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Abstract
Cognitive control refers to the ability to perform task-relevant processing in the face of other
distractions or other forms of interference, in the absence of strong environmental support. It depends
on the integrity of the prefrontal cortex and associated biological structures (e.g., the basal ganglia).
Computational models have played an influential role in developing our understanding of this system,
and we review current developments in three major areas: dynamic gating of prefrontal
representations, hierarchies in the prefrontal cortex, and reward, motivation, and goal-related
processing in prefrontal cortex. Models in these and other areas are advancing the field further
forward.

Introduction
Computational models are important for making explicit links between biological mechanisms
and the cognitive and behavioral phenomena that they produce. In the domain of research on
cognitive control (e.g., the ability to perform task-relevant processing in the face of other
distractions or absence of strong environmental support), there is a rich history of
computational modeling that has served to focus empirical and other theoretical work on
specific biological mechanisms and their functional roles. For example, early models showed
how active maintenance of information in a working memory system could be accounted for
in terms of reverberatory excitation among a set of interconnected neurons [1,2], and how this
actively maintained information can provide a strong “top down bias” a to influence processing
throughout the brain [3,4,5,6]. These models resonated with a growing body of data from many
methodologies, and associated theoretical ideas, to provide a coherent account of the
involvement of the prefrontal cortex (PFC) in cognitive control [7,8,9]. This work has been
highly influential in the field, and represents one of the most significant success stories for the
contributions of the computational modeling approach.

Building upon this first wave of synthesis, a new generation of computational models have
been extending the theoretical and computational framework to include multiple other systems
that the PFC interacts with to achieve cognitive control, and elaborating the contributions that
the PFC itself makes. Some particularly active areas of research include:

• Monitoring and feedback mechanisms that can regulate the application of PFC-
mediated cognitive control, associated with the anterior cingulate cortex [10,11,12].
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• Dynamic gating mechanisms that can influence the updating and active maintenance
of information in PFC, associated with the basal ganglia [13,14,15] and the
neuromodulator dopamine [16,7].

• The hierarchical organization of PFC representations as a means of efficiently
performing complex cognitive tasks [17,18,19].

• The interactions between PFC and subcortical areas involved in reward and
motivation, to organize cognitive control around desired goals, and provide higher-
level control and integration of reward and punishment signals [20,21,22,23].

We review some key ideas from the last three of these areas below.

Dynamic Gating of PFC Representations
A remarkable consensus across multiple different levels of analysis has converged on the
general idea that an important element of cognitive control is a dynamic gating mechanism
that can determine when PFC representations are updated to reflect new information, versus
when they continue maintaining older information. From a purely computational perspective,
the LSTM (Long Short-Term-Memory) model advanced this gating idea to provide a more
robust active memory system [24]. From a biological perspective, the notion that the basal
ganglia act as a gating system in the context of motor control has long been accepted [25,26,
27], and this can be directly extended to account for a dynamic gating role in working memory
[13,14]. Interestingly, these neurally-based ideas have converged with more top-down driven
cognitive modeling work in the ACT-R framework, which postulates a gating-like role for the
basal ganglia as well [15]. The ACT-R modeling work shows how basal ganglia gating can
initiate the firing of cognitive productions, as in the classical production system models from
symbolic AI. Thus, it seems that several major threads of computational modeling work are
on the verge of a significant new integration [28,9].

Several recent models have explored the dynamically-gated working memory system in the
context of rich mathematical frameworks such as bilinear mappings and partially-observable
markov decision processes (POMDP), which provide important insights into the computational
properties of these models [21,29,30]. The recent work of Dayan [21,29] is particularly
interesting in attempting to bridge between basic gating-like working memory updating
mechanisms and the ability of the system to perform arbitrary tasks rapidly through verbal
instruction. Dayan draws nice connections between the ACT-R work and the habit versus goal-
directed action framework in animal learning [31]. In this context, most existing neural models
can be considered to be performing according to a complex habit that is inflexible and
cognitively impenetrable, whereas much of human performance is more goal-directed or rule-
governed (flexible and cognitively driven). Dayan shows how this rule-governed behavior can
emerge from more basic gating-like mechanisms, though many difficult problems remain to
be solved in this area.

At a more cognitive level, the work of Ashby and colleagues has shown how a PFC/BG system
can explain important findings in the categorization literature, adding further empirical avenues
for testing such models [32]. More generally, the empirical data on biological and cognitive
neuroscience studies of this PFC/BG system is growing rapidly, and providing considerable
support for the central ideas behind these computational models [33,34,35,36]. Thus, this area
of research and modeling represents another important emerging success story for the
computational modeling approach.

One outstanding question in this area is the relative role of dopamine as a gating signal in the
basal ganglia and PFC. Some models focus on the role of dopamine in training a selective
gating signal in PFC that is capable of gating new information into some regions of PFC, while
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leaving others to actively maintain older information [9,37]. Other models focus on the role of
a global dopamine signal in PFC for gating [16,38]. Future work should examine the interplay
between a global dopamine signal, and more focal gating signals from BG.

Hierarchies in PFC
Models of behavioral control have long involved hierarchies [39]. Only recently, however,
have hierarchical models made explicit contact with relevant neuroscientific data, which is
accumulating quickly [40,18,41]. Convergent findings suggest a hierarchy organized along the
posterior-anterior anatomical axis of the PFC, with more anterior areas providing higher-level
control representations, consistent with the original ideas of Fuster [42]. However, the best
way to characterize this hierarchy is still a matter of considerable debate, and computational
models are providing some important insights.

Botvinick [17] showed how learning hierarchically structured tasks in a network with
connectivity similar to PFC can give rise to a semi-hierarchical organizational structure. The
shortest route from stimulus to response in the model was directly from stimuli to premotor
areas, with increasingly more indirect routes available through more anterior PFC areas
(consistent with anatomical data [40,42]). When this network learned several complex
behavioral tasks, such as making tea or coffee, representations of more temporally protracted
task elements developed in higher-level layers. Critically, however, the model was not strictly
hierarchical, and thus can capture important subtleties in human performance, such as the
context sensitivity of subordinate actions.

Biologically detailed models of PFC active maintenance with basal ganglia gating mechanisms
have also been shown to develop hierarchical task representations [19], in the context of the
hierarchically-structured 12-AX task [14]. Two architectural variations of the model were used.
In the first, a posterior region of PFC received input directly from sensory areas, and projected
to motor areas, while an anterior PFC region received only from posterior PFC, similar to the
architecture used by [17]. The second architectural manipulation made the BG connectivity
hierarchical, with anterior PFC driving posterior BG gating, but not vice-versa. This
manipulation is consistent with findings that PFC/BG loops exhibit a spiral-like structure
[43,44]. Both manipulations caused specialization for more temporally extended (“outer loop”)
representations in anterior PFC, with additive effects of each.

These studies show how initial connectivity, combined with learning, can explain some aspects
of a hierarchical organization in PFC, within an overall framework of common underlying
mechanisms across the PFC. However, the empirical literature is unclear about the precise
nature of the PFC hierarchical structure: e.g., is it about rule complexity and relational
integration [45,46,18], or is it more about abstract representations [47,48,49], or both? One
intriguing prospect for future research is that basic differences in duration of active
maintenance across PFC areas (e.g., due to more anterior areas being further removed from
sensory perturbations) may interact with learning mechanisms to naturally produce a gradient
of abstraction [9,50].

Reward, Motivation, and Goals
The PFC is considered the “executive” of the brain for multiple reasons, among them that it is
strongly concerned with the “bottom line” – satisfying the basic needs and goals of the
organism. This occurs through bidirectional interactions with subcortical and other “limbic”
brain areas that are known to be involved in processing basic affective signals such as reward,
punishment, fear, etc. The ventral and medial areas of the PFC are most directly involved in
these interactions, and considerable attention has been focused on the roles of the orbital
prefrontal cortex (OFC), and the anterior cingulate cortex (ACC).
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The OFC is strongly interconnected with the basolateral amygdala (BLA), which is known to
be important for processing a range of basic emotions. From a computational perspective, the
OFC may play a similar role in this system as PFC does more generally: active maintenance
and top down biasing, but in this case maintenance of reward-related information, and biasing
of function in the BLA. Also, because subcortical areas may have relatively slow synaptic
learning, rapid working memory updates in the OFC may be required to keep track of recent
changes in outcome probabilities and magnitudes [51,22,52]. Models implementing this idea
have been able to account for a range of different data [22,52]. For example, patients with OFC
damage have been shown to exhibit poor decision making in gambling tasks, which seems to
be due to an underlying difficulty in integrating reward magnitude with its probability, and/or
reversing initial positive reward associations [53]. The OFC model of Frank & Claus [22] was
able to account for this data in terms of a reduced active maintenance system that otherwise
facilitates reversal learning of emotional associations, in a manner consistent with other such
reversal learning models [49,54], and OFC lesions in rats [55,52].

Although the anterior cingulate cortex (ACC) is often thought of as a conflict monitoring area
[12], a growing body of data suggests that this may be a subset of a more general computational
function as an OFC-like area that is concerned with associations between motor actions and
reward/punishment outcomes [56] (whereas OFC is concerned with associations between
stimuli and reward/punishment outcomes). One recent model of ACC suggests that it arbitrates
between model-based and model-free responses encoded in the dorsomedial vs. dorsolateral
striatum, respectively [20,21]. Model-based responding is goal directed, and is sensitive to
manipulations such as devaluation of the unconditioned stimulus, whereas model-free
responding is more habitual and insensitive to outcome-related manipulations [57]. A neural
network model of instrumental and Pavlovian conditioning shows how widely-accepted
biological learning mechanisms can result in a shift from dorsomedial goal-directed behaviors
early in skill acquisition to dorsolateral stimulus-response solutions during consolidation of a
skill [23].

More work is needed in this area to explore how different types of affective and goal-related
signals are encoded and processed in different PFC areas — the ventral and medial areas of
PFC are extensive, and current research has focused somewhat narrowly on reward-related
processing within a restricted range of behavioral paradigms.

Conclusions
In effect, computational models act like very precise theories, working along with other
theoretical ideas at various levels of description. A crucial benefit of computational models as
theoretical tools is that they enable simulation of complex cognitive processes, and principled
generation of novel hypotheses for testing. The models reviewed above, covering a wide range
of different levels of abstraction, contribute important insights and predictions that are being
actively tested. This new body of data is then informing new versions of the models,
perpetuating the classic cycle of theory development, testing, and revision that underlies all
good science.

In addition to the domains mentioned above that have received significant coverage in the
literature, we suggest that there are several important areas that are ripe for future exploration,
including models exploring the interactions between hippocampal episodic memory and PFC
working memory [58,59,60], and more work examining the nature of learning and rapid vs.
slow adaptation of PFC representations over time — the prevalent focus on active maintenance
as the main form of memory in the PFC may be causing us to miss out on a range of other
important memory mechanisms that may have important explanatory roles in a wide range of
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cognitive control phenomena, especially as one considers the developmental spectrum [61,
62].
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