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Abstract 

Disrupted circadian rhythms and reduced sleep duration are associated with several human 

diseases, particularly obesity and type 2 diabetes, but little is known about the genetic 

factors influencing these heritable traits. We performed genome-wide association studies of 

self-reported chronotype (morning/evening person) and self-reported sleep duration in 

128,266 White British individuals from the UK Biobank study. Sixteen variants were 

associated with chronotype (P<5x10-8), including variants near the known circadian rhythm 

genes RGS16 (1.21 odds of morningness [95%CI 1.15, 1.27], P=3x10-12) and PER2 (1.09 

odds of morningness [95%CI 1.06, 1.12], P=4x10-10). The PER2 signal has previously been 

associated with iris function. We sought replication using self-reported data from 89,823 

23andMe participants; thirteen of the chronotype signals remained significant at P<5x10-8 on 

meta-analysis and eleven of these reached P<0.05 in the same direction in the 23andMe 

study. For sleep duration, we replicated one known signal in PAX8 (2.6 [95%CIs 1.9, 3.2] 

minutes per allele P=5.7x10-16) and identified and replicated two novel associations at VRK2 

(2.0 [95% CI: 1.3, 2.7] minutes per allele, P=1.2x10-9; and 1.6 [95% CI: 1.1, 2.2] minutes per 

allele, P=7.6x10-9). Although we found genetic correlation between chronotype and BMI 

(rG=0.056, P=0.048); undersleeping and BMI (rG=0.147, P=1x10-5) and oversleeping and 

BMI (rG=0.097, P=0.039), Mendelian Randomisation analyses provided no consistent 

evidence of causal associations between BMI or type 2 diabetes and chronotype or sleep 

duration. Our study provides new insights into the biology of sleep and circadian rhythms in 

humans. 
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Introduction 

There are strong epidemiological associations among disrupted circadian rhythms, sleep 

duration and disease. A circadian rhythm refers to an underlying 24-hour physiological cycle 

that occurs in most living organisms. In humans, there are clear daily cyclical patterns in 

core body temperature, hormonal and most other biological systems 1. These cycles are 

important for many molecular and behavioural processes. In particular, circadian rhythms 

are important in regulating sleeping patterns. While each individual has an endogenous 

circadian rhythm, the timing of these rhythms varies across individuals. Those with later 

circadian rhythms tend to sleep best with a late bedtime and late rising time and are often 

referred to as an “owl” or as an “evening” person. Those with earlier rhythms tend to feel 

sleepy earlier in the night and wake up early in the morning and are referred to as a “lark” or 

“morning” person. The remainder of the population falls in between these extremes. This 

dimension of circadian timing, or chronotype, is one behavioural consequence of these 

underlying cycles. Chronotype can be simply assessed by questionnaire and is considered a 

useful tool for studying circadian rhythms 2,3.  

 

There is substantial evidence for a relationship between short sleep duration, poor quality 

sleep and obesity and type 2 diabetes 4,5. Eveningness has been associated with poor 

glycaemic control in patients with type 2 diabetes independently of sleep disturbance 6 and 

with metabolic disorders and body composition in middle-aged adults 7. There is evidence 

from animal models that disruption to circadian rhythms and sleep patterns can cause 

various metabolic disorders 8-10. For example, mice homozygous for dominant negative 

mutations in the essential circadian gene, Clock, develop obesity and hyperglycaemia 10 and 

conditional ablation of the Bmal1 and Clock genes in pancreatic islets causes diabetes 

mellitus due to defective β-cell function 9. Despite this evidence, in humans the causal nature 

of the epidemiological associations between sleep patterns, circadian rhythms and obesity 

and type 2 diabetes is unknown. Identifying genetic variants associated with sleep duration 

and chronotype will provide instruments to help test the causality of epidemiological 

associations 11. 

 

A previous genome-wide association study (GWAS) in 4251 individuals identified a single 

genetic variant in ABCC9 associated with sleep duration 12. A subsequent GWAS meta-

analysis including 47,180 individuals identified a single locus for sleep duration near PAX8 
13. There have been no published reports of variants influencing chronotype. The UK 

Biobank is a study of 500,000 individuals from the UK aged between 37 and 73 years with 

genome-wide SNP analysis and detailed phenotypic information, including chronotype and 

sleep duration (http://www.ukbiobank.ac.uk/). The UK Biobank study provides an excellent 
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opportunity to identify novel genetic variants influencing chronotype and sleep duration 

which will provide insights into the biology of circadian rhythms and sleep and help test 

causal relationships between circadian rhythm and metabolic traits including obesity. 

 

Results 

Sixteen loci associated with chronotype in UK Biobank 

Using self-reported “morningness”, we generated a binary and a continuous chronotype 

score. We performed genome-wide association studies on 16,760,980 imputed autosomal 

variants. Figure 1 presents the overall results for these GWAS. Table 1 presents details of 

all 16 genome-wide significant chronotype-associated loci. 

 

Replication and validation of chronotype associations 

Analysing UK Biobank data with that from 23andMe provides strong evidence that at least 

13 of the 16 are robustly associated with chronotype. Thirteen of the chronotype signals 

remained at P<5x10-8 in a meta-analysis including UK Biobank and 89,283 individuals from 

23andMe (Hu et al. Nature Communications, In Press), of which eleven reached P<0.05 in 

the same direction in 23andMe alone, and 15 of the 16 UK Biobank signals were in the same 

direction (binomial P=0.0002) (Table 1). We also attempted to validate the associations in 

6,191 European-Ancestry from the Chronogen consortium and 2,532 Korean Ancestry 

individuals from the Insomnia, Chronotype and sleep EEG (ICE) consortium that used “Gold 

standard” chronotype questionnaire (Munich Chronotype Questionnaire – MCTQ and 

Morningness-Eveningness Questionnaire - MEQ). Given the sample size of 5% of the 

discovery UK Biobank study we assessed directional consistency rather than testing for 

replication P-values <0.05 or 0.05/16. In the European-Ancestry individuals 11 of the 16 

signals were represented. Nine of these 11 variants had the same direction of effect as the 

discovery UK Biobank cohort (binomial test P=0.03) and one replicated at Bonferroni 

significance (rs12140153, P=0.003). In the Korean study, 9 signals were represented, four of 

which had the same direction of effect as the discovery UK Biobank cohort (binomial test 

P=1.00). The level of directional consistency in these two smaller studies is consistent with 

what would be expected in cohorts <5% the size of our discovery cohort.  

 

The chronotype-associated variants occur near genes known to be important in 

photoreception and circadian rhythms 

The variant most strongly associated with chronotype, rs516134 (OR for morningness=1.21, 

[95% CI: 1.16,1.26], binary P=3.7x10-12, continuous P=8.9x10-13) occurs near RGS16, which 

is a regulator of G-protein signalling and has a known role in circadian rhythms 14 (Table 1 

and Figure 2). Another signal occurs near PER2 (lead variant rs75804782, odds ratio=1.09, 
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[95% CI: 1.06, 1.12], binary P=7.2x10-10, continuous P=3.2x10-7; Figure 3). PER2 is a well-

known regulator of circadian rhythms 15-20 and contains a variant, rs75804782, recently 

shown to be associated with iris formation 21 that is in LD (r2 = 0.65, D’ = 0.97) with our 

reported lead SNP. We also identified an association with a missense variant (rs12140153, 

OR=1.07 (95% CI: 1.04, 1.11), binary P=5x10-6, continuous P=7x10-9) in INADL (InaD-like) 

that encodes a protein thought to be important in organising and maintaining the “intrinsically 

photosensitive retinal ganglion cells”, cells that are known to communicate directly with the 

suprachiasmatic nucleus; the primary circadian pacemaker in mammals 22. As there is a 

reported link between season and reported chronotype 23, we carried out a sensitivity 

analysis in which we adjusted for month of attendance (to assessment centre); all 

associations remained genome-wide significant for the reported variants. We tested for 

enrichment of specific biological and molecular pathways using MAGENTA 24 but none had a 

clear link to circadian rhythms (Supplementary Table 1). 

 

Three loci associated with sleep duration 

We performed genome-wide association studies on a binary sleep phenotype and a 

continuous sleep duration score for 16,761,225 imputed variants. Figure 4 presents the 

overall results for these GWAS. Three loci reached genome-wide significance. The most 

strongly associated variant was rs62158211 with an average 2.6 minute (95% CI: 1.9 to 3.2 

minutes, P=5.7x10-16) per-allele change in sleep duration and occurs at the previously 

reported association signal near PAX8 13. We identified two, novel, conditionally 

independent, signals that were located ~900kb apart, one upstream and the other 

downstream of VRK2. The downstream variant, rs17190618, has an average per allele 

effect of 2.0 minutes (95% CI: 1.3 to 2.7 minutes), P=1.2x10-9, on sleep duration. The 

upstream variant, rs1380703 (which is not correlated with rs17190618, r2=0.002), has an 

average per allele effect of 1.6 minutes (95% CI: 1.1 to 2.2 minutes), P=7.6x10-9, on sleep 

duration. On adjusting for month of assessment, we saw marginally stronger associations for 

both rs62158211 (P=3x10-16) and rs1380703 (P=6x10-9), with no change for rs17190618.  

Table 2 shows the three sleep duration loci and their lead variants. Figure 5 shows locus 

zoom plots of the VRK2 association signals. We did not replicate the association of a 

previously reported variant in ABCC9 12 with sleep duration (rs11046205, 0.1mins [95% CI: -

0.6 to 0.7 minutes], P=0.83). 

 

Replication of novel sleep duration hits 

To replicate the two novel sleep duration hits we used data from 47,180 individuals from a 

published study 13. The variant rs17190618 replicated with effect size=2.1 minutes (95% CI: 
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0.8 to 3.3), P=0.001, meta-analysis P=5x10-12. The variant rs1380703 replicated with effect 

size=1.3 minutes (95% CI: 0.3 to 2.2), P=0.01, meta-analysis P=3x10-10). 

 

Sleep duration and chronotype are heritable and genetically correlated with BMI, Type 

2 diabetes and psychiatric disease  

Using LD-score regression we estimated the heritability of chronotype and sleep duration 

within UK Biobank to be 0.12 (0.007), and 0.07 (0.007), respectively. There was no 

significant genetic correlation between sleep duration and chronotype (rG=0.0177, P=0.70). 

Chronotype was nominally genetically correlated with BMI (rG=0.056, P=0.048), but not 

Type 2 diabetes (rG=0.004, P=0.99). As the relationship between sleep duration with BMI 

and risk of T2D is U-shaped (see Supplementary Figure 1), we defined two further binary 

phenotypes; undersleepers (<7  vs. 7-8 hours) and oversleepers (>8 vs. 7-8 hours). There 

was a strong genetic correlation between undersleeping and BMI (rG=0.147, P=1x10-5), but 

not T2D (rG=0.022,P=0.79). There was also a genetic correlation between oversleeping and 

both BMI (rG=0.097, P=0.039) and T2D (rG=0.336, P=0.001). We also performed LD-score 

regression analyses against a range of other diseases and traits where GWAS summary 

statistics are publically available (Supplementary Table 2). Schizophrenia was genetically 

correlated (after adjusting for the number of tests) with hours slept (rG=0.25, P=1x10-4), 

oversleeping (rG=0.32, P=9x10-4), but not significantly correlated with undersleeping (rG=-

0.11, P=0.097). 

 

Mendelian randomisation analyses provide no consistent evidence that higher BMI 

affects self-reported morningness or vice-versa 

Using a genetic risk score of 69 known BMI variants 25 (listed in Supplementary Table 3) as 

an instrumental variable, we next performed Mendelian randomisation analyses in the UK 

Biobank study to test the potential causal role of BMI in chronotype and sleep. Instrumental 

variables analyses using variants and their effect sizes identified by previous studies 25 

provided no consistent evidence that self-reported “morningness” causally affects BMI or risk 

of type 2 diabetes (Supplementary Table 4). Association statistics of the BMI variants with 

chronotype are given in Supplementary Table 3. We repeated these analyses using a 

genetic risk score consisting of 55 type 2 diabetes SNPs 26 and did not find any evidence of 

causality. Association of the chronotype-associated variants with BMI are given in 

Supplementary Table 5. Performing the reciprocal Mendelian randomization analysis using 

a genetic risk score of the 13 replicated chronotype variants, with effect sizes obtained from 

23andMe, we found no consistent evidence in the UK Biobank data that morningness or 

eveningness leads to higher BMI (Supplementary Table 4). 
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No evidence that BMI and Type 2 diabetes are causally associated with sleep duration 

Using the same genetic risk score of 69 known BMI variants as an instrument, we saw no 

consistent evidence that higher BMI increased an individual’s likelihood of being an 

undersleeper (IVreg2 P=0.95, IVW P=0.05) or an oversleeper (IVreg2 P=0.29, IVW P=0.62) 

in the UK Biobank data (Supplementary Table 4). Because there were only three genetic 

variants of small effect associated with sleep duration, we did not perform any Mendelian 

Randomisation analyses of sleep on BMI or type 2 diabetes risk. 

 

 

Discussion 

We performed a genome-wide association study of sleep duration and morningness in 

128,266 individuals from the UK Biobank study. We discovered and replicated two novel loci 

associated with sleep duration. Through replication in a study of 89,823 individuals from 

23andMe we found 13 genome-wide significant loci for chronotype. These loci occur in or 

near circadian rhythm and photoreception genes and provide new insights into circadian 

rhythm and sleep biology and their links to disease. 

 

The two novel sleep duration association signals that we have discovered and replicated in 

this study occur upstream and downstream of VRK2 (vaccinia related kinase 2). VRK2 is a 

serine/threonine kinase important in several signal transduction cascades, and variants near 

VRK2 are associated with schizophrenia 27 and epilepsy 28. The two sleep duration variants 

we identified do not represent the same signals as those associated with schizophrenia at 

genome wide significance but one is associated with schizophrenia (based on publically 

available data from the schizophrenia genetics consortium (rs1380703 P=2x10-5), with the 

allele associated with more sleep being associated with higher risk of schizophrenia). 

Furthermore, the variants associated with epilepsy and schizophrenia at genome wide 

significance are associated with sleep duration in UK Biobank (epilepsy lead variant 

rs2947349 28, P=2x10-5 and schizophrenia lead variant 27 rs11682175 P=3x10-5) but did not 

reach genome wide significance. We also observed genetic correlation between sleep 

duration and schizophrenia using LD-score regression (rG=0.25, P=1x10-4). Further work is 

required to determine whether variation in VRK2 either has independent associations with 

both sleep and schizophrenia or whether there is some causal link between sleep duration 

and schizophrenia and epilepsy. 

 

Several of the loci that we identified as associated with chronotype contain genes that have 

a known role in circadian rhythms. The most strongly associated variant, rs516134, occurs 

20kb downstream of RGS16 (regulator of G protein signalling 16). RGS16 has recently been 
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shown to have a key role in defining 24 hour rhythms in behaviour 14. In mice, gene ablation 

of Rgs16 lengthens the circadian period of behavioural rhythm 14. By temporally regulating 

cAMP signalling, Rgs16 has been shown to be a key factor in synchronising intercellular 

communication between pacemaker neurons in the suprachiasmatic nucleus (SCN), the 

centre for circadian rhythm control in humans. 

 

The association signal with lead SNP rs75804782 occurs ~100kb upstream of PER2 (Period 

2). Per2 is a key regulator of circadian rhythms and is considered one of the most important 

clock genes, and, under constant darkness, Per2 knockout mice show arrhythmic locomotor 

activity 15-20. This locus also contains a variant that has recently been shown to be 

associated with iris furrow contractions 21. Our signal is very likely to represent the same 

association and suggests a link between iris function and chronotype (rs75804782 has an 

LD r2 = 0.65 and D’ = 0.97 with the reported lead SNP, rs3739070). Larsson et al. 21 suggest 

TRAF3IP1 as the most likely candidate gene at the locus because of its critical role in the 

cytoskeleton and neurogenesis. Further work is needed to elucidate whether the chronotype 

association at this locus acts through PER2 or TRAF3IP1. 

 

Several of the variants associated with chronotype are also associated with BMI and we 

found genetic correlation between chronotype and sleep duration and BMI. There is 

substantial evidence for a role of sleep disruption and circadian rhythms in metabolic 

disease 1. Data from animal models and epidemiology provide strong evidence that sleep 

quality or disrupted circadian rhythms can cause metabolic diseases including obesity and 

type 2 diabetes 4-6,8-10. Our Mendelian Randomisation analyses provided no consistent 

evidence for a role of higher BMI leading to increased self-reported morningness. 

 

There are some important limitations to our study. First, chronotype and sleep duration were 

self-reported and are subject to reporting bias (e.g. obese individuals may be more likely to 

falsely claim to be morning people). Second, whilst we did not find any evidence that overall 

chronotype or sleep duration causally lead to obesity or type 2 diabetes, it is possible that 

sub-pathways of genes involved in, for example, feeding behaviour may be important in both 

obesity and chronotype regulation. The availability of the full UK Biobank study of 500,000 

will provide further insight into this relationship. 

 

In conclusion, we have identified novel genetic associations for chronotype and sleep 

duration. The chronotype loci cluster near genes known to be important in determining 

circadian rhythms and will provide new insights into circadian regulation. Our results provide 

new insights into circadian rhythm and sleep biology and their links to disease. 
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Materials and Methods 

Discovery Samples 

We used 128,266 individuals of British descent from the first UK Biobank genetic data 

release (see http://biobank.ctsu.ox.ac.uk). British-descent was defined as individuals who 

both self-identified as white British and were confirmed as ancestrally Caucasian using 

principal components analyses (http://biobank.ctsu.ox.ac.uk). Of these individuals, 120,286 

were classified as unrelated, with a further 7,980 first- to third-degree relatives of these. As 

the association tests were carried out in BOLT-LMM 29, which adjusts for relationships 

between individuals and corrects for population structure, we included all 128,266 related 

white British individuals in the association analyses.  

 

Genotyping and quality control 

We used imputed variants provided by the UK Biobank. Details of the imputation process are 

provided at the UK Biobank website (see http://biobank.ctsu.ox.ac.uk). For this study we only 

included the ~16.7M imputed variants with an imputation R2 ≥ 0.4, MAF ≥ 0.001 and with a 

Hardy–Weinberg equilibrium P>1x10-5.  

 

Phenotypes 

Chronotype 

UK Biobank provides a single measure of Chronotype, from which we produced a 

continuous and a dichotomous phenotype. Chronotype (or morningness) is a self-reported 

measure and asks individuals to categorise themselves as “Definitely a ‘morning’ person”, 

“More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’ person”, 

“Definitely an ‘evening’ person” or “Do not know”, which we coded as 2, 1, -1, -2 and 0 

respectively, in our raw continuous “score”. Individuals had the option not to answer; these 

individuals were set to missing. We then produced a normally distributed phenotype by 

adjusting the raw phenotype for age, gender and study centre (categorical) and inverse 

normalising the resulting residuals. The dichotomous chronotype trait defines morning 

people (“Definitely a ‘morning’ person” and “More a ‘morning’ than ‘evening’ person”) as 

cases and evening people (“Definitely an ‘evening’ person” and “More an ‘evening’ than a 

‘morning’ person”) as controls. All other individuals are coded as missing. All results reported 

for continuous chronotype refer to the inverse-normalised residualised chronotype “score”. 

For interpretable results, however, we report effect sizes using the odds ratios of the 

dichotomous chronotype phenotype. A total number of 127,898 and 114,765 individuals 

were available with non-missing continuous and binary chronotype phenotypes, respectively, 

for the association tests; for the Mendelian Randomisation this became 119,935 and 

107,634 respectively. 
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Sleep duration 

The UK Biobank also provides self-reported “sleep duration”, in which individuals were 

asked to provide the average number of hours slept in a 24-hour period. The phenotype was 

derived by first excluding individuals reporting greater than 18 hours sleep, then adjusting for 

age, gender and study centre (categorical) and obtaining the model residuals and finally 

inverse-normalising to assure a normally distributed phenotype. When reporting results for 

the continuous sleep duration phenotype, we are referring to the inverse-normalised 

phenotype, though we report effect sizes of the residualised phenotype to allow easier 

interpretation of results. There were 127,573 individuals with reported sleep duration 

available for the association tests, with 119,647 available for the MR analyses. 

 

“Oversleepers” and “Undersleepers” 

These two dichotomous phenotypes share the same set of controls; those individuals that 

reported sleeping either 7 or 8 hours (81,204 individuals). In oversleepers, cases (10,102 

individuals) are those reporting 9 or more hours sleep on average, whereas undersleeper 

cases (28,980 individuals) are those reporting 6 or fewer hours. 

 

BMI 

The UK Biobank provided a BMI (weight (kg)/height2) measurement and an estimate based 

on electrical impedance analyses. To help avoid reporting error we excluded individuals with 

significant differences (>4.56 SDs) between these two variables where both were available. 

If only one of these measurements was available this was used. We corrected BMI by 

regressing age, sex, study centre, and the first 5 within-British principal components and 

taking residual values. We then inverse normalised the residuals. A total of 119,684 white-

British individuals with BMI and genetic data were available for the Mendelian 

Randomisation analyses. 

 
Type 2 diabetes 

Individuals were defined as having T2D if they reported either T2D or generic diabetes at the 

interview stage of the UK Biobank study. Individuals were excluded if they reported insulin 

use within the first year of diagnosis. Individuals reportedly diagnosed under the age of 35 

years or with no known age of diagnosis were excluded, to limit the numbers of individuals 

with slow-progressing autoimmune diabetes or monogenic forms. Individuals diagnosed with 

diabetes within the last year of this study were also excluded as we were unable to 

determine whether they were using insulin within this time frame.  A total of 4,040 cases and 

113,735 controls within the white British subset of UK Biobank were identified with genetic 

data available.  
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Genome-wide association analysis 

To perform the association tests, we used BOLT-LMM 29 to perform linear mixed models 

(LMMs) in the 128,266 individuals. We used BOLT-LMM as it adjusts for population structure 

and relatedness between individuals whilst performing the association tests with feasible 

computing resources. As it adjusts for population structure and relatedness between 

individuals whilst performing the association tests, it allowed us to include the additional 

7,980 related individuals and therefore improved our power to detect associations. To 

calculate the relationships between individuals, we provided BOLT-LMM a list of 328,928 

genotyped SNPs (MAF>5%; HWE P>1x10-6; missingness<0.015) for the individuals included 

in the association analysis and used the 1000 Genomes LD-Score table provided with the 

software. 

 

As the continuous phenotypes were derived by adjusting for age, gender and study centre, 

the LMM only included chip (BiLEVE vs. UKBiobank arrays) as a covariate at run-time (see 

http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). The binary 

phenotypes were unadjusted and so included age, gender and chip at run-time. BOLT-LMM 

reported no improvement of the non-infinitesimal mixed model test over the standard 

infinitesimal test and so all association results reported in this paper are for the infinitesimal 

model 29. 

 

Chronotype replication samples 

Participants were from the customer base of 23andMe, Inc. The descriptions of the samples, 

genotyping and imputation are in Hu et al. Nature Communications, In Press. Of the 16 

chronotype-associated variants for which we attempted replication, 10 were available from 

imputation from the 1000 Genomes imputation panel phase 1 pilot. An additional 4 were 

imputed from the phase 1 version 3 1000 Genomes imputation panel. The final two could not 

be imputed. We used http://analysistools.nci.nih.gov/LDlink/ to find proxies --the best 

available were rs4729854 for rs372229746 (r2=0.33), and rs12621152 for rs70944707 

(r2=0.33). We meta-analysed P-values from the discovery and replication samples using 

sample size weighting implemented in METAL 30. 

 

Chronotype validation samples 

Genotypes consisting of both directly typed and imputed SNPs were used for the individual 

GWAS 12. To avoid over-inflation of test statistics due to population structure or relatedness, 

we applied genomic control for the independent studies and meta-analysis. Linear 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/031369doi: bioRxiv preprint first posted online Feb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/


regression for associations with normalized chronotype was performed (see 12 for packages 

used) under an additive model, with SNP allele dosage as predictor and with age, age2, 

gender, normalized sleep duration, season of assessment (dichotomized based on time of 

the year, and day-light savings time – DST or standard zone time assessments) as 

covariates. A fixed-effects meta-analysis was conducted with GWAMA using the inverse-

variance-weighted method and low imputation quality (Rsq/proper_info < 0.3) were dropped 

from the meta-analysis.  

Pathway analyses 

Pathway analyses were carried out in MAGENTA using all available libraries provided with 

the software. We included all imputed variants with association P<1x10-5 from the 

continuous chronotype trait. For the results presented in Supplementary Table 1, we used 

gene upstream and downstream limits of 250Kb, excluded the HLA region (default setting) 

and set the number of permutations for GSEA estimation at 10,000 (default). 

 

Genetic correlation analyses 

Genetic correlations (see 31 for methodology) between traits were calculated using the LD 

Score Regression software LDSC (available at https://github.com/bulik/ldsc/) 32. Summary 

statistics of our traits outputted by BOLT-LMM were first “munged”, a process that converts 

the summary statistics to a format that LDSC understands and aligns the alleles to the 

Hapmap 3 reference panel, removing structural variants and multi-allelic and strand-

ambiguous SNPs. Genetic correlations were then calculated between our phenotypes and a 

set of 100 phenotypes for which summary statistics are publicly available (full list in 

Supplementary Table 2). We used precomputed LD structure data files specific to 

Europeans of HAPMAP 3 reference panel, obtained from 

(http://www.broadinstitute.org/~bulik/eur_ldscores/) as suggested on the LDSC software 

page. 

 

Mendelian Randomisation IV analysis 

The 13 variants in Table 1 which reached P<5x10-8 in combined analyses were used as 

chronotype instruments in the Mendelian Randomisation analyses. Where binary and 

continuous traits shared a locus, we selected the top variant of the continuous trait over that 

of the binary. For loci that reach GW-significance in the binary trait only, we selected the top 

variant but used the effect size from the continuous trait. 

 

To test for a causal effect of BMI on chronotype and sleep-duration, we selected 69 of 76 

common genetic variants that were associated with BMI at genome wide significance in the 
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GIANT consortium in studies of up to 339,224 individuals (Supplementary Table 3) 25. We 

limited the BMI SNPs to those that were associated with BMI in the analysis of all European 

ancestry individuals and did not include those that only reached genome-wide levels of 

statistical confidence in one-sex only, or one stratum only. Variants were also excluded if 

known to be classified as a secondary signal within a locus. Three variants were excluded 

from the score due to potential pleiotropy (rs11030104 [BDNF reward phenotypes], 

rs13107325 [SLC39A8 lipids, blood pressure], rs3888190 [SH2B1 multiple traits]), three due 

to being out of HWE (rs17001654, rs2075650 and rs9925964) and the last variant due to not 

being present in the imputed data (rs2033529). 

 

For testing reverse causality of type 2 diabetes on our sleep phenotypes, we used 55 of 65 

common variants (listed in Supplementary Table 3) known to be associated with type 2 

diabetes at genome wide significance in a meta-analysis of 34,840 cases and 114,981 26, 

excluding those known or suspected to be pleiotropic.  

 

We performed the Mendelian Randomisation analysis two ways; firstly using instrumental 

variables (IV) using STATA’s “IVreg2” function 33 and secondly through the inverse-variance 

weighted (IVW) and MR-Egger methods described in 34. Analyses were performed in STATA 

13.1 (StataCorp. 2013. Stata Statistical Software: Release 13. College Station, TX: 

StataCorp LP.). 

 

In the instrumental variables method, we generated genetic risk scores (GRS) for BMI and 

type 2 diabetes using the published list of associated variants and their respective betas. For 

Chronotype, we generated a GRS using the thirteen replicated variants and their respective 

betas from 23andMe summary statistics. Using the IVreg2 command, we performed two-

stage least squares estimation to calculate the effect of predicted exposure (through the 

GRS) on the continuous outcome traits. For binary outcomes (type 2 diabetes, undersleeper 

and oversleeper), we manually carried out the two-stage process by regressing the exposure 

trait on its GRS and storing both predicted values and residuals. We then used these 

predicted values and residuals as independent variables in a logistic regression where the 

dependent variable was the binary outcome. 

 

The inverse-variance weighted (IVW) method is equivalent to a meta-analysis of the 

associations of the individual instruments and uses associations between the instruments 

and both the exposure and the outcome to estimate the additive effect of the instruments 

combined 34. The MR-Egger method is a modification to the IVW method that allows the 

inclusion of “invalid” instruments (i.e. those that don't satisfy all three conditions), by 
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performing Egger regression using the summary data of the variants. The IVW and Egger 

methods operate under the assumption that all instruments are valid, in that they satisfy the 

three IV conditions: the genetic variants are 1) independent of confounders, 2) associated 

with the exposure and 3) independent of the outcome.  The MR-Egger method, however, 

accounts for the fact that genetic variants could be pleiotropic and may influence the 

outcome via pathways other than through the exposure and therefore the resulting 

association between genetic instruments and the outcome should not be biased by invalid 

instruments and pleiotropy. The MR-Egger method was used purely as a sensitivity test for 

the IVW method and so MR-Egger results were not considered if the IVW result did not 

reach nominal significance. 

 

For the IVW and MR-Egger methods, associations of genetic instruments (variants) with 

both exposure and outcome phenotypes were generated in STATA by regressing the 

phenotype against the instrument while adjusting for covariates. As a further sensitivity test, 

we also repeated these analyses by replacing exposure phenotype-variant associations with 

their respective published betas and found only slight differences in betas and P-values, 

though all exposure-outcome associations remained non-significant. 
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Table 1. Genetic variants associated with chronotype. Sixteen loci associated with chronotype as either a continuous or binary trait in UK 
Biobank. Genes listed are candidate or nearest genes within 250Kb of the lead SNP. Odds ratios correspond to risk of morningness over 
eveningness. Beta, OR and frequency refers to A1. Replication data is based on continuous data and because the replication beta is in 
different units to the discovery GWAS beta a P-value meta-analysis was performed. * Proxies used for replication cohort: rs4729854 for 
rs372229746 (r2=0.33), and rs12621152 for rs70944707 (r2=0.33). 

Variant Chr:Pos A1/A2 Freq 
GWAS 

Continuous 
Beta (SE) 

GWAS 
Continuous 

P 

GWAS 
Binary 

OR (SE) 

GWAS 
Binary 

P 

Replication  
Beta (SE) 

Replication  
P 

Combined 
P 

Genes 

rs516134 1:182,553,693 C/T 0.03 0.081 
(0.011) 9E-13 1.21 

(0.032) 3E-12 0.295 
(0.035) 2E-17 7E-28 RGS16 

rs11162296 1:77,700,196 G/C 0.84 -0.037 
(0.005) 2E-12 0.93 

(0.011) 1E-12 -0.097 
(0.015) 2E-10 2E-21 PIGK, AK5 

rs77641763 9:140,265,782 C/T 0.88 0.039 
(0.006) 5E-11 1.07 

(0.015) 7E-09 0.065 
(0.020) 2E-03 2E-12 

GRIN1, 
NRARP 

rs1075265 2:54,354,927 C/G 0.48 -0.025 
(0.004) 2E-10 0.95 

(0.009) 4E-08 -0.010 
(0.011) 4E-01 4E-08 

PSME4, 
ACYP2 

rs75804782 2:239,316,043 T/C 0.88 0.030 
(0.006) 

3E-07 1.09 
(0.015) 

4E-10 0.106 
(0.018) 

4E-09 1E-14 PER2 

rs10157197 1:150,250,636 G/A 0.6 0.025 
(0.004) 

1E-09 1.05 
(0.010) 

5E-07 0.064 
(0.011) 

1E-08 6E-17 PRPF3, 
TARS2 

rs372229746 * 7:102,158,815 G/A 0.55 0.028 
(0.005) 4E-09 1.06 

(0.012) 7E-07 0.068 
(0.013) 4E-07 8E-15 

ORAI2, 
RASA4 

rs12140153 1:62,579,891 G/T 0.9 
0.039 

(0.007) 7E-09 
1.07 

(0.017) 4E-06 
0.043 

(0.025) 8E-02 3E-08 INADL 

rs9961653 18:56,767,671 T/C 0.42 
0.023 

(0.004) 1E-08 
1.04 

(0.010) 1E-06 
0.032 

(0.012) 6E-03 7E-10 
RAX, CPLX4, 

LMAN1 

rs192534763 8:36,202,946 T/C 0.99 0.100 
(0.021) 3E-07 1.25 

(0.057) 2E-08 -0.005 
(0.055) 9E-01 1E-04 UNC5D 

rs2050122 1:19,989,205 T/C 0.2 0.028 
(0.005) 2E-08 1.06 

(0.012) 3E-06 0.030 
(0.014) 3E-02 1E-08 HRT6 

rs12635074 3:55,982,416 T/G 0.68 -0.023 
(0.004) 3E-08 0.96 

(0.009) 2E-06 -0.002 
(0.012) 8E-01 1E-05 ERC2 

rs70944707 * 2:24,257,444 C/CT 0.23 0.030 
(0.005) 3E-08 1.05 

(0.013) 2E-05 0.035 
(0.016) 3E-02 2E-08 FKBP1B 

rs4821940 22:40,659,573 T/C 0.45 0.022 
(0.004) 

3E-08 1.05 
(0.010) 

4E-08 0.006 
(0.011) 

6E-01 5E-06 SGSM3 

rs72720396 1:91,191,582 A/G 0.77 -0.025 
(0.005) 1E-07 0.95 

(0.010) 3E-08 -0.035 
(0.014) 2E-02 2E-08 CALB1 

rs76899638 6:55,147,508 A/ATG 0.22 0.026 
(0.005) 4E-08 1.05 

(0.012) 2E-07 0.067 
(0.014) 4E-06 8E-13 HCRTR2 
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Table 2. Three loci associated with sleep duration and their lead variants. Genes listed are candidate genes at each locus. Beta, OR and 
frequency refers to A1. Because the replication beta is in different units to the discovery GWAS beta a P-value meta-analysis was performed. 
Beta units are in hrs. 
 

Variant Chr:Pos A1/A2 A1 Freq 
GWAS 

Continous 
Beta (SE) 

GWAS 
Continous 

P 

GWAS 
Binary 

OR (SE) 

GWAS 
Binary P 

Replication 
Beta (SE) 

Replication 
P 

Combined 
P Gene 

rs62158211 2:114,106,139 G/T 0.79 
-0.039 

6E-16 
0.94 

1E-07 -0.053 
(0.009) 4E-9 2E-23 PAX8 

(0.005) (0.011) 

rs17190618 2:58,882,765 A/T 0.84 
-0.033 

1E-09 
0.96 

3E-04 -0.035 
(0.011) 1E-3 5E-12 VRK2 

(0.005) (0.013) 

rs1380703 2:57,941,287 A/G 0.62 
0.025 

8E-09 
1.06 

8E-08 0.021 
(0.008) 1E-2 3E-10 VRK2 

(0.004) (0.011) 
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Figure 1 a) Manhattan and b) quantile-quantile (QQ) plot of chronotype score (inverse-normalised) P-values 

a) 
 

 

b) 
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Figure 2: Locuszoom plot around RGS16 locus 
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Figure 3: Locuszoom plot around PER2 
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Figure 4: a) Manhattan and b) quantile-quantile plot of hours slept (inverse-normalised) P-values. 

a) 

 

 

. 
C

C
-B

Y
 4.0 International license

peer-review
ed) is the author/funder. It is m

ade available under a
T

he copyright holder for this preprint (w
hich w

as not
. 

http://dx.doi.org/10.1101/031369
doi: 

bioR
xiv preprint first posted online F

eb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/


 

b) 

  

  

. 
C

C
-B

Y
 4.0 International license

peer-review
ed) is the author/funder. It is m

ade available under a
T

he copyright holder for this preprint (w
hich w

as not
. 

http://dx.doi.org/10.1101/031369
doi: 

bioR
xiv preprint first posted online F

eb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/


 
Figure 5: Locuszoom plots for the novel sleep duration associations at the VRK2 locus 
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Supplementary Figure 1: Distribution of a) self-reported BMI and b) proportion of individuals reporting type 2 diabetes in each of the 
possible sleep duration categories. 
a) 

 
 
 

b) 

. 
C

C
-B

Y
 4.0 International license

peer-review
ed) is the author/funder. It is m

ade available under a
T

he copyright holder for this preprint (w
hich w

as not
. 

http://dx.doi.org/10.1101/031369
doi: 

bioR
xiv preprint first posted online F

eb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/


References 
1. Dibner, C. & Schibler, U. Circadian timing of metabolism in animal models and humans. J 

Intern Med 277, 513-27 (2015). 

2. Duffy, J.F. & Czeisler, C.A. Age-related change in the relationship between circadian period, 

circadian phase, and diurnal preference in humans. Neurosci Lett 318, 117-20 (2002). 

3. von Schantz, M. et al. Distribution and heritability of diurnal preference (chronotype) in a 

rural Brazilian family-based cohort, the Baependi study. Sci Rep 5, 9214 (2015). 

4. Cappuccio, F.P. et al. Meta-analysis of short sleep duration and obesity in children and 

adults. Sleep 31, 619-26 (2008). 

5. Schmid, S.M., Hallschmid, M. & Schultes, B. The metabolic burden of sleep loss. Lancet 

Diabetes Endocrinol 3, 52-62 (2015). 

6. Reutrakul, S. et al. Chronotype is independently associated with glycemic control in type 2 

diabetes. Diabetes Care 36, 2523-9 (2013). 

7. Yu, J.H. et al. Evening chronotype is associated with metabolic disorders and body 

composition in middle-aged adults. J Clin Endocrinol Metab 100, 1494-502 (2015). 

8. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. 

Cell Metab 6, 414-21 (2007). 

9. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to 

hypoinsulinaemia and diabetes. Nature 466, 627-31 (2010). 

10. Turek, F.W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 

308, 1043-5 (2005). 

11. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal 

inference in epidemiological studies. Hum Mol Genet 23, R89-98 (2014). 

12. Allebrandt, K.V. et al. A K(ATP) channel gene effect on sleep duration: from genome-wide 

association studies to function in Drosophila. Mol Psychiatry 18, 122-32 (2013). 

13. Gottlieb, D.J. et al. Novel loci associated with usual sleep duration: the CHARGE Consortium 

Genome-Wide Association Study. Mol Psychiatry (2014). 

14. Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular 

synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun 2, 327 (2011). 

15. van der Horst, G.T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of 

circadian rhythms. Nature 398, 627-30 (1999). 

16. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian 

circadian clock. Nature 400, 169-73 (1999). 

17. Bunger, M.K. et al. Mop3 is an essential component of the master circadian pacemaker in 

mammals. Cell 103, 1009-17 (2000). 

18. Shearman, L.P., Jin, X., Lee, C., Reppert, S.M. & Weaver, D.R. Targeted disruption of the 

mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20, 6269-75 (2000). 

19. Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian 

circadian clock. Cell 105, 683-94 (2001). 

20. Preitner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription 

within the positive limb of the mammalian circadian oscillator. Cell 110, 251-60 (2002). 

21. Larsson, M. et al. GWAS Findings for Human Iris Patterns: Associations with Variants in 

Genes that Influence Normal Neuronal Pattern Development. The American Journal of 

Human Genetics 89, 334-343 (2011). 

22. Mazzotta, G. et al. Fly cryptochrome and the visual system. Proc Natl Acad Sci U S A 110, 

6163-8 (2013). 

23. Allebrandt, K.V. et al. Chronotype and sleep duration: the influence of season of assessment. 

Chronobiol Int 31, 731-40 (2014). 

24. Segre, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for 

associations with type 2 diabetes or related glycemic traits. PLoS Genet 6(2010). 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/031369doi: bioRxiv preprint first posted online Feb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/


25. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 518, 197-206 (2015). 

26. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic 

architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981-90 (2012). 

27. Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 

schizophrenia-associated genetic loci. Nature 511, 421-7 (2014). 

28. International League Against Epilepsy Consortium on Complex Epilepsies. Electronic address, 

e.-a.u.e.a. Genetic determinants of common epilepsies: a meta-analysis of genome-wide 

association studies. Lancet Neurol 13, 893-903 (2014). 

29. Loh, P.R. et al. Efficient Bayesian mixed-model analysis increases association power in large 

cohorts. Nat Genet 47, 284-90 (2015). 

30. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide 

association scans. Bioinformatics 26, 2190-1 (2010). 

31. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat 

Genet 47, 1236-1241 (2015). 

32. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in 

genome-wide association studies. Nat Genet 47, 291-295 (2015). 

33. Christopher, F.B., Mark, E.S. & Steven, S. IVREG2: Stata module for extended instrumental 

variables/2SLS and GMM estimation. S425401 edn (Boston College Department of 

Economics, 2002). 

34. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. International 

Journal of Epidemiology 44, 512-525 (2015). 

 

 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/031369doi: bioRxiv preprint first posted online Feb. 2, 2016; 

http://dx.doi.org/10.1101/031369
http://creativecommons.org/licenses/by/4.0/

