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antigen-presenting cells or cytokines. In either
case, the current observations exclude models in
which each naïve T cell yields progeny with the
same distribution of cells of either short- or long-
term potential. Thus, although our data do not
evaluate the role of asymmetric division as a
mechanism to generate daughter cells with dif-
ferent fates, they do show that asymmetric divi-
sion by itself cannot explain the disparity between
individual T cell families that is experimentally
observed. Rather, a strong variation between fam-
ilies in the expansion of proximal and distal
daughter cells needs to be invoked to arrive at the
heterogeneity observed here. Lastly, the observa-
tion of strong heterogeneity at the single-cell lev-
el indicates that T cell responses are made up of
“averages,” a behavior reminiscent of recent analy-
ses of stem-cell renewal (19). Thus, although the
differentiation and expansion of the combined
T cell population follow a uniform course, the
fate of individual naïve T cells is unpredictable.
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Neural Decoding of Visual
Imagery During Sleep
T. Horikawa,1,2 M. Tamaki,1* Y. Miyawaki,3,1† Y. Kamitani1,2‡

Visual imagery during sleep has long been a topic of persistent speculation, but its private
nature has hampered objective analysis. Here we present a neural decoding approach in which
machine-learning models predict the contents of visual imagery during the sleep-onset period,
given measured brain activity, by discovering links between human functional magnetic
resonance imaging patterns and verbal reports with the assistance of lexical and image databases.
Decoding models trained on stimulus-induced brain activity in visual cortical areas showed
accurate classification, detection, and identification of contents. Our findings demonstrate that
specific visual experience during sleep is represented by brain activity patterns shared by
stimulus perception, providing a means to uncover subjective contents of dreaming using
objective neural measurement.

Dreaming is a subjective experience dur-
ing sleep often accompanied by vivid
visual contents. Previous research has

attempted to link physiological states with dream-
ing (1–3), but none has demonstrated how spe-
cific visual contents are represented in brain
activity. The advent of machine-learning–based
analysis allows for the decoding of stimulus- and
task-induced brain activity patterns to reveal vi-
sual contents (4–9).We extended this approach to
the decoding of spontaneous brain activity during
sleep (Fig. 1A). Although dreaming has often
been associated with the rapid-eye movement

(REM) sleep stage, recent studies have demon-
strated that dreaming is dissociable from REM
sleep and can be experienced during non-REM
periods (10). We focused on visual imagery (hal-
lucination) experienced during the sleep-onset
(hypnagogic) period (sleep stage 1 or 2) (11, 12)
because it allowed us to collect many observa-
tions by repeating awakenings and recording par-
ticipants’ verbal reports of visual experience.
Reports at awakenings in sleep-onset and REM
periods share general features such as frequency,
length, and contents, while differing in several as-
pects, including the affective component (13–15).
We analyzed verbal reports using a lexical data-
base to create systematic labels for visual con-
tents. We hypothesized that contents of visual
imagery during sleep are represented at least
partly by visual cortical activity patterns shared
by stimulus representation. Thus, we trained de-
coders on brain activity induced by natural im-
ages from Web image databases.

Three people participated in the functional
magnetic resonance imaging (fMRI) sleep exper-

iments (Fig. 1A), in which they were woken when
an electroencephalogram signature was detected
(16) (fig. S1), and they were asked to give a
verbal report freely describing their visual ex-
perience before awakening [table S1; duration,
34 T 19 s (mean T SD)]. We repeated this pro-
cedure to attain at least 200 awakenings with a
visual report for each participant. On average, we
awakened participants every 342.0 s, and visual
contents were reported in over 75% of the awaken-
ings (Fig. 1B). Offline sleep stage scoring (fig.
S2) further selected awakenings to exclude con-
tamination from the wake stage in the period
immediately before awakening (235, 198, and
186 awakenings for participants 1 to 3, respec-
tively, used for decoding analyses) (16).

From the collected reports, words describing
visual objects or scenes were manually extracted
and mapped to WordNet, a lexical database in
which semantically similar words are grouped
as “synsets” in a hierarchical structure (17, 18)
(Fig. 2A). Using a semantic hierarchy, we grouped
extracted visual words into base synsets that ap-
peared in at least 10 reports from each participant
(26, 18, and 16 synsets for participants 1 to 3, re-
spectively; tables S2 to S4) (16). The fMRI data
obtained before each awakeningwere labeledwith
a visual content vector, each element of which
indicated the presence or absence of a base synset
in the subsequent report (Fig. 2B and fig. S3).We
also collected images depicting each base synset
from ImageNet (19), an image database in which
Web images are grouped according to WordNet,
or from Google Images, for decoder training.

We constructed decoders by training linear
support vector machines (SVMs) (20) on fMRI
data measured while each person viewed Web
images for each base synset. Multivoxel patterns
in the higher visual cortex [HVC; the ventral re-
gion covering the lateral occipital complex (LOC),
fusiform face area (FFA), and parahippocampal
place area (PPA); 1000 voxels], the lower visual
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cortex (LVC; V1 to V3 combined; 1000 voxels),
or the subareas (400 voxels for each area) were
used as the input for the decoders (16).

First, a binary classifier was trained on the
fMRI responses to stimulus images of two base
synsets (three-volume averaged data correspond-
ing to the 9-s stimulus block) and tested on the
sleep samples [three-volume (9-s) averaged data
immediately before awakening] that contained
exclusively one of the two synsets while ignoring
other concurrent synsets (16) (Fig. 3A). We only
used synset pairs in which one of the synsets ap-
peared in at least 10 reports without co-occurrence
with the other (201, 118, and 86 pairs for par-
ticipants 1 to 3, respectively). The distribution of
the pairwise decoding accuracies for the HVC is
shown togetherwith that from the decoders trained
on the same stimulus-induced fMRI data with
randomly shuffled synset labels (Fig. 3B; fig. S4,
individual participants). The mean decoding ac-
curacy was 60.0%, 95% confidence interval (CI)
[(59.0, 61.0%); three participants pooled], which

was significantly higher than that of the label-
shuffled decoders with both Wilcoxon rank-sum
and permutation tests (P < 0.001).

To look into the commonality of brain activity
between perception and sleep-onset imagery, we
focused on the synset pairs that produced content-
specific patterns in each of the stimulus and sleep
experiments (pairs with high cross-validation clas-
sification accuracy within each of the stimulus
and sleep data sets; figs. S5 and S6) (16). With
the selected pairs, even higher accuracies were
obtained [mean = 70.3%, CI (68.5, 72.1); Fig.
3B, dark blue; fig. S4, individual participants;
tables S5 to S7, lists of the selected pairs], indi-
cating that content-specific patterns are highly
consistent between perception and sleep-onset
imagery. The selection of synset pairs, which
used knowledge of the test (sleep) data, does not
bias the null distribution by the label-shuffled
decoders (Fig. 3B, black), because the content
specificity in the sleep data set alone does not
imply commonality between the two data sets.

Additional analyses revealed that the multi-
voxel pattern, rather than the average activity
level, was critical for decoding (figs. S7 and S8).
We also found that the variability of decoding
performance among synset pairs can be accounted
for at least partly by the semantic differences
between paired synsets. The decoding accuracy
for synsets paired across meta-categories (human,
object, scene, and others; tables S2 to S4) was
significantly higher than that for synsets within
meta-categories (Wilcoxon rank-sum test, P <
0.001; Fig. 3C and fig. S9). However, even with-
in a meta-category, the mean decoding accuracy
significantly exceeded chance level, indicating
specificity to fine object categories.

The mean decoding accuracies for different
visual areas are shown in Fig. 3D (fig. S10,
individual participants). The LVC scored 54.3%,
CI (53.4, 55.2) for all pairs, and 57.2%, CI (54.2,
60.2) for selected pairs (three participants pooled).
The performance was significantly above chance
level but worse than that for the HVC. Individual

A B

Participant 1

Participant 2

Participant 3

Fig. 1. Experimental overview. (A) fMRI data were acquired from sleeping partic-
ipants simultaneously with polysomnography. Participants were awakened during sleep
stage 1 or 2 (red dashed line) and verbally reported their visual experience during

sleep. fMRI data immediately before awakening [an average of three volumes (= 9 s)] were used as the input for main decoding analyses (sliding time windows
were used for time course analyses). Words describing visual objects or scenes (red letters) were extracted. The visual contents were predicted using machine-
learning decoders trained on fMRI responses to natural images. (B) The numbers of awakenings with and without visual contents are shown for each participant
(with numbers of experiments in parentheses).

A B
Participant 2

Fig. 2. Visual content labeling. (A) Words describing visual objects or
scenes (red) were mapped onto synsets of the WordNet tree. Synsets were
grouped into base synsets (blue frames) located higher in the tree. (B) Visual reports (participant 2) are represented by visual content vectors, in which the
presence or absence of the base synsets in the report at each awakening is indicated by white or black, respectively. Examples of images used for decoder training
are shown for some of the base synsets.
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areas (V1 to V3, LOC, FFA, and PPA) showed a
gradual increase in accuracy along the visual pro-
cessing pathway, mirroring the progressively com-
plex response properties from low-level image
features to object-level features (21). When the

time window was shifted, the decoding accuracy
peaked around 0 to 10 s before awakening (Fig.
3E and fig. S11; no correction for hemodynamic
delay). The high accuracies after awakening may
be due to hemodynamic delay and the large time

window. Thus, verbal reports are likely to reflect
brain activity immediately before awakening.

To read out richer contents given arbitrary
sleep data, we next performed a multilabel de-
coding analysis in which the presence or absence

A

B C

D

E

Fig. 3. Pairwise decoding. (A) Schematic overview. (B) Distributions of
decoding accuracies with original and label-shuffled data for all pairs
(light blue and gray) and selected pairs (dark blue and black) (three
participants pooled). (C) Mean accuracies for the pairs within and across
meta-categories (synsets in others were excluded; numbers of pairs are in
parentheses). (D) Accuracies across visual areas (numbers of selected pairs

for V1, V2, V3, LOC, FFA, PPA, LVC, and HVC: 45, 50, 55, 70, 48, 78, 55,
and 97). (E) Time course (HVC and LVC; averaged across pairs and par-
ticipants). The plot shows the performance with the 9-s (three-volume) time
window centered at each point (gray window and arrow for main analyses).
For all results, error bars or shadings indicate 95% CI, and dashed lines
denote chance level.

A

B

C D

E F

Participant 2

Participant 2

Fig. 4. Multilabel decoding. (A) Schematic overview. (B) ROC curves
(left) and AUCs (right) are shown for each synset (participant 2; asterisks,
Wilcoxon rank-sum test, P < 0.05). (C) AUC averaged within meta-
categories for different visual areas (three participants pooled; numbers
of synsets in parentheses). (D) Example time course of synset scores for a
single sleep sample (participant 2, 118th; color legend as in (B); reported
synset, “character,” in bold). (E) Time course of averaged synset scores for
reported synsets (red) and unreported synsets with high or low (blue or
gray) co-occurrence with reported synsets (averaged across awakenings
and participants). Scores are normalized by the mean magnitude in each
participant. (F) Identification analysis. Accuracies are plotted against
candidate set size for original and extended visual content vectors (av-
eraged across awakenings and participants). Because Pearson’s correla-
tion coefficient could not be calculated for vectors with identical elements,
such samples were excluded. For all results, error bars or shadings in-
dicate 95% CI, and dashed lines denote chance level.
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of each base synset was predicted by a synset
detector constructed from a combination of pair-
wise decoders (Fig. 4A) (16). The synset detector
provided a continuous score indicating how like-
ly the synset is to be present in each report. We
calculated receiver operating characteristic (ROC)
curves for each base synset by shifting the detec-
tion threshold for the output score (Fig. 4B, the
HVC in participant 2, time window immediately
before awakening; fig. S12, all participants), and
the detection performance was quantified by the
area under the curve (AUC). Although the per-
formance varied across synsets, 18 out of the total
60 synsets were detected with above-chance lev-
els (Wilcoxon rank-sum test, uncorrected P <
0.05), greatly exceeding the number of synsets
expected by chance (0.05 × 60 = 3).

Using the AUC, we compared the decoding
performance for individual synsets grouped into
meta-categories in different visual areas. Overall,
the performance was better in the HVC than in
the LVC, consistent with the pairwise decoding
performance [fig. S13; three participants pooled;
analysis of variance (ANOVA), P = 0.003]. Al-
though V1 to V3 did not show different perform-
ances across meta-categories, the higher visual
areas showed a marked dependence on meta-
categories (Fig. 4C and fig. S13). In particular,
the FFA showed better performance with human
synsets, whereas the PPA showed better perform-
ance with scene synsets [ANOVA (interaction),
P = 0.001], consistent with the known response
characteristics of these areas (22, 23). The LOC
and FFA showed similar results, presumably be-
cause our functional localizers selected partially
overlapping voxels.

The output scores for individual synsets showed
diverse and dynamic profiles in each sleep sam-
ple (Fig. 4D, fig. S14, and movies S1 and S2)
(16). These profiles may reflect a dynamic varia-
tion of visual contents, including those expe-
rienced even before the period near awakening.
On average, there was a general tendency for the
scores for reported synsets to increase toward the
time of awakening (Fig. 4E and fig. S15). Synsets
that did not appear in reports showed greater
scores if they had a high co-occurrence relation-
ship with reported synsets (Fig. 4E; synsets with
the top 15% conditional probabilities given a re-
ported synset, calculated from the whole-content
vectors in each participant). The effect of co-
occurrence is rather independent of that of se-
mantic similarity (Fig. 3C), because both factors
(high/low co-occurrence and within/across meta-
categories) had highly significant effects on the
scores of unreported synsets (timewindow imme-
diately before awakening; two-way ANOVA, P <
0.001, three participants pooled) with moderate
interaction (P = 0.016). The scores for reported
synsets were significantly higher than those for
unreported synsets even within the same meta-
category (Wilcoxon rank-sum test, P < 0.001).
Verbal reports are unlikely to describe full details
of visual experience during sleep, and it is pos-
sible that contents with high general co-occurrence

(such as street and car) tend to be experienced
together even when all are not reported. There-
fore, high scores for the unreported synsets may
indicate unreported but actual visual contents
during sleep.

Finally, to explore the potential of multilabel
decoding to distinguish numerous contents, we
performed identification analysis (7, 8). The
output scores (score vector) were used to identify
the true visual content vector among a variable
number of candidates (true vector + random vec-
tors with matched probabilities for each synset)
by selecting the candidate most correlated with
the score vector (repeated 100 times for each
sleep sample to obtain the correct identification
rate) (16). The performance exceeded chance lev-
el across all set sizes (Fig. 4F, HVC, three par-
ticipants pooled; fig. S16, individual participants),
although the accuracies were not as high as those
achieved using stimulus-induced brain activity in
previous studies (7, 8). The same analysis was
performed with extended visual content vectors
in which unreported synsets having a high co-
occurrence with reported synsets (top 15% con-
ditional probability) were assumed to be present.
The results showed that extended visual content
vectors were better identified (Fig. 4F and fig.
S16), suggesting that multilabel decoding out-
puts may represent both reported and unreported
contents.

Together, our findings provide evidence that
specific contents of visual experience during sleep
are represented by, and can be read out from,
visual cortical activity patterns shared with stim-
ulus representation. Our approach extends previ-
ous research on the (re)activation of the brain
during sleep (24–27) and the relationship be-
tween dreaming and brain activity (2, 3, 28) by
discovering links between complex brain activ-
ity patterns and unstructured verbal reports using
database-assistedmachine-learning decoders. The
results suggest that the principle of perceptual
equivalence (29), which postulates a common
neural substrate for perception and imagery, gen-
eralizes to spontaneously generated visual expe-
rience during sleep. Althoughwe have demonstrated
semantic decoding with the HVC, this does not
rule out the possibility of decoding low-level
features with the LVC. The decoding presented
here is retrospective in nature: Decoders were
constructed after sleep experiments based on the
collected reports. However, because reported syn-
sets largely overlap between the first and the last
halves of the experiments (59 out of 60 base
synsets appeared in both), the same decoders
may apply to future sleep data. The similarity
between REM and sleep-onset reports (13–15)
and the visual cortical activation during the REM
sleep (24, 25, 28) suggest that the same decoders
could also be used to decode REM imagery. Our
method may further work beyond the bounds of
sleep stages and reportable experience to uncover
the dynamics of spontaneous brain activity in
association with stimulus representation. We ex-
pect that it will lead to a better understanding of

the functions of dreaming and spontaneous neu-
ral events (10, 30).
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