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Staying awake: top-down systems control of sleep 
HW Steenland*

Abstract
Introduction
Since the dawn of the Industrial 
Revolution and Thomas Edison’s 
improvements on the light bulb, 
we have often had no real excuse to 
sleep, but to say ‘I am sleepy’. Caf-
feine and sensory stimulation are the 
most common methods to forestall 
sleep. However, the primary reason 
that people choose to put off sleep 
is that they are preoccupied with a 
superseding interest. There are two 
major situations, which appear to 
dictate whether or not we sacrifice 
sleep, and these include the antici-
pation of a reward and the anticipa-
tion of punishment. Because these 
situations do not necessarily involve 
ongoing sensory or pharmacological 
stimulation, the origin of this influ-
ence may precipitate from the ex-
ecutive functions of the cortex. This 
review examines the potential role of 
the prefrontal cortex as a candidate 
for top-down systems control over 
sleep propensity. It is postulated 
that top-down systems control over 
sleep may be accomplished through 
interaction with the sleep switch in 
combination with activation of the 
ascending arousal system. The inten-
tion here is to generate discussion, 
interest and a potential theoretical 
framework from which to examine 
neurophysiological mechanisms.
Conclusion
We should be mindful that a compre-
hensive account for how we forego 
sleep will require an explanation of 
how a single abstract concept (such 
as the anticipation of money or 

 punishment) can seed a cascade of 
goal-directed processes which can 
take acute precedence over sleep 
 homeostasis.

Introduction
The two-process model of sleep 
regulation and threshold control
The two-process model of sleep regu-
lation developed by Borbély1,2 is one 
of the most well-recognised models 
to explain the interaction between 
circadian processes and sleep ho-
meostasis. The architecture of this 
model consists of a sinusoidal circa-
dian process and a parallel skewed 
sine-wave sleep process (Figure 1).  
The circadian process (process C)  
is defined by cyclic oscillations in 
sleep propensity and is largely in-
dependent of the sleep–wake cycle. 
A concrete example of process C 
is the cyclical change in body tem-
perature that occurs throughout the 
day3. By contrast, process S (sleep) 
represents the homeostatic sleep 
need that builds up during the day 
and gradually declines throughout 
subsequent sleep. A direct metric of 
process S appears to be slow-wave 
activity (SWA), which consists of the 
sum of the signal power (~0.5–4.5 Hz  
band) recorded from cortical elec-
troencephalogram or local field 
potentials2. SWA also appears to 
reflect sleep depth and sleep in-
tensity4. Just as process S gradu-
ally declines after the initiation of 
sleep, so does SWA5–7. Consistently, 
sleep deprivation results in a re-
bound of SWA in proportion to the 
duration of prior wakefulness8–10. 
Finally, naps taken later in the day, 
as compared to earlier in the day, 
have a larger propensity of SWA11,12, 
corroborating that process S builds 
up throughout a day of wakeful-
ness. The two-process model did 

not completely explain how ‘deci-
sions’ to remain awake can control 
or antagonise sleep onset, other 
than to postulate that a threshold 
termed ‘H’ could limit process S13 
(Figure 1). According to Borbély et 
al.13, when we are sleep deprived by 
external situations (e.g. socialising), 
the ‘H’ threshold is raised. Concep-
tually, this fits with the model of 
sleep propensity of Johns. However, 
Johns14,15 also included a second-
ary wake drive, which is partially 
under volitional control and would 
account for how one could willingly 
forego sleep. For the sake of fore-
stalling terminological confusion, 
and an unnecessary re-conceptual-
isation of the two-process model of 
sleep, the term ‘top-down systems 
control’ or ‘TDSC’ will be used to de-
note neural systems that could raise 
the threshold ‘H’ of the two-process 
model, possibly through influence 
of the ascending arousal, cortico-
thalamic, circadian and sleep switch 
circuits, consequently changing 
sleep propensity (Figure 1). Moreo-
ver, for this early conceptualisation, 
it is not necessary to view TDSC 
as a tonic ‘drive’, but as an avail-
able mechanism recruited to help 
 maintain wakefulness under par-
ticular situations. Experimentally, 
the impact of volition on sleep on-
set can be appreciated from studies 
using the maintenance of wakeful-
ness test, whereby simply switch-
ing the instruction to stay awake as 
opposed to falling asleep yields a  
longer sleep latency16,17. To un-
derstand how real-life situations, 
such as the anticipation of reward 
or the anticipation of punish-
ment could change sleep propen-
sity, we should first examine briefly 
what is being restored by sleep  
homeostasis.
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take a step further and explain the 
mechanisms through which the ‘H’ 
threshold can be raised. The TDSC 
hypothesis makes the tentative as-
sumption that a distributed neural 
system rather than a local metabolic 
process is responsible for raising the 
‘H’ threshold in order to postpone 
sleep onset when one needs to avoid 
danger or achieve particular goals. 
Moreover, the TDSC over sleep home-
ostasis should be constrained by its 
own local homeostatic reserve, and it 
is to this concept that we now turn. 
The review to follow discusses the 
top-down systems control of sleep.

Theoretical constraints of TDSC: a 
brief comparison to breathing
When volitionally holding our 
breath, we typically cease when 
we still have about three-fourths of 
oxygen left30,31. This occurs well be-
fore fainting, yet psychologically we 
feel we are nearly out of reserve30,31. 
Thus, there appears to be two major 
system thresholds. The first thresh-
old appears to be related to maximal 
psychological discomfort and drives 
behavioural activation, which con-
sists of the refocusing of attention 
to get the required resource before 
the reserve runs out (Figure 1). The 
second threshold is metabolic and 
consists of a full inability to execute 
action (i.e. fainting), because the very 
action to restore homeostatic balance  
requires a homeostatic reserve.

Given that sleep is homeostatically 
regulated, it is possible that a similar 
bi-threshold process is imposed on 
TDSC. For example, one could main-
tain wakefulness and performance, 
with TDSC for several hours past 
one’s typical sleep time, with the goal 
of acquiring money (e.g. first night of 
shift work). Consistently, it has been 
shown that wakefulness and perfor-
mance can be maintained at baseline 
during a vigilance task when mon-
etary incentives are given even after 
36 h of sleep deprivation32. Moreover, 
simply providing the subject with 
knowledge of their performance is 

(e.g. glutamate22, adenosine23) or 
metabolic clearance24, saturated syn-
aptic plasticity25,26, memory reactiva-
tion27,28 (response to cellular stress29)  
or some other yet unidentified pro-
cess is beyond the scope of this re-
view. For the sake of argument and 
simplicity, the term ‘homeostatic bal-
ance’ will be used to refer to as a state 
of recovered sleep. It is assumed that 
this balance is necessary for opti-
mal daily function and to prevent us 
from simply collapsing into slumber. 
For a complete explanation of sleep 
as a homeostatic entity, we need to 

Homeostatic balance
The determinants of homeostatic 
SWA appear to be related to two fac-
tors. The first factor is composed 
of synaptic potentiation and the 
corresponding molecular changes 
that occur, simply by being awake18. 
The second factor appears to be 
use  dependent and can drive local 
 increases in SWA over specific ar-
eas of the brain that have been in-
volved in the learning process19–21. 
Whether the quantity of SWA (or ho-
meostatic pressure) is related to the 
build-up of extracellular  metabolites  

Figure 1: The two-process model of sleep regulation with modulation by TDSC. 
The circadian process C (red line) oscillates throughout the day providing 
wakefulness drive. Process S (blue line) slowly builds up during the day until it 
reaches a threshold (solid black line) at which point sleep is likely. This typically 
occurs during the falling phase of body temperature. TDSC (green line) can only 
be applied during wakefulness and has the capacity to postpone sleep onset 
when cued or turned on for particular situations. However, this resource is self-
limiting since its optimal functioning is dependent on restitution from sleeping 
itself. This self-limit ensures that the process cannot continue indefinitely and 
that sleep will eventually be reached. The recognition that one should sleep, in 
spite of our goals, may be related to the experience of sleepiness (lapse 1 and 2) 
and the approach to threshold 1. Before cognitive function degrades too far, it 
is advantageous to redirect one’s goals to find a safe place to sleep. In the event 
that our goals are not refocused, TDSC will run down (thresh 2), sleep pressure 
will rise and we may fall asleep (e.g. driving home from work) without realising 
the cues of sleepiness. In the present model, TDSC raises the threshold of the 
two-process model. However, the self-limiting properties of TDSC gradually re-
turn this threshold to normal so that sleep will eventually occur. Figure adapted 
from 2 with permission from Elsevier.
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however the further we are from this 
set-point, the less likely the nerv-
ous system will react to these cues 
since TDSC may itself require sleep 
homeostasis. In summary, a variety 
of cues (behavioural and psychologi-
cal) may provide us with important 
feedback regarding subjective sleepi-
ness while we are engaged in goal-
directed activity on a background of 
homeostatic sleep pressure.  

The architecture of the sleep 
system and points of potential 
TDSC
A large body of evidence implicates 
the ventrolateral preoptic area 
(VLPO) as a putative sleep switch for 
transitioning from wakefulness to 
slow-wave sleep by shutting down 
the ascending arousal system. For 
a detailed review of this literature, 
the reader is directed elsewhere53–55. 
There are several ways in which the 
VLPO could be antagonised. The 
most well-developed idea is that the 
ascending arousal system is activated  
through orexinergic inputs, the net 
effect of which would be inhibition 
of the VLPO54,56. Indeed, the link be-
tween orexin in feeding and behav-
ioural arousal might explain why we 
fall asleep after a meal56. Interesting-
ly, simply shifting a meal schedule so 
that food is presented during the nat-
ural sleep time of rats is sufficient for 
their sleep–wake cycle to switch so 
they sleep during the opposite pho-
toperiod (rats become diurnal)57,58, 
implicating that alternative homeo-
static drives could shape sleep onset.

Similar to the VLPO, there is also 
evidence that the median preoptic 
nucleus (MnPO) may act as a sleep 
switch. For example, the MnPO sends 
inhibitory input to the ascending 
arousal system59,60 and is sensitive 
to homeostatic sleep pressure61,62. 
Additionally, inhibition of the MnPO 
can produce prolonged wakeful-
ness in rats59 while activation can 
increase NREM sleep59. Finally, the 
MnPO neurons increase their activity 
in response to sleep pressure while 

to cortical micro-sleeps, which con-
sist of a brief slowing (for 3–15 s) of 
cortical EEG into the theta range40–44. 
The psychomotor vigilance task is 
one of the most well-used methods 
to assess micro-sleeps in humans. It 
consists of measuring reaction times 
as subjects get progressively sleepy, 
and because of its nearly negligible 
learning curve, performance can 
be assessed without the worry of 
learning effects confounding inter-
pretations (for an extensive review 
see45). Probably the most important 
with respect to TDSC is the finding 
that compensatory effort is engaged 
in vigilance tasks32, possibly owing 
to ongoing error monitoring. In ad-
dition, attentional lapses have been 
found to occur coincident with de-
activations of the anterior and pre-
frontal cortical network36,46, while 
attentional recovery was found to 
involve inferior-frontal and tempo-
ral-parietal cortex activity46. Thus, in 
a natural environment (as opposed 
to the monotony of driving a car), 
micro-sleeps and their behavioural 
and psychological consequences may 
be sufficient to cue the brain that the 
first threshold has been surpassed so 
as either to apply more effort or re-
orient one’s goals to seek a safe and 
comfortable shelter for rest and pos-
sibly sleep. In part, this might explain 
why tests of subjective/situational 
sleepiness do not accurately predict 
the latency to sleep in a monotonous 
environment47,48. However, subjective 
ratings of sleepiness do predictably 
co-vary with circadian cycles49,50, 
increase with sleep deprivation50–52 
and the accumulation of frontal-cor-
tical theta rhythms (4–8 Hz)52. Thus, 
subjective sleepiness may reflect a 
forewarning system to find an opti-
mal place to sleep rather than pre-
cisely predicting sleep propensity. 
Furthermore, in accordance with the 
bi-threshold postulate (above), as we 
are moved dangerously further from 
homeostatic set-point, it would be ex-
pected that the number of cues relat-
ed to subjective  sleepiness increases; 

sufficient to reduce reaction time im-
pairments with sleep deprivation33. 
When sufficient performance deficits 
or lapses in attention occur in spite 
of TDSC, this could represent a first 
threshold (Figure 1) and might pro-
vide a cue to the subject to find a safe 
place to sleep. As a person is pushed 
further from their homeostatic set-
point with continued wakefulness, 
the effectiveness of the TDSC system 
may decline sufficiently, reaching a 
second threshold, at which point the 
subject may not recognise cues relat-
ed to sleepiness and therefore lapse 
unexpectedly into sleep (analogous 
to fainting). Consistently, with ex-
tended sleep deprivation, monetary 
incentives are insufficient at restor-
ing performance on an auditory vigi-
lance task, and subjects may nod off 
to sleep during the task32, suggesting 
that the threshold for systems failure 
(threshold 2) may have been nearly 
reached. In summary, it appears that 
homeostatic sleep pressure enforces 
two thresholds on TDSC: the first 
threshold accounts for behavioural 
activation (redirecting ones goals to 
go to bed) and compensatory effort 
and is cued by the feeling of sleepi-
ness, while the second threshold ac-
counts for systems failure as a result 
of the TDSC mechanism requiring lo-
cal homeostatic balance of its system 
components.

What cues could trigger 
compensatory TDSC to maintain 
performance or redirect 
behaviour? 
Sleepiness is often described as a pro-
pensity to fall asleep as can be meas-
ured by the multiple sleep latencies 
test (MSLT)34, but also see Johns14. 
Sleepiness in humans is accompa-
nied by behavioural micro-sleeps 
or a slowing of responsiveness, be-
havioural lapses35,36 and interocep-
tive changes such as slow eyelid 
closure, droopy eyes, head nodding 
and changes in facial tone36–39. From 
the electrophysiological perspective, 
performance deficits may correspond 
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PFC is one of the brain regions most 
susceptible to sleep deprivation69. 
This sensitivity could provide the 
brain with early cues of impeding 
system failure and could trigger goal 
redirection to a safe place to sleep. 
(iii) The PFC is thought to be one of 
the major originating sites for SWA 
which spreads as a travelling wave 
from anterior to posterior sites of 
the brain70. (iv) Removal of the fron-
tal cortex as well as other cortical 
regions has minimal effects on cy-
cling between states of wake, non-
rapid eye movement (NREM) and 
rapid eye movement (REM) sleep71,72. 
Thus, the PFC appears non-essential 
for regular sleep–wake generation, 
but may be engaged to antagonise 
sleep depending on the goal that the 
situation demands. The sections to 
follow will discuss the anatomical 
connectivity of the PFC with the as-
cending arousal system and studies 
which implicate the role of the PFC in 
modulating arousal in both primates 
and rodents.

Primate PFC and evidence for the 
top-down control of arousal

Anatomical connection studies
The subdivisions of the human PFC 
include the ventromedial prefrontal 
cortex (VMPFC) and the dorsolateral 
prefrontal cortex (DLPFC) and will be 
referenced according to Broadmann’s 
areas (BA) to help equate data across 
studies and avoid regional confusion 
(Figure 2A). From the studies exam-
ined here, BAs were estimated based 
on Talairach coordinates provided 
from each research article.

The primate PFC not only re-
ceives input from the ascending 
arousal system but also influences 
the ascending arousal system in a 
top-down fashion. While an account 
of the top-down connectivity pat-
terns from the primate PFC has not 
been completely worked out, sev-
eral trends seem to be emerging 
(Figure 2B). The most consistent 
and robust connectivity originat-

pothalamus (orexin releasing) (Fig-
ure 2) and a more recent candidate, 
the ventral periaqueductal grey 
(vPAG) (dopamine releasing)66. TDSC 
may also need to activate the thala-
mus, to prevent a sleep-like bursting 
mode. Consistently, there is evidence 
for this type of top-down thalamic 
activation through metabotropic 
glutamate receptors67. Alternative 
 system-level explanations may exist, 
such as the maintenance of cortical 
effective connectivity68, but the ex-
ploration of this is beyond the scope 
of the current review.

The prefrontal cortex (PFC) is 
one likely candidate for TDSC of the 
sleep system for several reasons.  
(i) It is the only cerebral cortical 
region to be highly interconnected 
with nearly every aspect of the as-
cending arousal system in both 
monkeys and rodents (see below) 
and is involved in the anticipation 
of reward and  punishment. (ii) The 

the VLPO may help regulate sleep 
depth62. If the cortex needs to com-
municate homeostatic sleep pressure 
with the VLPO and MnPO, it has yet 
to be discovered63. 

In addition to antagonising the 
sleep switch, activating the ascending 
arousal system could maintain wake-
fulness in its own right. The ascend-
ing arousal system comprises a host 
of neuromodulatory systems which 
terminate throughout the brain and 
are thought to help maintain the cor-
tex64 and thalamus65 in an activated 
state. This system includes the locus 
coeruleus (norepinephrine releas-
ing), dorsal Raphé (serotonin releas-
ing), tuberomammillary nucleus (his-
tamine releasing), ventral tegmental 
area (VTA) (dopamine releasing), 
laterodorsal tegmentum (acetylcho-
line releasing), pedunculopontine 
tegmentum (acetylcholine releas-
ing), basal forebrain ( acetylcholine  
releasing), perifornical lateral hy-

Figure 2: Reciprocal connectivity between the primate brain prefrontal cortex 
(PFC) and the ascending arousal system. (B) Broadmann’s areas for the PFC 
of the primate (Cebus Monkey), including lateral, medial and orbital regions. 
Figure from 160 is reproduced with permission from BioMed Central. Colours 
refer to different prefrontal areas. (B) Descending projections from the PFC of 
the primate to the ascending arousal system. Colours denote relationships with 
(A) and BA refers to Broadmann’s area. 
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frontal-parietal activity during reac-
tion time lapses when drowsy36. Sim-
ilarly, an increase in frontal (BA45) 
and parietal (BA3,40,4,5) activation 
was also seen during behavioural mi-
cro-sleeps in a continuous, monoto-
nous visuomotor task, without prior 
sleep deprivation84. 

The left DLPFC (BA9) and bilateral 
thalamus may become increasingly 
active following sleep deprivation 
when challenged with a complex task, 
suggesting a  compensatory top-down 
mechanism for sustained attention 
when sleepy87. Consistently, the alert-
ness of sleep-restricted subjects cor-
relates positively with activation of 
the DLPFC (~BA46) and performance 
in the n-Back working memory task88. 
Thus, subjects who reported being 
less sleepy had greater DLPFC activ-
ity and better performance on this 
task88. Consistently, a recent study 
showed that monetary anticipation 
will first activate the DLPFC followed 
by activation of the VTA, implicating 
the DLPFC has a top-down influence 
over the VTA. A study conducted by 
Strangman et al.89 implemented a 
virtual-reality spatial navigation task 
during sleep deprivation (~27 h)  
and found a compensatory increase 
in DLPFC area BA9 (largest effect 
size) in conjunction with the tem-
poral regions (BA22, BA22, BA39 
and BA37) and the right substantia 
nigra. Similarly, compensatory re-
cruitment of the PFC (BA46, BA32/8 
and BA13/47) has been reported fol-
lowing total sleep deprivation (35 h) 
while performing a logical reason-
ing task90. Parietal and temporal ar-
eas (BA39/40/42 and BA21/22) also 
showed compensatory activation in 
this task.

Collectively, the findings implicate 
the ventromedial and DLPFC in both 
the maintenance of performance and 
the resistance to sleep. Based on the 
human studies, it is hard to tell what 
could mediate this mechanism since 
ascending arousal systems are sel-
dom reported in these fMRI studies, 
possibly owing to the small size of 

jection and the use of anterograde 
tracers in an otherwise large pri-
mate cortex. Retrograde tracer ex-
periments may need to be conducted 
from the SCN and VLPO to determine 
definitively if these areas receive in-
put from the primate cortex. 

Functional studies
The grey matter volumes of the hu-
man VMPFC (BA11) correlate nega-
tively with subjective estimates of 
daytime sleepiness81, and activation 
of the medial orbitofrontal cortex 
(BA10/11) is linked with subjective 
reports of mental fatigue82 and even 
contagious yawning (BA11)83. In ad-
dition, among other brain regions 
including the thalamus, the frontal 
pole (BA10) of the PFC was found to 
become deactivated during behav-
ioural micro-sleeps in a monotonous 
visuomotor task84. Most interest-
ing was that the micro-sleep theta 
rhythm power was highly correlated 
with deactivation in the frontal pole 
(BA10) and frontal-orbital cortex 
(BA47). Finally, BA10 is one of a few 
prefrontal regions which appear to 
be activated when transitioning from 
sleep to wakefulness, implicating its 
latent activation in sleep inertia85. 
Taken together, based on the lim-
ited evidence, it will be of interest 
to investigate the possible role of 
BA10/11 as a putative cortical sub-
jective sleep sensor.

Poudel et al.86 found that hu-
man subjects that are resistant to 
 drowsiness demonstrate corre-
sponding activity in the ACC (BA32), 
following sleep restriction86. It 
was also reported that there was 
decreased activity in the frontal 
(BA9,6)-parietal (BA40,7) attention 
network of sleep-deprived individu-
als corresponding most to that of the 
drowsy individuals. Consistently, in a 
separate study, subjects who were re-
sistant to deprivation were found to 
have enhanced frontal (BA6)-parietal 
(BA7) activations compared to sleep-
deprived vulnerable subjects36. In the 
same study, an increase was found in 

ing from the PFC (BA8, BA9, BA46, 
BA14, BA32, BA24, BA11, BA13 and 
BA10) appears to be directed to the 
lateral hypothalamus73–76. The con-
nection from BA32 onto the lateral 
hypothalamus has been identified to 
be excitatory as evidenced by asym-
metric synapses77. The connections 
of the PFC (BA8, BA46, BA14, BA32, 
BA24, BA11 and BA13) to the tuber-
omammillary hypothalamus also ap-
pear consistent and robust75,76. The 
PFC consistently and sparsely sends 
projections to the VTA (BA8, BA46, 
BA14, BA24, BA25 and BA32)76,78, but 
this connection is absent from the 
orbital region BA1178; moreover, it is 
still unclear whether PFC terminals 
connect in direct apposition with 
dopaminergic neurons78.  Efferent  
connectivity to the basal forebrain 
has been identified for more orbital 
and medial aspects of the PFC (BA32, 
BA25 and BA11)76,79, but this con-
nection appears absent to the lateral 
aspects of the PFC (BA8, BA9 and 
BA46)75. Known connections to the 
dorsal Raphé originate from the me-
dial and lateral PFC regions (BA32, 
BA24, BA25 and BA9)76,80 but not or-
bital regions (BA11)80. A similar pat-
tern emerges with medial and lateral 
PFC connections (BA24, BA25 and 
BA9) to the locus coeruleus76,80, again 
orbital frontal cortex, is not con-
nected (BA11)80. Interestingly, other 
areas of cortex, including  inferior 
temporal, parietal association 
and somatosensory, were also not 
 interconnected with the dorsal Ra-
phé or locus coeruleus. To my knowl-
edge, there is only one report of 
 connectivity to the pedunculopontine  
tegmentum originating from the me-
dial PFC (BA25)76; however, there is 
no report of connectivity with the 
laterodorsal tegmentum, which is a 
site of termination in the rodent (see 
below). Finally, the primate PFC does 
not appear to connect with either the 
suprachiasmatic nucleus (SCN)74 or 
VLPO; however, this apparent lack of 
connectivity may be a consequence 
of restricted and small areas of in-
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the outcome. Since stress should 
serve to reduce sleep onset, the con-
nection between infralimbic and Ra-
phé may promote sleep by reducing 
arousal related to environmental 
stress; however, interpretive compli-
cations might arise due to circulating 
stress hormones such as cortisol or 
corticosterone.

The infralimbic cortex is prob-
ably most well-known for its involve-
ment in fear extinction memory107–109 
through direct connections with the 
amygdala110. The experience of fear 
and anxiety are definitely factors 
that interfere with sleep, so we will 
briefly review how the infralimbic 
cortex might influence the amygdala 
to influence arousal. The amygdala 

interface with circadian and sleep 
control. 

The infralimbic input to the Raphé 
is thought to be made onto local in-
hibitory neurons104,105, suggesting 
that the mPFC turns the dorsal Raphé 
off. It has also been found that this 
connection may be used for modu-
lating controllable stress106. Specifi-
cally, it was found that blocking this 
region during training, on a stress 
paradigm, leads to elevated c-Fos and 
serotonin output from the dorsal Ra-
phé in the rat. If rats had control over 
whether or not they were shocked 
and had their mPFC cortex deactivat-
ed, subsequent fear behaviour was 
comparable  to that of animals that 
were shocked  without control over 

these regions of interest. Moreover, 
the variety of frontal regions activat-
ed might indicate the variety of com-
pensatory mechanisms for particular 
situations.

Based on the human studies re-
viewed here, a trend seems to be 
emerging, with area BA10/11 con-
stituting a region for the subjective 
motoring of the sleepiness state with 
DLPFC-parietal and DLPFC-temporal 
regions compensating for sleep dep-
rivation during particular task de-
mands. While prefrontal circuitry of 
the primate appears to be in place 
for TDSC, a careful examination of 
their causal (excitatory vs inhibitory) 
interaction with the sleep system is 
necessary.

Rodent medial PFC and evidence 
for top-down control of arousal
Based on functional and connective 
similarities, the VMPFC of the pri-
mate may be likened to the mPFC 
of the rodent, while the DLPFC of 
the primate appears to share only 
some similarities with the rodent 
mPFC91,92. Three major components 
of the rodent medial prefrontal cor-
tex (mPFC) include the infralimbic, 
prelimbic and anterior cingulate cor-
tex (ACC) (Figures 3–5). The current 
review focuses on these subdivisions 
in relation to sleep circuitry. For 
more extensive reviews on rodent 
mPFC function, the reader is directed 
elsewhere91,93.

Infralimbic-arousal pathways
The infralimbic PFC projects to 
a large portion of the ascending 
arousal system, including the dorsal 
Raphé, basal forebrain, laterodorsal 
tegmentum, lateral hypothalamus, 
VTA, vPAG and of the three mPFC 
regions discussed is the only one to 
connect to the tuberomammillary 
nucleus66,94–101 (Figure 3). The infral-
imbic cortex is also the only cortical 
structure to interact with the sleep 
switch (VLPO)102 and the dorsal as-
pect of the SCN102,103, suggesting an 

Figure 3: Model of the rodent infralimbic-arousal pathways. Model shows direct 
(solid lines) and indirect pathways (dashed lines) from the infralimbic cortex (IL) 
to influence the ascending arousal system (red boxes), thalamus (THAL), VLPO 
area, SCN and amygdala (AMYG). It is not yet certain whether the direct pathway 
promotes arousal or simply modulates its tone. The indirect pathway involves 
inhibition of the amygdala, which should have the effect of reducing arousal 
and enhancing sleep. The infralimbic influence is self-limiting (‘∩’ symbol) and 
only turned on when awake, such that whatever influence it has over arousal 
will eventually subside. Green connections represent the connections of TDSC. 
Red colour indicates primary wake-promoting neural components. Blue colour 
indicates sleep-promoting connections and components. Circular terminals 
are inhibitory, arrow terminals are excitatory connections and no terminal 
or flat line means undetermined connection. Abbreviations are as follows: 
LC, locus coeruleus; TM, tuberomammillary nucleus; BF, basal forebrain; PPT, 
pedunculopontine tegmentum; LDT, laterodorsal tegmentum; D-Raphé, dorsal 
Raphé nucleus; LH, lateral hypothalamus; VTA, ventral tegmental area and vPAG 
is ventral periaqueductal gray. Some connections from VLPO to arousal regions 
are presumed inhibitory because of the inhibitory cells bodies in the VLPO.
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hungry rats are enticed with food, 
they become  behaviourally activated 
while trying to get the food and have 
significant anticipatory increases in 
core temperature128. Interestingly, 
the infralimbic and various arousal-
related areas are activated during 
this enticement as evidenced by Fos 
immunoreactivity. However, lesion 
of the infralimbic cortex was found 
to not only abolish behavioural ac-
tivation and anticipatory body tem-
perature changes but also block the 
elevations and Fos activity in the 
tuberomammillary nucleus, VTA, lat-
eral hypothalamus, dorsal Raphé, lat-
erodorsal tegmentum and substantia 
innominata of the basal forebrain128. 
This provides an explanation of how 
energy homeostasis might compete 
with sleep homeostasis (e.g. being 
sent to bed without dinner) and un-
derscores the importance that TDSC 
is defined as situational. 

Collectively, the findings reviewed 
here suggest that the infralimbic cor-
tex regulates arousal through an in-
direct pathway via the amygdala and 
a direct pathway through top-down 
control over the ascending arousal 
system (Figure 3). The infralimbic 
cortex may be optimally positioned 
to integrate subjective sleepiness 
with fear, hunger, circadian and ho-
meostatic sleep demands.

 Prelimbic-arousal pathways
The prelimbic cortex of the mPFC is 
known to connect to the dorsal Ra-
phé, basal forebrain, laterodorsal teg-
mentum, lateral hypothalamus, VTA, 
locus coeruleus and vPAG66,94,95,98–

101,129 (Figure 4); however, there is a 
scarcity of data examining the influ-
ence of the prelimbic cortex on the 
activation of the ascending arousal 
system. One study conducted by Jodo 
et al.129 found that both electrical and 
chemical stimulation of the prelim-
bic cortex of anesthetised rats was 
 sufficient to activate locus coeruleus 
neurons. Interestingly, the inhibition 
of the prelimbic cortex was found 
to decrease locus coeruleus activity,  

that the ever-present aversive context 
can influence sleep onset126. Consist-
ently, stress-provoking situations can 
antagonise sleep onset and produce 
sleep fragmentation, possibly through 
activation of the infralimbic cortex, 
locus coeruleus and amygdala127. 
Most importantly, the VLPO was also 
activated in this study even when the 
animal was awake, suggesting a com-
petition between sleep and wake pro-
moting processes. In this experiment, 
the amygdala was found to be re-
sponsible for the increased latency to 
sleep, and the infralimbic over-activa-
tion was found to contribute to sleep 
fragmentation. Thus, under persistent 
stressful situations and sleepiness, the 
amygdala appears to recruit arousal 
systems which antagonise sleep onset 
(or VLPO) while the infralimbic cortex 
antagonises sleep continuity. 

In addition to modulating fear 
extinction, the infralimbic cortex 
also appears to influence arousal 
related to food anticipation. When 

is the primary hub which controls 
the behavioural expression of fear 
and its memory, including arousal 
through connection with111,112 the lat-
erodorsal tegmentum98, locus coer-
uleus113, VTA114, basal forebrain115, 
lateral hypothalamus116, pedunculo-
pontine tegmentum117, tuberomam-
millary nucleus97 and the vPAG118,119. 
The medial amygdala also sends a 
direct projection to the VLPO120 and 
the SCN103. Furthermore, electrical 
stimulation of the central nucleus of 
the amygdala has long been known 
to produce EEG desynchronisa-
tion121–123. In addition, deactivating 
the amygdala is sufficient to increase 
NREM sleep, decrease the latency to 
sleep and increase cortical power in 
the low-frequency range, suggesting 
that the amygdala contributes to an 
endogenous arousal drive124,125.

Animals trained in an aversive en-
vironment and forced to sleep in the 
same environment take twice as long 
(~40 min) to fall asleep, suggesting 

Figure 4:  Model of the rodent prelimbic-arousal pathways. Model shows 
the direct (solid lines) pathway from the ACC to influence the ascending 
arousal system (red boxes), thalamus, VLPO and SCN and amygdala. The 
direct pathway appears to have some arousal promoting properties through 
the locus coeruleus. The ACC influence is self-limiting (‘∩’ symbol) and only 
turned on when awake, such that whatever influence it has over arousal will 
eventually subside. Abbreviations are as follows: LC, locus coeruleus; TM, 
tuberomammillary nucleus; BF, basal forebrain; PPT, pedunculopontine 
tegmentum; LDT, laterodorsal tegmentum; D-Raphé, dorsal Raphé nucleus; 
LH, lateral hypothalamus; VTA, ventral tegmental area and vPAG is ventral 
periaqueductal gray. Some connections from VLPO to arousal regions are 
presumed inhibitory because of the inhibitory cells bodies in the VLPO.
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 indirect facilitatory pathway to influ-
ence arousal. Thus, under the appro-
priate context, the prelimbic cortex 
might modulate arousal through the 
amygdala to maintain wakefulness.

Anterior cingulate-arousal pathways
The ACC of the mPFC is thought to 
be involved in a large set of process-
es, and it is often hard to pin down a 
singular function. Some of the com-
mon functions include pain140–142, 
emotion-motor integration143,144, fear 
memory145–147, remote memory148,149, 
reward150,151, and attention and an-
ticipation147,151. The ACC has a con-
nectivity pattern to the ascending 
arousal system similar to that of the 
prelimbic cortex94,95,99 and likewise is 
not  connected with SCN, VLPO, tub-
eromammillary nucleus or the pedun-
culopontine tegmentum (Figure 5).  
Similar to the prelimbic cortex, the 
ACC has been found to increase burst-
ing behaviour of VTA neurons which is 
often preceded by a brief inhibition133. 

Electrophysiological evidence im-
plicates the ACC in the exploration 
of novel objects152,153 and even the 
exploration of a sexually attractive 
mate154. Novel objects and exploratory 
environments are a frequent means 
of sleep depriving an animal because 
the results of these methods are mini-
mally confounded by stress. Presum-
ably, it’s the animal’s ‘curiosity’ that 
helps maintain the animal’s ability to 
stay awake. It has been recently shown 
that the ability of animals to maintain 
wakefulness in a novel environment 
depends on reciprocal connectivity be-
tween the ACC and the locus coeruleus. 
Indeed, destruction of either the ACC 
or the locus coeruleus was sufficient 
to block the exploratory activity of the 
animal127, consistent with its role in 
sustained wakefulness. Given that the 
concept of ‘exploration’ or ‘curiosity’ 
is somewhat abstract, it is remarkable 
that such drives could temporarily and 
substantially antagonise the sleep sys-
tem. However, it should be noted that 
a simple offer of money is sufficient for 
one to stay awake all night.

involved in self-sustaining activity is 
that single unit activity anticipates 
reward135 and punishment136,137. At 
present, there is no rigorous experi-
mental data, showing that rodents 
can forego sleep in anticipation of a 
future rewards or punishment; how-
ever, one study has shown that ani-
mals can be taught to awaken from 
sleep in order to receive rewards138, 
suggesting that foregoing sleep might 
not be so hard to teach.

The prelimbic cortex is also con-
nected to the amygdala; however, 
unlike the infralimbic cortex, the pre-
limbic cortex is known to be partly 
responsible for fear memory recall 
and fear expression137,139 through 
a facilitatory connection with the 
basolateral amygdala110. As the amyg-
dala is connected with the ascend-
ing arousal system, it represents an 

suggesting that the PFC might 
contribute  a tonic drive to the  locus 
coeruleus. In addition, electrical 
 self-stimulation of the prelimbic cor-
tex is sufficient to produce persistent 
behavioural activation in rodents130. 
One region activated by such stimu-
lation is the VTA130. Consistently, 
stimulation of the prelimbic cortex 
activates VTA neurons131 and alters 
their bursting activity132,133, and in 
many cases inhibition precedes ex-
citation133,134. In addition, excitatory 
prelimbic-VTA responses could be 
attenuated when orexin-1 antago-
nists were applied to the VTA dur-
ing the active, but not the non-active, 
phase of the animal’s diurnal cycle. 
The result indicates that the endog-
enous control of the VTA by orexin 
has  diurnal variation. A final indica-
tion that the prelimbic cortex may be 

Figure 5: Model of the rodent anterior cingulate-arousal pathways. Model 
shows direct (solid lines) and indirect pathways (dashed lines) from the 
prelimbic cortex (PL) to influence the ascending arousal system (red boxes), 
thalamus, VLPO and SCN and amygdala. The direct pathway appears to have 
some arousal promoting properties through the locus coeruleus. The indirect 
pathway involves activation of the amygdala, which should have the effect of 
increasing arousal and preventing sleep. The prelimbic influence is self-limiting 
(‘∩’ symbol) and only turned on when awake, such that whatever influence 
it has over arousal will eventually subside. Abbreviations are as follows: LC, 
locus coeruleus; TM, tuberomammillary nucleus; BF, basal forebrain; PPT, 
pedunculopontine tegmentum; LDT, laterodorsal tegmentum; D-Raphé, dorsal 
Raphé nucleus; LH, lateral hypothalamus; VTA, ventral tegmental area and vPAG 
is ventral periaqueductal gray. Some connections from VLPO to arousal regions 
are presumed inhibitory because of the inhibitory cells bodies in the VLPO.
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testable framework for exploration 
of higher-cortical neural systems that 
could antagonise sleep. It may well 
turn out that there are better candi-
dates than the PFC to carry out the 
function of TDSC. However, the find-
ing that the PFC is not related to TDSC 
would require an explanation for why 
it is uniquely connected with nearly 
all systems involved in the control 
of arousal, sleep switching and cir-
cadian rhythms. Finally, we should 
be mindful that a comprehensive ac-
count for how we forego sleep will 
require an explanation of how a sin-
gle abstract concept (such as the an-
ticipation of money or punishment) 
can seed a cascade of goal-directed 
processes which can take acute prec-
edence over sleep homeostasis.
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SWA, slow-wave activity; TDSC, top-
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Discussion
The author has referenced some of 
its own studies in this review. The 
protocols of these studies have been 
approved by the relevant ethics 
 committees related to the institution 
in which they were performed. Ani-
mal care was in accordance with the 
institution guidelines.

Based on these findings in rodents 
and primates, it appears possible that 
cortical and limbic (e.g. amygdala)  
circuits may recruit the ascending 
arousal system and in some cases 
interact with the VLPO and SCN to 
modulate the homeostatic sleep 
system, so that sleep occurs during 
time periods both when it is safe 
and when there are no more goals 
to be realised. The results of this re-
view implicate that PFC is uniquely 
positioned to modulate the ascend-
ing arousal system. In addition, the 
infralimbic cortex appears to inter-
act with the SCN, VLPO and various 
arousal systems directly and indi-
rectly via interaction with the amyg-
dala. Similarly, the ACC and prelimbic 
cortex appear to modulate the as-
cending arousal systems for specific 
situations. The sensitivity of the PFC 
function to sleep deprivation may 
provide cues to trigger compensa-
tory effort, which could be related to 
TDSC. For experimentation purposes, 
clear tests for the existence of TDSC 
would involve providing animals or 
subjects with the option to either 
sleep (according to circadian sched-
ule) or to become engaged in actions 
that will result in the acquisition or 
reward or escape from punishment. 
Pharmacological or optogenetic ma-
nipulations can then be implemented 
to test the importance of different as-
pects of the PFC and associated indi-
rect pathways (e.g. amygdala) in the 
modulation  of behavioural activation 
and sleep propensity. 

Conclusion
This review is intended to encourage 
a conversation on the topic of staying 
awake, and to compose a cogent and 

The PFC connection to the ascend-
ing arousal system is unique
If the entire cerebral cortex had the 
same direct connections and influ-
ence over the ascending arousal 
system and sleep switch that the 
PFC has, the potential of the PFC 
as a candidate for TDSC would lose 
merit. It has already been men-
tioned that the rat infralimbic cor-
tex is the only region of the cerebral 
cortex which has direct efferents to 
the VLPO and the SCN (above) and 
to prove this is not the case for pri-
mates, retrograde traces need to 
be injected into these regions. The 
question remains whether or not 
other areas of cortex can influence 
the ascending arousal system. Based 
on retrograde labelling studies from 
the areas of interest, it appears that 
the PFC of rats and monkeys is the 
only cerebral cortical region to send 
efferents to the dorsal Raphé80,101. A 
similar case holds true for the locus 
coeruleus of monkeys and rats with 
the exception of the insula80,113. Con-
sistently, the laterodorsal tegmen-
tum is innervated quite strongly by 
the PFC but receives no other in-
put from the cerebral cortex of the 
rat98,155. A similar trend holds for 
tuberomammillary nucleus97, orex-
inergic lateral hypothalamus116 and 
ventral tegmental nucleus156 and 
vPAG66. Interestingly, the substantia 
innominata of the basal forebrain 
receives input from prefrontal, insu-
lar, entorhinal and pyriform cortex 
in rats157,158. By contrast, the nucleus 
basalis magnocellularis of the basal 
forebrain is relatively restricted in 
its cortical input from frontal cor-
tex158. In primates, the primary in-
put from the cortex to the nucleus 
basalis-substantia innominata origi-
nates from the orbital frontal cortex 
and the prepyriform cortex, insula, 
entorhinal cortex, medial temporal 
pole and temporal cortex159. Thus, 
with a very few exceptions, the 
PFC has privileged access to the as-
cending arousal system in both the 
 primate and rat.
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