WM tracts,

referred to as DTI tractography (Conturo et al. 1999; Jones et al.

1999; Mori et al. 1999; Basser et al. 2000). It has been well

demonstrated that many WM tracts derived from DTI de-

terministic tractography follow known WM anatomy as shown

in previous studies (Catani et al. 2002, 2003; Wakana et al.

2004). However, previous DTI deterministic tractography

studies have mainly focused on several specific WM tracts such

as CC, cingulum, and fornix (Xu et al. 2002; Concha et al. 2005;

Gong et al. 2005). Rather than a local focus, we applied DTI

deterministic tractography globally to identify the most

common cortical connections in a large sample. Notably, in

addition to the specifics of the tractography algorithm, the

resulting connections here depend on the selection of statistical

criterion, as well as the sample size. With more conservative

criterion, fewer connections will survive, leading to greater

sparsity of the network (Fig. 3a). On the other hand, a smaller

sample size may yield fewer connections even under the same

statistical criterion due to the reduction of the statistical power.

As shown in Figure 2, major WM tracts were successfully

reconstructed, supporting the validity of DTI deterministic

tractography. Of note, although WM tracts are the basis of the

network connections, a 1-to-1 mapping relationship between

each WM tract and each cortical connection is unlikely because

1) the anatomical definition and description of short-range WM

tracts (e.g., U-fiber bundles) and even the major WM tracts are

limited, 2) a named major tract (e.g., CC, SLF, etc.) generally links

multiple cortical regions, and 3) the involved fiber bundles of

a specific cortical connection may belong to multiple WM tracts.

Consequently, the fiber bundles shown in Figure 2 are only

a part a specific major WM tract, rather than the entire tract.

Small-World Cortical Anatomical Networks in Humans

The small-world network introduced by Watts and Strogatz

(1998) has made a tremendous impact on the studies of

numerous complex networks, from social, economic to bi-

ological networks (for a review, see Strogatz 2001). The existing

Figure 6. Node betweenness centrality map on the human cerebral cortex. According to the AAL template (Tzourio-Mazoyer et al. 2002), the cerebral cortex was parcellated
into 78 regions (39 per hemisphere), each representing a node in the anatomical cortical network. Regions were mapped into an average cortical surface obtained from ICBM152
according to their normalized betweenness centrality values. The color bar indicating the range of normalized node betweenness is shown on the right. Hub regions identified in
this study are marked on the map. Note that several hubs (PCUN, SFGdor, and MOG) appear in a bilaterally symmetric fashion (for details, see Table 2).
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mammalian cortical networks derived from chemical tracing

methods (Sporns and Zwi 2004) along with the recent human

structural networks derived from diffusion MRI and MRI-based

cortical thickness consistently exhibited small-world attributes

(Hagmann et al. 2007; He et al. 2007; Iturria-Medina et al. 2008).

Also, recent studies demonstrated small-world properties in

human brain functional networks using neurophysiological data,

for example, fMRI (Eguiluz et al. 2005; Salvador et al. 2005a;

Achard et al. 2006), EEG (Micheloyannis et al. 2006; Stam et al.

2007), and MEG (Stam 2004). In agreement with these previous

studies, small-world properties were observed in our cortical

network using DTI tractography of an adult population of 80

healthy subjects. Although the topological parameters are

quantitatively incomparable across various brain network studies

due to the diversity of species (e.g., cat, primate, and human) and

network construction approaches (e.g., different node/edge

definition criterion), these common findings suggest that the

small-world topology is a fundamental principle of structural and

functional organization of complex brain networks.

The small-world topology has high clustering coefficient and

short path length, indicating the local clustering or cliquishness

of the connectivity network and the small number of

connections between any pair of regions. Previous computa-

tional simulation studies have demonstrated that small-world

topologies emerge when networks are evolved for high

complexity (Sporns et al. 2000). Therefore small-world

architecture of our cortical network represents an optimal

organizational pattern according to evolution and develop-

ment. In terms of information flow, high clustering allows

modularized information processing, which is functionally

segregated from one area to another, and short paths allow

effective interactions or rapid transfer of information between

regions, which is essential for functional integration. The

coexistence of functional segregation and functional integra-

tion ensures the effective integration of multiple segregated

sources of information in the brain (Tononi et al. 1994; Sporns

and Zwi 2004; Sporns et al. 2004). The small-world properties

in our cortical anatomical network might provide the un-

derlying structural substrates of such functional coexistence in

the human brain. Future systematic studies exploring both

anatomical and functional brain network in the same subjects

would provide more direct evidence for the associations of

structural and functional network properties.

Exponentially Truncated Power-Law Topological
Distribution

In the present investigation, we demonstrated that both the

node- and edge-betweenness centrality of the human cortical

network followed exponentially truncated power-law distribu-

tion (Fig. 7). From the information flow perspective, between-

ness represents the communication ‘‘load’’ of a node or edge

within the entire network and, therefore, indicates the node/

edge relative importance (Goh et al. 2001). The observed

distribution model suggests that the cortical network has some

‘‘core’’ regions and connections but prevents the appearance of

huge hubs or bridges with too much ‘‘load.’’ Previous studies

have demonstrated that networks with truncated power-law

distribution are highly resilient to random errors and targeted

attacks in comparison to those with scale free (i.e., power-law)

distribution (Albert et al. 2000; Achard et al. 2006). In this

study, we also investigated the node degree distribution that

was commonly explored in the mammalian cortical anatomical

networks (Sporns and Zwi 2004), human brain structural (He

et al. 2007; Iturria-Medina et al. 2008), and functional networks

(Achard et al. 2006). Consistent with these previous studies, we

demonstrated that the node degree distribution of the cortical

network also showed an exponentially truncated power-law

pattern. Nonetheless, there are inconsistent findings. For

example, Kaiser et al. (2007) recently reported a scale-free

(i.e., power-law degree distribution) cortical network at the

regional level in cat and primate. The discrepancies in the

topological distribution could be attributed to different data

types and analysis method applied to these studies. Hagmann

et al. (2007), however, reported an exponential distribution of

node degree in the human brain anatomical networks at a voxel

population level, whereas Eguiluz et al. (2005) showed a scale-

free degree distribution in the human brain functional net-

works at a voxel level. The discrepancy among the topological

distributions could be associated with the different spatial scale

analysis applied in these studies.

Figure 7. The degree and betweenness distributions of the human cortical network. (a) Log-log plot of the cumulative node degree distribution; (b) log-log plot of the cumulative
node-betweenness distribution; (c) log-log plot of the cumulative edge-betweenness distribution. The plus sign represents observed data, the solid line is the fit of the
exponentially truncated power-law (p(x) ~ xa�1exp(x/xc)), the dashed line is an exponential (p(x) ~ exp(x/xc)), and the dotted line is a power-law (p(x) ~ xa�1). R2 was calculated
to assess the goodness-of-fit (a larger value indicates a better fitting; Retp, R

2 for exponentially truncated power-law fit; Re, R
2 for exponential fit; Rp, R

2 for power-law fit). The
exponentially truncated power-law is the best fitting for all the 3 distributions (a, estimated exponent a5 1.66 and cutoff degree kc

node 5 3.65; b, estimated exponent a5 0.96 and
cutoff betweenness Bc

node 5 76.93; c, estimated exponent a 5 1.10 and cutoff betweenness Bc
edge 5 18.95).
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Hub Regions and Bridge Connections in Human
Cortical Network

Based on the node betweenness, 9 hub regions were identified

in the cortical network (Table 2 and Fig. 6), which are

predominately involved in the recently evolved heteromodal

[PCUN, SFGdor, and SFGmed] or unimodal (MOG and SOG)

association cortex that plays a central role receiving conver-

gent inputs from multiple cortical regions (Mesulam 2000).

Three cortical regions (PCUN, SFGdor, and MOG) appear as

hubs in a bilaterally symmetric fashion. As shown in Table 2, all

hub regions here were previously identified as hub regions in

human brain anatomical (Iturria-Medina et al. 2008), morpho-

logical (He et al. 2007), or functional (Achard et al. 2006)

networks. Of note, PCUN and SFGdor were significant in

various human brain networks across studies, and their

approximately equivalent regions (i.e., areas 7 and 46, re-

spectively) have also been reported as pivotal nodes in the

macaque cortical network (Honey et al. 2007; Sporns et al.

2007). Previous studies exploring the neuroanatomy of

cognitive functions have demonstrated the important roles of

these hub regions in multiple highly integrated functional

systems. For example, PCUN has shown significant involvement

in visuospatial imagery, episodic memory retrieval, self-pro-

cessing, and consciousness (for a review, see Cavanna and

Trimble 2006); SFGdor fundamentally contributes to diverse

functional systems, such as working memory and attention

(Fox et al. 2006; for a review, see Petrides 2005). There are also

inconsistent hub regions across brain networks. For example,

the middle frontal gyrus was previously identified as a hub in

the human brain functional networks (Achard et al. 2006) but

was not a hub in our cortical network. The methodological

differences (e.g., network construction, hub definition crite-

rion, etc.) and diversity of the targeted brain system (e.g., with/

without subcortical regions) could be responsible for the

discrepancy. As the hub regions are believed to handle

multimodal or integrative function, their damage could

dramatically affect the stability and efficiency of the network

(Sporns and Zwi 2004; Achard et al. 2006). In accordance with

this view, our vulnerability results confirmed that ‘‘lesions’’ in

the hubs lead to significantly higher changes of the path

lengths as compared with ‘‘lesions’’ in nonhubs.

Based on the edge betweenness, we identified 43 pivotal

connections (i.e., bridges), which are mainly associated with

major WM tracts connecting the 2 hemispheres/different lobes

within 1 hemisphere (11/17 of 43) or connecting nonadjacent

cortical regions (30 of 43). These long-range connections

might play roles as shortcuts to ensure short mean path lengths

in the small-world networks (Kaiser and Hilgetag 2004). It

should be noted that most of the bridge edges (33 of 43) are

linked with the identified hub nodes, suggesting their possible

involvement in the multimodal or integrative brain function

that is related to the association cortex regions. Similarly, the

vulnerability results also revealed that the ‘‘lesion’’ of bridge

connections affected the performance of this cortical network

more strongly than ‘‘lesions’’ in nonbridge connections.

Methodological Issues

Several methodological issues in the present study need to be

addressed. First, DTI deterministic tractography was employed

to construct the cortical network of the human brain. Despite

being widely used, this method has a limited capacity for

resolving crossing fiber bundles (Mori and van Zijl 2002),

which may result in the loss of some existing fiber bundles and

hence miss some cortical--cortical connections (i.e., false

negative). For example, those fiber bundles that are involved

in interhemispheric connections of lateral cortical regions are

frequently missed by this type of tractography. Also some long-

distance fiber bundles within a hemisphere may be missed due

to this methodological inability. Recently developed probabi-

listic diffusion tractography methods have the advantage of

overcoming fiber crossings, as well as robustness to the image

noise (Behrens et al. 2003; Parker and Alexander 2005), and

thus are potentially capable of identifying those connections

missed by DTI deterministic tractography. This kind of method,

however, may yield spurious connections (i.e., false positive)

that have not been described with other methods (Parker and

Alexander 2005). In the present, we aimed to construct a

population-based backbone network, the strategy was there-

fore to control the ‘‘false-positive’’ connections as minimal (e.g.,

using conservative statistical criterion) in the network but at

the expense of ‘‘false-negative’’ connections. This strategy will

inevitably lead to an incomplete representation of the in-

dividual cortical network. Although the compatibility of our

network properties with previous findings across a wide range

of studies (e.g., using fMRI, cortical thickness, etc.) suggests the

validity of the constructed network, those ‘‘false negative’’

caused by consistent loss across individuals due to our tract-

ography limitations may induce systematic bias to the network

properties. Future studies with more sophisticated tractogra-

phy methods (Behrens et al. 2007) or diffusion imaging tech-

niques (Tuch et al. 2003), as well as finer imaging resolution or

quality, could be conducted to yield a more complete

representation of the anatomical brain networks.

Second, an automatic registration of individual brain to

a common template was applied in the present study to

parcellate the entire cerebral cortex into different cortical

regions. Notably, current automatic registration techniques are

difficult to guarantee the exact match of every gyrus/sulcus

across subjects, especially given the intersubject variability in

the anatomical boundaries of regions (Amunts et al. 1999). The

limitation of current registration techniques may cause location

errors of the network nodes across subjects and therefore

induce bias into the network properties, for example, the hub

region locations. Another concern is that we used the AAL

template to parcellate cerebral cortex into 78 cortical regions.

A different cortical parcellation scheme has been applied in

recent human brain networks studies (He et al. 2007, 2008).

The resulting networks with different parcellation schemes

may therefore have different network properties. Future studies

could be conducted to explore the influence of different

parcellation schemes, as well as the impact of the spatial scales

(e.g., region level/voxel level), on the network architectures.

Third, we observed that node betweenness of left hemisphere

is linearly correlated with that of right hemisphere (t = 6.2, P <

10
–6, Fig. 5).We also noted that therewere obvious differences in

connectivity patterns of the cortical regions between hemi-

spheres (Fig. 1g). The node betweenness showed large hemi-

spheric difference in some cortical regions (e.g., MOG and SOG)

and have a rightward asymmetry on average (Fig. 5). The

observed hemispheric difference is compatible with previous

reports of structural and functional asymmetries (for a review,

see Toga and Thompson 2003). The hemispheric differences in

the connectivity patterns found in the present study were also

supported from the WM tract asymmetries reported recently in
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DTI studies (Highley et al. 2002; Nucifora et al. 2005; Barrick et al.

2007; Vernooij et al. 2007). In future, it would be interesting to

systematically examine the asymmetry of the cortical network

and even its relationship with brain function.

Finally, in this study, the topological organization of the

cortical network was studied in a young adult population.

Previous studies have demonstrated the alteration of topolog-

ical properties of functional or morphological brain networks in

normal aging (Achard and Bullmore 2007) and brain disorders

such as Alzheimer’s disease (Stam et al. 2007; He et al. 2008).

Therefore, we suspect that the topological organization of the

human brain anatomical networks may be altered during

normal development and aging as well as under specific brain

disorders, which could be examined in future studies.

Conclusion

Using DTI tractography, we established a macroscale anatom-

ical network capturing the underlying common connectivity

pattern of the cerebral cortex in a healthy young adult

population. This cortical network exhibits a prominent small-

world attribute and an exponentially truncated power-law

topological distribution, with the embedded pivotal regions

and connections mainly involving the association cortex

regions and long-range WM tracts, respectively. Our findings

are largely compatible with previous human brain functional

network studies using neurophysiological data and structural

network studies using anatomical and diffusion MRI data, thus

providing insights into our understanding of how the architec-

ture of anatomical connection network in the human brain

underlies functional and morphological organization.

Supplementary Material

Supplementary Tables 1 and 2 can be found at: http://www.cercor.

oxfordjournals.org/.

Funding

The Canadian Institutes of Health Research (to D.W.G. and

C.B.); the Canadian Language and Literacy Research Network of

Centres of Excellence (to C.B.); the Alberta Heritage Founda-

tion for Medical Research (to C.B.); Natural Sciences and

Engineering Research Council (to C.L.), Promep (to L.C.); the

Jeanne Timmins Costello Fellowship of the Montreal Neuro-

logical Institute (to Y.H.); MRI infrastructure from the Canada

Foundation for Innovation; Alberta Science and Research

Authority; Alberta Heritage Foundation for Medical Research;

the University of Alberta Hospital Foundation. Fiber-tracking

software (DTI studio) was kindly provided by Drs Hangyi Jiang

and Susumu Mori (NIH grant P41 RR15241).

Notes

Conflict of Interest : None declared.

Address correspondence to email: christian.beaulieu@ualberta.ca.

References

Achard S, Bullmore E. 2007. Efficiency and cost of economical brain

functional networks. PLoS Comput Biol. 3:e17.

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. 2006. A

resilient, low-frequency, small-world human brain functional net-

work with highly connected association cortical hubs. J Neurosci.

26:63--72.

Albert R, Jeong H, Barabasi AL. 2000. Error and attack tolerance of

complex networks. Nature. 406:378--382.

Amaral LAN, Scala A, Barthelemy M, Stanley HE. 2000. Classes of small-

world networks. Proc Natl Acad Sci USA. 97:11149--11152.

Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K.

1999. Broca’s region revisited: cytoarchitecture and intersubject

variability. J Comp Neurol. 412:319--341.

Barrick TR, Lawes IN, Mackay CE, Clark CA. 2007. White matter

pathway asymmetry underlies functional lateralization. Cereb

Cortex. 17:591--598.

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. 2000. In vivo fiber

tractography using DT-MRI data. Magn Reson Med. 44:625--632.

Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features

of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn

Reson B. 111:209--219.

Batagelj V, Mrvar A. 1998. Pajek—program for large network analysis.

Connections. 21:47--57.

Beaulieu C. 2002. The basis of anisotropic water diffusion in the

nervous system—a technical review. NMR Biomed. 15:435--455.

Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. 2007.

Probabilistic diffusion tractography with multiple fibre orientations:

what can we gain? Neuroimage. 34:144--55.

Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG,

Clare S, Matthews PM, Brady JM, Smith SM. 2003. Characterization

and propagation of uncertainty in diffusion-weighted MR imaging.

Magn Reson Med. 50:1077--1088.

Catani M, Howard RJ, Pajevic S, Jones DK. 2002. Virtual in vivo

interactive dissection of white matter fasciculi in the human brain.

Neuroimage. 17:77--94.

Catani M, Jones DK, Donato R, Ffytche DH. 2003. Occipito-temporal

connections in the human brain. Brain. 126:2093--2107.

Cavanna AE, Trimble MR. 2006. The precuneus: a review of its

functional anatomy and behavioural correlates. Brain. 129:564--83.

Concha L, Beaulieu C, Gross DW. 2005. Bilateral limbic diffusion

abnormalities in unilateral temporal lobe epilepsy. Ann Neurol.

57:188--196.

Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS,

McKinstry RC, Burton H, Raichle ME. 1999. Tracking neuronal fiber

pathways in the living human brain. Proc Natl Acad Sci USA.

96:10422--10427.

Costa LD, Rodrigues FA, Travieso G, Boas PRV. 2007. Characterization of

complex networks: a survey of measurements. Adv Phys.

56:167--242.

Crick F, Jones E. 1993. Backwardness of human neuroanatomy. Nature.

361:109--110.

Crosby EC, Humphrey T, Lauer EW. 1962. Correlative anatomy of the

nervous system. New York: Macmillian.

Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. 2005. Scale-

free brain functional networks. Phys Rev Lett. 94:018102.

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in

the primate cerebral cortex. Cereb Cortex. 1:1--47.

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. 2006.

Spontaneous neuronal activity distinguishes human dorsal

and ventral attention systems. Proc Natl Acad Sci USA. 103:

10046--10051.

Freeman LC. 1977. Set of measures of centrality based on betweenness.

Sociometry. 40:35--41.

Girvan M, Newman ME. 2002. Community structure in social and

biological networks. Proc Natl Acad Sci USA. 99:7821--7826.

Goh KI, Kahng B, Kim D. 2001. Universal behavior of load distribution

in scale-free networks. Phys Rev Lett. 87:278701.

Gong G, Jiang T, Zhu C, Zang Y, Wang F, Xie S, Xiao J, Guo X. 2005.

Asymmetry analysis of cingulum based on scale-invariant parame-

terization by diffusion tensor imaging. Hum Brain Mapp. 24:92--98.

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R,

Thiran JP. 2007. Mapping human whole-brain structural networks

with diffusion MRI. PLoS ONE. 2:e597.

He Y, Chen ZJ, Evans AC. 2007. Small-world anatomical networks in the

human brain revealed by cortical thickness from MRI. Cereb Cortex.

17:2407--2419.

Cerebral Cortex March 2009, V 19 N 3 535

 at Portland State U
niversity on June 18, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

Supplementary Tables 1
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://cercor.oxfordjournals.org/


He Y, Chen ZJ, Evans AC. 2008. Structural insights into aberrant

topological patterns of large-scale cortical networks in Alzheimer’s

disease. J Neurosci. 28(18):4756--4766.

Highley JR, Walker MA, Esiri MM, Crow TJ, Harrison PJ. 2002. Asymmetry

of the uncinate fasciculus: a post-mortem study of normal subjects

and patients with schizophrenia. Cereb Cortex. 12:1218--1224.

Hilgetag CC, Burns GA, O’Neill MA, Scannell JW, Young MP. 2000.

Anatomical connectivity defines the organization of clusters of

cortical areas in the macaque monkey and the cat. Philos Trans R

Soc Lond B Biol Sci. 355:91--110.

Hilgetag CC, O’Neill MA, Young MP. 2000. Hierarchical organization of

macaque and cat cortical sensory systems explored with a novel

network processor. Philos Trans R Soc Lond B Biol Sci. 355:71--89.

Hilgetag CC, ONeill MA, Young MP. 1996. Indeterminate organization of

the visual system. Science. 271:776--777.

Honey CJ, Kotter R, Breakspear M, Sporns O. 2007. Network structure

of cerebral cortex shapes functional connectivity on multiple time

scales. Proc Natl Acad Sci USA. 104:10240--10245.

Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y,

Melie-Garcia L. 2008. Studying the human brain anatomical network

via diffusion-weighted MRI and Graph Theory. Neuroimage.

40:1064--1076.

Jones DK, Simmons A, Williams SCR, Horsfield MA. 1999. Non-invasive

assessment of axonal fiber connectivity in the human brain via

diffusion tensor MRI. Magn Reson Med. 42:37--41.

Kaiser M, Hilgetag CC. 2004. Modelling the development of cortical

networks. Neurocomputing. 58--60:297--302.

Kaiser M, Martin R, Andras P, Young MP. 2007. Simulation of robustness

against lesions of cortical networks. Eur J Neurosci. 25:3185--3192.

Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S. 2000.

Current concepts in neuroanatomical tracing. Prog Neurobiol.

62:327--351.

Latora V, Marchiori M. 2001. Efficient behavior of small-world networks.

Phys Rev Lett. 87:198701.

Le Bihan D. 2003. Looking into the functional architecture of the brain

with diffusion MRI. Nat Rev Neurosci. 4:469--480.

Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. 2008.

Microstructural maturation of the human brain from childhood to

adulthood. Neuroimage. 40:1044--55.

Maslov S, Sneppen K. 2002. Specificity and stability in topology of

protein networks. Science. 296:910--913.

Mesulam MM. 2000. Principles of behavioural and cognitive neurology.

New York: Oxford University Press.

Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V. 2006.

Using graph theoretical analysis of multi channel EEG to evaluate the

neural efficiency hypothesis. Neurosci Lett. 402:273--277.

Mori S, Crain BJ, Chacko VP, van Zijl PC. 1999. Three-dimensional

tracking of axonal projections in the brain by magnetic resonance

imaging. Ann Neurol. 45:265--269.

Mori S, van Zijl PC. 2002. Fiber tracking: principles and strategies—a

technical review. NMR Biomed. 15:468--480.

Newman MEJ. 2003. The structure and function of complex networks.

SIAM Rev. 45:167--256.

Nolte J. 1993. The human brain: an introduction to its functional

anatomy. St Louis (MO): Mosby-Year Book.

Nucifora PG, Verma R, Melhem ER, Gur RE, Gur RC. 2005. Leftward

asymmetry in relative fiber density of the arcuate fasciculus.

Neuroreport. 16:791--794.

Parker GJ, Alexander DC. 2005. Probabilistic anatomical connectivity

derived from the microscopic persistent angular structure of

cerebral tissue. Philos Trans R Soc Lond B Biol Sci. 360:893--902.

Petrides M. 2005. Lateral prefrontal cortex: architectonic and functional

organization. Philos Trans R Soc Lond B Biol Sci. 360:781--795.

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E.

2005a. Neurophysiological architecture of functional magnetic

resonance images of human brain. Cereb Cortex. 15:1332--1342.

Salvador R, Suckling J, Schwarzbauer C, Bullmore E. 2005b. Undirected

graphs of frequency-dependent functional connectivity in whole

brain networks. Philos Trans R Soc Lond B Biol Sci. 360:937--946.

Scannell JW, Young MP. 1993. The connectional organization of neural

systems in the cat cerebral cortex. Curr Biol. 3:191--200.

Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. 2004. Organization,

development and function of complex brain networks. Trends Cogn

Sci. 8:418--425.

Sporns O, Honey CJ, Kotter R. 2007. Identification and classification of

hubs in brain networks. PLoS ONE. 2:e1049.

Sporns O, Tononi G, Edelman GM. 2000. Theoretical neuroanatomy:

relating anatomical and functional connectivity in graphs and

cortical connection matrices. Cereb Cortex. 10:127--141.

Sporns O, Tononi G, Kotter R. 2005. The human connectome:

a structural description of the human brain. PLoS Comput Biol.

1:e42.

Sporns O, Zwi JD. 2004. The small world of the cerebral cortex.

Neuroinformatics. 2:145--162.

Stam CJ. 2004. Functional connectivity patterns of human magneto-

encephalographic recordings: a ‘small-world’ network? Neurosci

Lett. 355:25--28.

Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. 2007. Small-

world networks and functional connectivity in Alzheimer’s disease.

Cereb Cortex. 17:92--99.

Strogatz SH. 2001. Exploring complex networks. Nature. 410:268--276.

Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW. 1996. Three-

dimensional statistical analysis of sulcal variability in the human

brain. J Neurosci. 16:4261--4274.

Toga AW, Thompson PM. 2003. Mapping brain asymmetry. Nat Rev

Neurosci. 4:37--48.

Tononi G, Sporns O, Edelman GM. 1994. A measure for brain

complexity: relating functional segregation and integration in the

nervous system. Proc Natl Acad Sci USA. 91:5033--5037.

Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. 2003. Diffusion MRI of

complex neural architecture. Neuron. 40:885--895.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,

Delcroix N, Mazoyer B, Joliot M. 2002. Automated anatomical

labeling of activations in SPM using a macroscopic anatomical

parcellation of the MNI MRI single-subject brain. Neuroimage.

15:273--289.

Vernooij MW, Smits M, Wielopolski PA, Houston GC, Krestin GP, van

der Lugt A. 2007. Fiber density asymmetry of the arcuate fasciculus

in relation to functional hemispheric language lateralization in both

right- and left-handed healthy subjects: a combined fMRI and DTI

study. Neuroimage. 35:1064--1076.

Wakana S, Jiang HY, Nagae-Poetscher LM, van Zijl PCM, Mori S. 2004.

Fiber tract-based atlas of human white matter anatomy. Radiology.

230:77--87.

Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’

networks. Nature. 393:440--442.

Westbury CF, Zatorre RJ, Evans AC. 1999. Quantifying variability in the

planum temporale: a probability map. Cereb Cortex. 9:392--405.

Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. 1998.

Automated image registration: I. General methods and intrasubject,

intramodality validation. J Comput Assist Tomogr. 22:139--152.

Xu DR, Mori S, Solaiyappan M, van Zijl PCM, Davatzikos C. 2002. A

framework for callosal fiber distribution analysis. Neuroimage.

17:1131--1143.

Young MP. 1993. The organization of neural systems in the primate

cerebral cortex. Proc R Soc Lond B Biol Sci. 252:13--18.

536 Anatomical Network of Human Cerebral Cortex d Gong et al.

 at Portland State U
niversity on June 18, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/

