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How can we explain the emergence of a language that benefits
the hearer but not the speaker?
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In this paper, we explore various adaptive factors that can influence the emergence of a communication
system that benefits the receiver of signals (the hearer) but not the emitter (the speaker). Using computer
simulations of a population of interacting agents whose behaviour is determined by a neural network,
we show that a stable communication system does not emerge in groups of unrelated individuals
because of its altruistic character. None the less, another set of simulations shows that the emergence
of a language that confers an advantage only to hearers, not to speakers, is possible under at least three
conditions: (1) if the hearer and the speaker tend to share the same genes, as predicted by kin selection
theory; (2) if the population is ‘docile’and the communication system is culturally transmitted together
with other adaptive behaviours, as predicted by Simon’s docility theory; and (3) if the linguistic system
is used not only for social communication, but also for talking to oneself, in particular as an aid to
memory.

Keywords: Language evolution; Alturism; Neutral networks; Kin selection; Docility theory; Talking
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1. Introduction

1.1 The problem

Language requires the co-evolution of both speakers and hearers, i.e. the co-evolution of the
ability to emit signals that systematically co-vary with specific features of the external or
internal environment (language production) with the ability to respond appropriately to these
signals (language understanding). If speakers do not produce signals appropriate to the cir-
cumstances, there are no useful signals for hearers to understand. If hearers do not respond
appropriately to the signals produced by the speakers, speakers emitting the appropriate sig-
nals are useless. The co-evolution of speakers and hearers requires that language must be
advantageous to both. Why should speakers evolve an ability to produce signals that appro-
priately co-vary with specific features of the environment if this does not have any advantages

*Corresponding author. Email: mirolli2@unisi.it

Connection Science
ISSN 0954-0091 print/ISSN 1360-0494 online © 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/09540090500177539



308 M. Mirolli and D. Parisi

for them? Why should hearers develop an ability to respond appropriately to the heard signals
if this ability does not increase their survival and reproductive chances?

In fact, using computer simulations we shall show that, in a situation in which language† is
advantageous for hearers but not for speakers, a stable and useful language fails to emerge in
groups of genetically unrelated individuals, i.e. if the speaker and the hearer do not have the
same or similar genes. Of course, there are other uses of language in which both the speaker and
the hearer gain benefits from, respectively, producing and understanding linguistic signals. In
these circumstances, language can emerge even in groups of genetically unrelated individuals.
One example is a speaker informing a group of hearers about the presence of some prey that
can only be captured by group hunting. In this context, language can emerge because both
the speaker and the hearer(s) receive some advantage (capturing the prey) by, respectively,
producing the appropriate signals and responding appropriately to the signals. However, our
simulations will show that, in at least three conditions, language can emerge even if it confers
an advantage only to hearers, not to speakers. The first condition is that the speaker and the
hearer share the same or similar genes. In these circumstances, language emerges because
the altruistic genes of the speaker are maintained in the population through the advantages
conferred by the linguistic behaviour of speakers to hearers that possess the same (or similar)
genes. In other words, language can emerge in kin-related groups as a result of kin selection
(Hamilton 1964).

A second condition in which language emerges even if it is advantageous only to the
hearer is a condition in which language is culturally rather biologically transmitted. If what
the organisms inherit genetically is not the language itself, but only the propensity to learn
the language, then this propensity—which, following Simon (1990), we call ‘docility’—
can be the basis for learning the language from individuals that already know the language,
irrespective of whether in any particular context of use language confers an advantage to the
speaker or to the hearer.

A third condition for the emergence of a language that is useful only for the hearer exploits
another peculiar characteristic of human language. Unlike animal communication systems,
human language is used not only for social communication, i.e. when the speaker and the hearer
are two different individuals, but also for talking to oneself, that is, when the speaker and the
hearer are the same individual. This kind of individual use of language constitutes between 20
and 60% of the language produced by 3–10-year-old children (Berk 1994) and there is evidence
that in adult life this private speech is internalized and becomes inner speech (Vygotsky 1962,
Diaz and Berk 1992). This use of language for oneself may have been present in the very early
evolutionary stages of language and it may have represented an evolutionary pressure for the
biological, not cultural, emergence of language. We shall show that a useful shared language
can biologically evolve in groups of genetically unrelated individuals if language is used not
only for social communication, but also as a memory aid, i.e. to allow an individual to keep
in his/her memory some useful piece of information that he/she has received from another
individual.

†The computational model presented in this paper is very simple and the ‘language’ we are dealing with is a very
simple communication system whose signals have no internal structure and no syntax. Nevertheless, we shall refer to
our signalling system indifferently as a ‘communication system’ and as a ‘language’. This is because the problem we
are dealing with here (namely the evolution of good speakers when there is no selective advantage for them) is relevant
for any kind of communication system used for informing other individuals about the environment, including human
language which is particularly sophisticated in this respect. Furthermore, two of the solutions we find for evolving
this kind of communication system (see the ‘docility’ and the ‘talking-to-oneself’ simulations, sections 3.3 and 3.4)
are based on two characteristics that are specific to human language: (a) it is a culturally transmitted and culturally
evolved system; and (b) it is used to communicate with oneself, not just with others.
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1.2 State of the art

The study of the evolution of communication and language using computational models is
a very lively and fascinating field. (For a recent and comprehensive review of the field, see
Wagner et al. (2003); see also the articles in Cangelosi and Parisi (2002).) Indeed, it can be
argued that much of the renewed scientific interest in theories of language evolution and origin
(Christiansen and Kirby 2003) is due to the introduction of formal and computational methods
to the field.

Various models have been described for studying the emergence of both simple, non-
syntactic communication systems (Hutchins and Hazlehurst 1995, Di Paolo 1999, Hurford
1999, Billard and Dautenhahn 1999, Steels and Kaplan 2002) and more complex, composi-
tional ones (Batali 1998, Hazlehurst and Hutchins 1998, Steels 1998, Kirby 2000, Cangelosi
2001, Cangelosi and Parisi 2001). Most of these models focus on the mechanisms that can
sustain the emergence of a good communication system and adopt means for assuring such
an emergence. Evolutionary models tend to include communication success directly in the fit-
ness function of the individual. Learning models tend to introduce learning mechanisms (such
as reinforcement) that force the system towards the emergence of a shared communication
system.

Only a few computational and formal models have directly tackled the issue that is of
interest here, that is, the adaptive factors that can lead to the emergence of a communication
system which is advantageous only for the hearer, not for the speaker. Ackley and Littman
(1994) and Oliphant (1996) have shown that this kind of communication system does not
evolve under ‘normal’ conditions because of its altruistic character. Only if the population is
spatialized, can a communication system evolve even if there is no advantage for the speaker.
Both Ackley and Littman (1994) and Oliphant (1996) argued that in spatialized populations
communicating organisms tend to be kin-related so that altruistic genes can emerge because
altruistic agents will tend to benefit other altruistic agents. Di Paolo (1999) has criticized this
interpretation by formally analysing kin relatedness in a model similar to that used by Ackley
and Littman (1994) and Oliphant (1996). He has shown that kin selection cannot fully explain
the effects that spatialization has on the emergence of a communication system; instead, spatial
organization by itself, together with other factors such as discreteness and stochasticity, can
play a major role in the emergence of co-operative communication.

The role of spatial factors in the emergence of simple, altruistic signalling systems is also
discussed in Noble et al. (2002), together with other adaptive factors like the handicap principle
(Zahavi 1975) and other ecological factors, such as the presence of noise.

In a model very similar to the one presented here, Cangelosi and Parisi (1998) were able to
evolve an altruistic communication system in a population of ecological neural networks. These
authors interpret the emergence of a good communication system in terms of the cognitive
pressure towards communication: the evolution of good signallers is explained as a by-product
of the independently evolving ability to categorize the environment.

Finally, Marocco et al. (2003) tried to evolve a communication system in a population of
neural networks controlling a robot arm whose task was to categorize objects by physically
interacting with them. The evolution of such a communication system proved to be very
difficult because of its altruistic character. In fact, a good communication system evolved
only in seven out of 10 replications of the simulation, even if: (a) the networks were cognitively
pre-adapted to resolve the task before the introduction of communication; and (b) the speaker
was always the parent of the hearer, so that there was strong pressure against the emergence
of cheating due to kin-selection.
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2. Method

In our simulations, we used a simplified version of the ‘mushroom world’ (Parisi 1997,
Cangelosi and Parisi 1998, Cangelosi and Harnad 2000). To survive and reproduce, individuals
must be able to distinguish between edible and poisonous mushrooms and they must eat the
edible mushrooms and avoid the poisonous ones. Furthermore, organisms can send signals to
each other for communicating the quality of the mushrooms encountered. The only difference
with respect to the original mushroom world is that the new world is one-dimensional rather
than two-dimensional. This simplification has been introduced in order to make the study of
the population dynamics easier and to discriminate better the roles played by the different
adaptive factors.

2.1 The environment and the task

The environment is a corridor made up of 11 cells (figure 1). In each trial an organism is
placed in the start cell at the beginning of the corridor and a mushroom is placed in the last
cell of the corridor (the ‘mushroom cell’). If the organism reaches the mushroom cell it eats
the mushroom contained in the cell. Mushrooms can be either edible or poisonous. If an
organism eats an edible mushroom its reproductive chances (fitness) are increased by some
amount, while eating a poisonous mushroom decreases the organism’s fitness (see later). The
sensory system of the organisms is very limited: an organism can see the mushroom only if
the organism finds itself in the cell immediately preceding the mushroom cell. Hence, without
language the only strategy that is available to the organisms is to run through the entire corridor
in each trial in order to reach the last but one cell and see whether the mushroom is edible or
poisonous. However, if another organism is near to the mushroom so that it can see it, and this
organism sends to the first organism a linguistic signal that tells the first organism whether the
mushroom is edible or poisonous, the first organism can avoid spending its energy in order to
run through the corridor in the trials with poisonous mushrooms. This confers an advantage
to the first organism (the hearer), but not to the other organism (the speaker).

2.2 The neural network

The neural network that controls the organisms’ behaviour is made up of 17 nodes and 32
connection weights, biases included (figure 2).There are 10 visual input nodes whose activation
encodes the perceptual properties (when visible) of mushrooms, and two linguistic input nodes
with continuous activation between −1 and +1 that encode received signals.

Figure 1. The environment at the beginning of each trial. The tested organism (hearer) is placed at the beginning
of the corridor and a mushroom is placed at the end. Another organism (speaker) is placed near to the mushroom and
it sends a signal (linguistic output) to the hearer. The perceptual properties of the mushroom are perceived only when
the organism is in the cell represented with thick lines. If an organism enters the mushroom cell, it eats the mushroom
and the trial ends.
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Figure 2. The neural network.

Each mushroom has perceptual properties that differ from the properties of all other
mushrooms. The perceptual properties of mushrooms are encoded as vectors of 10 bipolar
values† in the input nodes of the neural network controlling the organism’s behaviour. There
are 210 edible mushrooms and 210 poisonous ones. The perceptual properties of edible mush-
rooms are encoded as patterns that differ by 4 bits from the prototype represented by 10 − 1s,
whereas the perceptual properties of poisonous mushrooms are patterns that differ by 4 bits
from the prototype represented by 10 + 1s.

When organisms act as hearers, the activation of the two linguistic input nodes corresponds
to the activation of the two linguistic output nodes of the other organism which is near to the
mushroom, while when an organism is playing the role of the speaker, the activations of the
linguistic input nodes are set to zero.

There are only two hidden nodes (with bias) fully connected with both the input nodes and
the output nodes. The locomotion of the organisms is controlled by a single output node with
binary activation. If the activation is one, the organism moves to the next cell in the corridor.
Otherwise, it stays still. Movement has a cost, so that individual fitness is decreased by one
energy unit each time the individual makes one step forward.

Finally, there are two linguistic output nodes with continuous activation between −1 and
+1. The activation vector of these two nodes constitutes the linguistic signal that can be
transmitted either to some other organism (in the simulations with language) and/or to oneself
(in the ‘talking-to-oneself’ simulation, see section 3.4).

2.3 Individual lifespan

The life of each individual lasts 420 trials, one for each possible mushroom. In each trial
the organism is placed in the start cell of the corridor and one mushroom is placed in the
last cell. Another organism is chosen randomly from among the remaining members of the
population; it is placed near the mushroom so that it can perceive the mushroom’s perceptual
properties, and it emits a linguistic signal (linguistic output) that is received by the organism
being tested as a linguistic input. If the organism being tested reaches the mushroom cell, it

†‘Bipolar’ means that each value can be either +1 or −1. We have used bipolar values instead of binary values
(1/0) because bipolar encoding permits one to deal better with situations in which the organism does not perceive
the mushroom. In such situations, we give as perceptual input of the organism’s neural network the vector composed
by all zeros, so that the influence of the perceptual input on the hidden vector will be null. This strategy seems to be
quite straightforward but has a drawback when used with a binary encoding. In fact, in such an encoding zeros have a
‘meaning’ and even though this ‘meaning’ cannot be ‘represented’ in the connection weights between the input nodes
and the hidden nodes, it would be represented in hidden nodes’ biases.
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eats the mushroom and goes on to the next trial. In any case, a trial is terminated after 11
input–output cycles of the neural network.

2.4 The fitness formula

At the end of the 420 trials, the fitness of an individual is calculated according to the following
rule: (1) 30 energy units are added for each edible mushroom eaten; (2) five energy units are
subtracted for each poisonous mushroom eaten; and (3) one energy unit is subtracted for each
movement the organism has made during its life.† Hence, for the organisms in the simulations
with language, the maximum possible fitness is:

F max = 30 × 210 (edible mushrooms) − 5 × 0 (poisonous mushrooms)

− 210 × 10 (steps necessary for eating a mushroom) = 6300 − 2100 = 4200.

In the graphs the fitness is always normalized (that is, it is divided by 4200) so that the
maximum possible fitness is unity.

2.5 The genetic algorithm‡

In each generation the population consists of 100 organisms. The genome of the organisms
contains all the connection weights and biases of their neural network. In the first generation
the weights and biases are initialized with a random value in the range [−4; +4]. After all the
organisms have lived their lives and their fitness has been calculated, individuals are selected
for reproduction by the roulette with windowing method, they reproduce (sexually), and some
mutations are added to the genomes inherited by the offspring.

In the standard roulette method (Mitchell 1996), one creates a ‘roulette wheel’ such that
for each individual the size of its slice of the roulette wheel is proportional to the individual’s
fitness and, for each wheel spin, the individual selected for reproduction is the one under the
wheel marker. In this way, the probability of reproduction for each individual corresponds
to the fitness of the individual divided by the average fitness of the population. In adding
the ‘windowing’ method to the roulette method, one subtracts the fitness value of the worst
individual of the population from all the individuals, so that each individual will have a fitness
value between zero and the fitness value of the best individual minus the fitness value of the
worst individual. This is done in order to maintain a reasonable selective pressure even when
the average fitness reaches a high value and the differences in fitness between individuals are
very low.

Reproduction is sexual and the population is divided by sex: in each generation there are
50 ‘males’ and 50 ‘females’. Each individual has two parents, one male and one female,
that are selected for reproduction using the method described above. From each couple two
offspring are produced using a double-point cross-over method. For each offspring, we select
two randomly chosen integer numbers between zero and 31 (the genome is made up of 32
connection weights) that constitute the two points for the cross-over; then, we take one segment
between these two points from the ‘father’ and the other from the ‘mother’ and generate in
this way the genome of the offspring. This double-point cross-over treats the genome as a

†The values used in the fitness formula are arbitrary. The reason of the asymmetry between the contributions of
edible and poisonous mushrooms to fitness (30 versus 5) is that there must be some advantage in moving and eating
randomly; otherwise, at the beginning of the simulation organisms that stayed still would be selected and no evolution
could start at all (consider that just reaching a mushroom has its own cost of 10 energy units).

‡This genetic algorithm has been used for all the simulations except the simulation on docility. The algorithm used
in this last simulation is described in section 3.3.
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circle: there is no difference in the probability of cross-over between the ‘centre’ and the
‘periphery’ of the genome.

After all the new individuals have been created, we apply random mutations to the genome
in the following way: each single weight of each individual has 0.1% probability of having its
current value replaced by a new value randomly chosen in the range [−4; +4]. Ten replica-
tions (with different initial conditions) are run for each different kind of simulation and each
replication lasts 1000 generations.

3. Simulations

3.1 Language does not evolve if it is advantageous to hearers but not to speakers

In the baseline simulation, we try biologically to evolve language when in each trial the speaker
is randomly selected from the population and therefore tends not to share the same genes as
the hearer.

We measure the quality of the emergent language in the following way.A particular linguistic
signal produced by a particular organism is constituted by a vector of two continuous numbers
in the range [−1; +1], i.e. the activation vector of the two linguistic output nodes of the
organism. Hence, a signal can be considered as a point in a bi-dimensional space. Let us call
E and P, respectively, the set of points (‘cloud’) that represent the signals produced by all the
organisms of one generation in the presence of all edible and poisonous mushrooms. A good
language is one in which the two clouds E and P are: (1) as small as possible in size (all the
mushrooms belonging to the same category are named in similar ways); and (2) as distant
as possible from one another (the mushrooms belonging to different categories are named in
different ways).† We calculate (1) by normalizing (in the range [0; 1]) the mean distance of the
points of a cloud from its geometrical centre and taking its complement to unity (i.e. 1 − x).
Then, we measure (2) as the distance between the geometrical centres of the two clouds (also
normalized in the range [0; 1]). Finally, the quality of the language produced in a generation
is calculated as the mean of these two measures.

To give the reader an idea of what communication systems look like and of our language
quality measure, in figure 3 we show three communication systems of different quality: the
black circles represent the signals produced by all the individuals of one population in response
to all edible mushrooms (i.e. cloud E) and the grey crosses represents the signals produced in
response to poisonous mushrooms (i.e. cloud P). Figure 3(a) represents the communication
system at the beginning of the simulation, when organisms have random connection weights:
as can be seen, signals are completely random and one cannot tell the category of the mushroom
that is signalled (language quality = 0.03). Figure 3(b) represents a communication system
of low quality (0.33), in which the two clouds exist but they overlap significantly. Finally,
figure 3(c) represents a very good communication system (language quality = 0.83) in which
the two clouds are quite small and distant from each other.

Figure 4(a) shows average fitness and language quality in a single replication of the simula-
tion. Both the language quality and the average fitness are very unstable, fluctuating continually

†These two properties guarantee both that: (a) each individual produces similar signals for mushrooms that are
members of the same category and different signals for members of different categories; and (b) language is shared
across individuals in the population. On the contrary, if the two conditions are not satisfied, then we do not know
whether this is because single individuals do not produce good languages or because there is no agreement between
the (good) private signalling systems of different individuals. As we are interested in the language quality of the entire
population, we can ignore this distinction and use the size of the two clouds and the distance between the two clouds
as good indicators of overall language quality.
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Figure 3. Communication systems of (a) very low quality, (b) medium quality and (c) high quality. Black circles
represent signals produced for edible mushrooms (i.e. cloud E) and grey crosses represent signals produced for
poisonous mushrooms (i.e. cloud P). See text for details.

together between zero and unity. How can this be explained? If we analyse the curves of the
baseline simulation, we actually find a temporal pattern that can be described in the following
way:

(1) fitness tends to stabilize at approximately 0.55;
(2) language quality tends to grow;
(3) after language quality has reached a certain level, fitness increases very rapidly until

language quality suddenly drops down, and then fitness also drops down;
(4) finally, fitness tends to increase again and the cycle starts again.

This pattern is present in every replication of the simulation, which implies that the selective
pressures that produce such results are reliable and strong. As it turns out, the fitness value of
0.55 is exactly the maximum value that can be reached without the help of language:

FmaxNoLang = (F max −210 × 9 (steps necessary for checking the quality of poisonous

mushrooms))/4200 = (4200 − 1890)/4200 = 0.55.

A possible interpretation of the pattern described above is the following. First, the organisms
learn to discriminate between edible and poisonous mushrooms without listening to the signals

Figure 4. Average fitness and language quality of (a) a single replication and (b) 10 replications of the baseline
simulation.
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received, where not listening to the signals means simply having very low weight values in
the connections linking the linguistic input units with the hidden units. Then, for reasons that
we shall discuss in a moment, language quality increases so that the organisms start to rely
on linguistic signals for not moving when a poisonous mushroom is present, and this leads
to an increase in fitness. However, quite suddenly, language quality drops and this causes the
organisms’ fitness to decrease because organisms are misled by the signals they receive. After
they have learned not to listen to the signals, fitness re-starts to rise towards 0.5, and the cycle
begins again.

The increase in language quality during the phase in which signals are ignored can be
explained by both cognitive and genetic factors. Surviving and reproducing in the mushroom
world implies that organisms must develop some ability to categorize the mushrooms appro-
priately. This means that all edible mushrooms tend to elicit similar activation patterns in the
network’s internal units that are different from the activation patterns elicited by poisonous
mushrooms. Since the internal units are connected to the linguistic output units, these similar
internal activation patterns tend to result in similar linguistic signals for all edible mushrooms
and very different linguistic signals for all poisonous mushrooms. This cognitive explanation
for the emergence of a good language (Cangelosi and Parisi 1998) can be supplemented by
an explanation based on genetic convergence. In these simulations, genetic variability tends
to decrease because of selective reproduction, which causes the long-term survival of only a
few lineages. Since a good language is a language that is the same in the entire population,
increasing genetic similarity can result in better language quality.

The sudden drop in language quality in the next phase can be explained as a direct conse-
quence of the altruistic character of the kind of communication we are dealing with here. Since
selection favours only good understanding, not good speaking, bad speakers will be favoured
against good ones because they can play the role of cheaters: bad speakers take advantage of
the signals emitted by good ones while they emit signals that mislead other organisms. As a
consequence, once a good communication system is in place, bad speakers will start to be
selected against good ones and in a few generations this will result in a sudden decrease in
overall language quality and an accompanying drop in the average fitness of the population.

The outcome of these conflicting evolutionary pressures is that a good communication sys-
tem never stabilizes and this does not permit the full exploitation of the adaptive value of
communication. If we look at the average results of 10 replications of the baseline simulation
(figure 4(b)), we see that language quality does not reach very high values and, as a conse-
quence, the average fitness of the population fluctuates around a value (0.65) that is just a little
higher than the maximum value that can be reached without communicating at all (0.55).

3.2 Kin selection allows language to evolve

If language quality decreases because of the altruistic nature of speaking, then language quality
should not decrease if we add to the baseline simulation some adaptive factor that makes it
possible for altruistic behaviours to evolve. So, we tested whether adding kin selection to our
simulation would result in the emergence of a good and stable communication system.

Kin selection has already been claimed to play a role in other language evolution models
(Ackley and Littman 1994, Oliphant 1996), but this hypothesis has never been tested directly.
In fact, previous work assumed kin selection was at work due to the spatialization of the organ-
isms’ interactions and reproduction (for a criticism of such a use of kin selection theory, see Di
Paolo (1999)). So, we decided to implement kin selection directly, by varying the probability
that our organisms interact with close kin. The rationale for doing so is the following. Close
kin tend to share the same genes; so, the higher the probability of speaking to a close kin,
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the higher the chances that the altruistic behaviour of producing a good language is preserved
because it tends to confer an advantage to organisms with the same genes and, therefore, with
the same altruistic behaviour.

In our simulations, 50 out of the 100 individuals in each generation were males and 50 were
females. For each breeding cycle, one male and one female were selected for reproduction
with the roulette selection algorithm and the pair generated two offspring, one male and one
female, with different cross-over points and different mutations on connection weights. This
breeding method makes sure that each organism of the population has at least one full sibling.
We implemented kin selection by varying the probability p that the speaker in any trial is one
of the full siblings of the hearer. With probability 1 − p, the speaker is not one of the hearer’s
full siblings, but can be a half sibling.

We ran different simulations with different values of p. Figure 5 compares the results of
the baseline simulation with those of the kin simulations with p = 0.01, 0.05, 0.1 and 1, in
terms of: (a) language quality; and (b) average fitness. The results of the simulations are very
clear: the higher the probability p of speaking to a close kin, the higher language quality and
average fitness. Vice versa, the lower the p, the lower the language quality and the average
fitness of the population. With p = 0.01, the results are practically the same as those of the
baseline simulation.

The fact that the results of the simulation with p = 0.1 are not very different from those with
p = 1 should cause no surprise. After all, p determines only the probability that the speaker
is a full sibling of the hearer, but even when this is not the case, the speaker can share the
same genes of the hearer either because it is a half sibling or simply because of the genetic
convergence of the population discussed above. In fact, augmenting the ‘kin selection factor’
has the effect of adding an additional selective pressure for the stabilization of the language-
production genes: in other words, kin selection simply strengthens genetic pressure towards
language emergence already present in the baseline simulation.

3.3 Cultural evolution of language through docility

The preceding simulations have shown that the kind of communication system we are dealing
with here is altruistic and, as such, it fails to emerge through genetic evolution unless under
kin selection conditions. But one of the specific properties of human language with respect

Figure 5. (a) Language quality and (b) average fitness of the baseline and 1, 5, 10 and 100% kin simulations.
Average results of 10 replications.
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to animal communication systems is that human language is culturally, not genetically, trans-
mitted. Could this property have an influence on the emergence of the kind of (altruistic) use
of communication we are dealing with here? In 1990, Herbert Simon proposed an original
hypothesis on the evolution of altruistic behaviour in humans that was based on the notion of
‘docility’ (Simon 1990). Docility refers to the propensity, characteristic of the human species,
to learn socially (by imitation or by explicit teaching) how to behave. This propensity is bio-
logically inherited in our species and it appears to be so strong that we can make the hypothesis
that there has been a strong adaptive pressure during hominid evolution for the emergence of
such a trait. (Consider the advantages that could derive from an innate predisposition to learn
to imitate the behaviour of others in the context of highly social primates that are evolving
the capacity of tool-making and tool use, for instance.) But for an individual to determine
the contribution to its fitness of each behaviour that the individual learns from others would
be extremely hard, if not impossible. As a consequence, a docile organism will tend to learn
whichever behaviour it is taught, be it egoistic or altruistic, provided that the overall advan-
tages of learning from others are higher than the disadvantages. According to Simon’s docility
theory, in a population of docile individuals an altruistic behaviour can evolve if the following
three conditions are satisfied:

(1) there is some advantage d in being disposed to learn from others, i.e. in being docile;
(2) organisms are not able to evaluate the contribution of each particular behaviour that they

learn from others to their own fitness;
(3) the advantage d of being docile is greater than the cost c of the altruistic behaviour.

As the use of language that we are dealing with in this paper is altruistic and as human
language is culturally transmitted (although on a probable genetic species-specific basis),
Simon’s explanation of altruism seems to be applicable to language evolution.

We have run a new simulation, the ‘docility simulation’, in which the connection weights
of all individuals are always random at birth and are not inherited from parents. Instead, the
genome of these organisms is constituted by only one gene, encoded as an integer number,
which specifies the individual’s ‘docility’, which we modelled as the number of language
learning trials for that particular individual. In the first generation, each individual is assigned
a random value in the interval [0; 200] for this gene and this value is genetically transmitted
with a 2% probability of being changed by adding or subtracting a random number in the
range [−100; 100]. In any case, docility is forced to stay in the interval [0; 500].

The life of organisms in this second simulation is divided into two periods: infancy and
adulthood. During infancy, the organism is supposed to follow its parent and learn from its
parent how to behave in different situations. Its inherited docility gene determines the num-
ber of back-propagation learning cycles to which the infant is exposed. Learning is imitative
in that the teaching input of the back-propagation algorithm is the output of the infant’s
parent (Hutchins and Hazlehurst 1995, Denaro and Parisi 1997). Since there are three kinds
of situations to which organisms are exposed during their life, there are three different learn-
ing conditions: (1) comprehension learning; (2) decision learning; and (3) naming learning.
Comprehension learning takes place when the organism is distant from the mushroom and
has to decide whether to move or not to move according only to the signal it receives from
another organism. Decision learning takes place when the organism is near the mushroom and
its decision whether to move or not to move into the mushroom cell and eat the mushroom
depends on both the visual input from the mushroom and the linguistic input. Finally, naming
learning takes place when the organism acts as a speaker: the organism receives the perceptual
properties of a mushroom as input and it has to produce a linguistic signal.
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Figure 6. Language quality, average fitness and average value of the docility gene of the docility simulation.Average
results of 10 replications of the simulation.

In short, the number of learning cycles for each organism is determined by the organism’s
inherited docility and for each learning cycle this is what happens:

(1) one of the three learning situations is randomly chosen together with one of the 420
mushrooms;

(2) the appropriate input is given both to the learner and to its parent;
(3) both the organism’s output and its parent’s output are calculated;
(4) the output of the parent is given to the child as teaching input with some added ran-

dom noise (a random value chosen in the interval +0.25/−0.25 is added to the teaching
input†)];

(5) finally, the child’s connection weights are changed according to the back-propagation
algorithm (with a learning rate of 0.3 and a momentum of 0.8)].

At the end of infancy an individual starts its adult life, which is identical to the lifespan of
individuals in the genetic simulation.

Figure 6 shows language quality, average fitness and average value of the docility gene in
this simulation. Since in this simulation organisms are born with random connection weights,
they are bound to behave randomly unless they learn from their parents. The fact that the
teachers of the organisms of any given generation are the selected organisms of the previous
generation guarantees that what is learnt is a good behaviour, and the fact that some noise is
always present in the cultural transmission of behaviour guarantees that there is some added
variability, which is necessary for cultural evolution to take place. The results show that the
average value of the docility gene rises very quickly until it reaches almost its maximum
value (figure 6, thin line). Since organisms with a good foraging behaviour tend to produce
also a good language because of the cognitive pressure towards language emergence, young
organisms will learn not only to discriminate edible from poisonous mushrooms, but also
to produce a good language. Furthermore, as the behaviour of these organisms is culturally
learnt, the invasion of the population by cheaters is prevented: in fact, only individuals that
are not very docile will produce a bad language, but those individuals cannot learn how to
behave efficiently, therefore they will probably have a lower fitness than more docile (and
altruistic) individuals. As a result, to the increase in the average value of the docility gene
corresponds a parallel increase in the quality of the language produced by the organisms,
which reaches, after about 200 generations, the very high value of about 0.6 (figure 6, medium

†The results are quite robust with respect to the quantity of noise added, provided that this quantity is adequate for
cultural evolution: if there is no noise, there is no room for improvement in behavioural capacity; on the other hand,
if there is too much noise, good behaviours cannot be preserved. All noise values between 0.1 and 0.4 produce the
same qualitative results.
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line). As it turns out, the correlation between docility and language quality is very high: 0.967.
Finally, since the organisms in this simulation can exploit all the advantages provided by a
good communication system, their average fitness reaches almost the maximum possible value
(figure 6, thick line).

3.4 Language evolves if it is used to talk to oneself

In all the simulations described so far, we have assumed that language is used for social
communication purposes, that is, in situations in which the emitter and the receiver of signals
are two different individuals. But language can have useful functions even in situations in
which the emitter and the receiver of a signal are the same individual, i.e. when an individual
talks to itself. The particular function that we shall consider here is language as an aid for
memory.

The initial situation is identical to that of the preceding simulations. An individual is placed
in the start cell of the corridor and another randomly chosen individual is placed near the
mushroom, and generates a signal that is heard by the first individual. On the basis of this
signal, the first individual can decide whether to approach the mushroom or refrain from doing
so. However, since it takes 10 cycles to reach the mushroom, the signal must be available to
the first individual in all these cycles in order for the individual to know what to do in each
successive cycle. In the preceding simulations, this problem was solved by assuming that
the second individual, the speaker, continued to emit the signal until the end of the trial.
In the simulation in this paper the situation is different. The speaker emits the signal only
in the first cycle and then it disappears. All the first individual can do in this situation is to
try to remember the signal by repeating the signal to itself until it reaches the mushroom. In
the first cycle, when the signal arrives from the con-specific, the individual responds to the
signal not just by either moving one cell forward toward the mushroom or avoiding doing so,
but also by producing a signal using its own linguistic output units. In the next cycles, the
individual hears this self-produced signal and responds to it. Will a language evolve in these
conditions?

Notice that in the baseline simulation language was very unstable because there were both
cognitive and genetic pressures for its emergence and a strong selective pressure against lan-
guage emergence due to its altruistic character. In this simulation, in which individuals talk
to themselves, they have an interest in producing good signals because sometimes they are
the receivers of the signals produced by themselves. Therefore, emitters that produce good
signals will tend to have more chances to reproduce than emitters of bad signals because the
emitters of good signals can remember correctly the information received about the qual-
ity of the mushroom present at the end of the corridor. This effect is independent from
kin-relatedness. (It might be interpreted as kin-relatedness in a single individual.) Hence,
talking to oneself may constitute a selective pressure for the emergence of a good lan-
guage even in populations in which language is exchanged between pairs of non-kin-related
individuals.

This prediction is confirmed by the results of the talking-to-oneself simulation. Figure 7
compares average fitness and language quality in the baseline and the talking-to-oneself simu-
lations. Language quality in the talking-to-oneself simulation is more stable and significantly
higher than that of the baseline simulation: the range of fluctuation of language quality is
[0.43; 0.57] and [0.25; 0.45], respectively. As a result, the average fitness of the population
is higher and more stable in the talking-to-oneself condition than in the baseline condition:
fluctuation range is [0.78; 0.95] and [0.5; 0.8], respectively.
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Figure 7. Average fitness and language quality of the talking-to-oneself (TTO) simulations and of the baseline
(BL). Average results of 10 replications of both simulations.

4. Discussion

For language to emerge biologically it must involve some selective advantage for both the
emitters and the receivers of signals. Language requires both good speakers, i.e. individuals
who emit the appropriate signals in the appropriate circumstances, and good hearers, i.e.
individuals who respond appropriately to the signals that are produced by the speakers. But
good speakers emerge only if it is advantageous to them to produce the appropriate signals
in the appropriate circumstances, and good hearers emerge only if it is advantageous to them
to respond appropriately to these signals. If linguistic signals provide the hearer with useful
information, then the production of linguistic signals by the speaker is an altruistic behaviour
provided that the behaviour with which the hearer responds to the linguistic signals has no
useful consequences for the speaker and does not increase the speaker’s reproductive chances.
In fact, our simulations show that if it benefits the hearer but not the speaker, language fails to
emerge. Individuals who happen to be good speakers may increase the reproductive chances
of hearers who benefit from the linguistic signals produced by the speakers but who, when it is
their turn to function as speakers, may turn out not be good speakers. In this manner, although
it would be generally useful, a stable shared language may never evolve.

Indeed, the results of our baseline simulation support this analysis and replicate the results of
other simulations of the emergence of altruistic communication systems (Ackley and Littman
1994, Oliphant 1996, Marocco et al. 2003). However, Cangelosi and Parisi (1998) have
described a model very similar to the one we adopt here in which a good communication
system did evolve even without any benefit to the speaker. The explanation that those authors
gave for their striking result was that the emergence of a communication system was a by-
product of the organisms’ ability to categorize the environment. Since the organisms’ fitness
depends on their ability to tell poisonous from edible mushrooms, there is a strong selective
pressure for the emergence of good representation abilities, that is, for having very similar inter-
nal representations (vectors of activation values in the internal layer neurons) for mushrooms
belonging to the same category and very different representations for mushrooms belonging
to the other category. This will result in the spontaneous emergence of a good language just
because the activation pattern of the linguistic output units depends on the activation pattern
of the internal units. However, this might be only part of the explanation. The relationship
between language and categorization can only explain why the quality of the language pro-
duced by a single individual tends to be high, but it cannot explain why language is shared in
the population. In order to explain why different individuals belonging to the same population
share the same language, something more is needed: that is, the genetic similarity between
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individuals produced by genetic convergence of the population. Only the fact that all organ-
isms share similar connection weights linking the perceptual input to the hidden layer and
the hidden layer to the linguistic output can explain why the cognitive pressures towards the
emergence of a good individual communication system (with similar signals for mushrooms
belonging to the same category and different signals for mushrooms belonging to the other
category) results in the spontaneous emergence of a shared language in the whole population.
If this analysis is correct, than the difference between the results of our simulation and that
of Cangelosi and Parisi (1998) might be explained by a difference in the genetic convergence
of the population due to differences in the simulation set-up, such as the different difficulty of
the task or the different genetic algorithm used. Further analyses are needed on this topic but
some preliminary results of such analyses seem to support this interpretation.

Apart from the role played by the structural coupling between categorization abilities and
linguistic behaviour, three distinct mechanisms may have made it possible for language to
emerge even if the production of linguistic signals is altruistic behaviour that benefits the
hearer but not the speaker.

One mechanism is kin selection. Our simulations show that, in accordance with kin selec-
tion theory (Hamilton 1964), the probability that the speaker and the hearer share the same
genes directly affects the stability of a communication system that benefits the hearer but
not the speaker. Animal signals mostly communicate information about the sender of the sig-
nal – its location, species, identity, emotional state, intentions and attitudes – not information
about the external environment (Hauser 1996). Of course, there are some exceptions, such as
honey-bees’ dance and vervet monkeys’ alarm calls, but human language clearly is the most
sophisticated communication system for communicating information about the external envi-
ronment. While kin selection was probably one of the major factors in the evolution of social
insects’communication systems, we do not know what the role of kin selection in the evolution
of primate (and human) communication could have been. Hominid evolution took place in
small, kin-related groups, and the long juvenile period of humans may have contributed to
a substantial increase in the probability that communicative interactions took place between
related individuals. As our kin selection simulations demonstrate, if this is the case, then the
increase in genetic relatedness between the speaker and the hearer might have been one factor,
among many others, which favoured the evolution of (the altruistic use of) language.

If, however, language is restricted to kin-related groups, its usefulness is limited. Language
becomes much more useful if it represents a vehicle of communication and interaction among
larger groups of genetically unrelated individuals. Language that benefits the hearer but not
the speaker may emerge in larger groups of unrelated individuals if it is culturally rather than
biologically transmitted. Cultural transmission is learning from others. Human beings appear
to have a genetically inherited tendency to learn from others whatever behaviour others may
care to teach them. This ‘docility’evolves because it confers an advantage to the individual who
possesses it: a docile individual can learn from others behaviours that would be more difficult
to learn by directly interacting with the non-social world. These behaviours generally tend to
increase the reproductive chances of the learning individual, but in some circumstances and
in some of their uses they may benefit others. For docile organisms, however, learning from
others is ‘blind’, in the sense that the learning individual does not (easily) distinguish between
what is beneficial for him/herself and what is beneficial for others, especially because this
kind of learning takes place mostly when the individual is young. Thus, altruistic behaviours,
including the altruistic use of language we are dealing with here, can emerge as a cultural
by-product of the genetic evolution of docility in a population.

Studying the influence of cultural learning on language emergence is one of the major
themes in the literature on computational models of language evolution (see, e.g. Hutchins
and Hazlehurst 1995, Batali 1998, Hurford 1999, Kirby 2000, Steels and Kaplan 2002); but
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none of the previous computational models of language evolution tested the hypothesis that
the evolution of cultural transmission could have favoured the emergence of an altruistic use
of language. Our docility simulation shows exactly this. It shows that linguistic docility, that
is, a tendency to learn language from others, can emerge biologically and be biologically
transmitted and, if this is the case, the homogenization of linguistic behaviour induced by
cultural transmission can favour the (cultural) emergence of an altruistic use of language. (For
a general discussion of our docility simulation in the context of the biological hypotheses on
the evolution of altruism, see Mirolli and Parisi (2004).)

Finally, a third mechanism may explain the emergence of a language that benefits the
hearer, not the speaker, in groups of genetically unrelated individuals even if the language
is biologically, not culturally, transmitted and evolved. This third mechanism is using the
language not (only) to communicate with others but (also) to communicate with oneself.
Generally, there is a tendency to think that language was used by humans to communicate with
oneself only when language was already well developed and was sophisticated and complex;
hence, quite recently compared with the first appearance of a proto-language. However, this
is not necessarily the case. Even a very simple proto-language, for example, a language made
up of single words (or holophrases), may be used to talk to oneself, for example as an aid for
memory, with advantages for the individual who uses the language in this way.

Based on this hypothesis, our talking-to-oneself simulation shows that linguistic signals that
benefit the hearer but not the speaker can emerge biologically among genetically unrelated
individuals if the hearer has to repeat the signals to him/herself in order to keep them in
memory. When one speaks to another individual and the signals benefit the hearer but not
the speaker, the speaker acts altruistically and may benefit a hearer who is a poor speaker.
This, as we have seen, is an obstacle for the biological emergence of language. But, if the
hearer has to repeat the signals to him/herself in order to keep them in memory, then there is
a positive selective pressure towards good speaking abilities because in talking-to-oneself the
same individual is both speaker and hearer, hence the advantage of understanding linguistic
signals can be exploited only if it is accompanied by good productive capacities.

We think that linguistic memory can be advantageous for at least two reasons: (a) delegating
the memory function to the linguistic system can leave the sensorimotor system free to pro-
cess other information useful for acting in the environment while linguistically remembering
previous information; and (b) linguistic signals may occupy less space in memory than the
raw information they refer to.† It might also be that another peculiar characteristic of human
language, namely the fact that it uses displaced signals (Hockett 1960), became possible only
after hominids had improved their memory by talking to themselves. (For the possible role of
linguistic memory in the evolutionary origin of language, see Aboitiz and Garcià (1997).) In
any case, we think it would be worthwhile to investigate those issues using a more ecological
and embodied simulative framework.

Furthermore, the use of the linguistic system as an aid to memory is only an example
of the many possible individual uses of the social communication system (Vygotsky 1962,
Jackendoff 1996, Clark 1998). For example, in other simulations we showed how learning a
simple language can improve the ability to categorize the world (Mirolli and Parisi in press).
In general, we think that the use of language as an aid to cognition could have played an
important role in language evolution. Our talking-to-oneself simulation is just a very simple
demonstration that this could be the case. Much more work (both empirical and computational)

†Recent neuro-psychological evidence seems to suggests that humans have indeed (at least) two different working
memory systems: the first one is non-linguistic and it is shared with other primates; the second one seems to involve
linguistic areas. Furthermore, these two systems seem not only to have different neuro-anatomical organization and
different evolutionary origins, but also quite different functional properties (Gruber and Goschke 2004).
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must be done in order to understand better the intimate relationship between language and
cognition and the phylogenetic and ontogenetic co-evolution between the two.

5. Conclusion

Human language is an incredibly complicated phenomenon that depends on the individual
brain, on ontogenetic development, and on genetic and glossogenetic (cultural) evolution. All
of these are complex systems acting at different time-scales, which in turn interact with one
another in complex ways. So, it is very unlikely that a single simple explanation can be found
for the emergence of human language. Indeed, it is very unlikely that a single discipline or a
single methodology can suffice for understanding all the amazing features of human language
or the mechanisms and factors that generated them.

In the simulations described in this paper we have singled out one particular feature of
human language, namely, the fact that it is a particularly sophisticated system for informing
other individuals about the external environment, and we have tried to analyse some of the
factors that could have played a role in the evolutionary emergence of this feature: its altruistic
character, the social scope of its use which could result in kin selection, the fact that language is
culturally transmitted, and the fact that human language is not only a communication system,
but also is used for improving individual cognitive functions such as memory. A lot more work
needs to be done in order to increase our understanding of the emergence of all the important
features of human language.
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