Zinc activates damage-sensing TRPA1 ion channels

Hongzhen Hu^{1,4}, Michael Bandell^{1,4}, Matt J Petrus¹, Michael X Zhu² & Ardem Patapoutian^{1,3}

Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

Zinc is an indispensable heavy metal in the human body. It is mostly bound to proteins and enzymes, for which it serves as an essential catalytic, co-catalytic or structural element¹. Furthermore, free (unbound) zinc acts as a signaling molecule affecting both neuronal and non-neuronal systems². Consequently, zinc is an essential component of our daily food intake, and zinc deficiency can lead to a variety of pathological symptoms. However, zinc is also known to have cytotoxic potential, and endogenous zinc distribution is tightly regulated by efficient homeostatic mechanisms^{1,2}. Indeed, exposure to excessive zinc can be harmful and can have pathological consequences. For example, exposure through ingestion can cause symptoms including nausea and gastric pain³. Zinc exposure can also occur as a consequence of inhalation, as zinc is a common constituent of particulate air pollution, and is an occupational toxin present in welding fumes and smoke bombs. Inhaled zinc causes airway irritation and (in severe cases) zinc fume fever-a disease characterized by pulmonary inflammation and flu-like symptoms caused by the watersoluble fraction of inhaled zinc oxide³⁻⁶. The mechanism behind the pain, irritation and inflammation associated with zinc toxicity is unknown. Noxious levels of zinc could cause irritation by upregulation of inflammatory mediators and subsequent activation of somatosensory neurons^{4,6,7}. Alternatively, zinc could interact directly with nociceptive sensory nerve fibers, thereby initiating pain and neurogenic inflammation.

Sensory neurons inform the central nervous system of the thermal, mechanical and chemical conditions of the skin and internal organs. Noxious conditions such as extreme temperatures, tissue damage or noxious chemicals are detected by a subpopulation of sensory neurons—the so-called nociceptors, which upon excitation signal pain and induce neurogenic inflammation. Recent studies have shown that TRPV1 and TRPA1, both cation channels of the transient receptor potential (TRP) family, are expressed in nociceptive neurons where they function as polymodal receptors for noxious stimuli⁸. Specifically, TRPV1 functions as a receptor for noxious hot temperatures (>42 °C) and capsaicin (1), the pungent ingredient in chili peppers⁹. TRPA1 is the receptor for mustard oil (2), cinnamaldehyde (3) and various other pungent phytochemicals, and has been proposed as a receptor for noxious cold (<17 °C)^{10–16}. Conditions of inflammation and injury can sensitize nociceptive neurons through various mechanisms, including the upregulation of endogenous TRP channel agonists and modulators. Inversely, TRP channel agonists can cause neurogenic inflammation by causing excitation of nociceptive sensory neurons and subsequent neurogenic release of inflammatory peptides⁸.

Here we tested the hypothesis that zinc toxicity may involve direct excitation of somatosensory neurons. We show that zinc excites nociceptive sensory neurons and causes pain and irritation through activation of TRPA1 via a unique mechanism, which suggests that a neurogenic mechanism underlies at least part of the sensory symptoms associated with zinc toxicity.

RESULTS

Zinc activates sensory neurons through TRPA1

We used calcium imaging to investigate whether zinc could activate cultured sensory neurons from mouse dorsal root ganglia (DRG). Indeed, approximately 15% of the neurons exhibited increases in calcium levels upon exposure to zinc (**Fig. 1a**). Approximately 80% of the zinc-responsive neurons also responded to a subsequent application of mustard oil, a TRPA1 agonist. This suggests that zinc acts on a subset of nociceptive neurons¹⁷. To identify the mechanism by which zinc causes calcium influx in sensory neurons, we used a candidate approach to investigate whether TRP ion channels reported to be expressed in sensory neurons could account for the observed zinc

Received 21 August 2008; accepted 13 January 2009; published online 8 February 2009; doi:10.1038/nchembio.146

¹Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA. ²Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, Ohio 43210, USA. ³Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ⁴These authors contributed equally to this work. Correspondence should be addressed to A.P. (apatapou@gnf.org).

activation. No activation was observed for TRPV1, TRPV2, TRPV3, TRPV4 or TRPM8 at zinc concentrations between 0.3 uM and 3 mM when assayed by calcium imaging of a human embryonic kidney (HEK) 293 cell line transiently expressing these ion channels (data not shown). In contrast, zinc potently activated TRPA1, and this activation was inhibited by ruthenium red (4), a TRPA1 blocker (Fig. 1b and data not shown). TRPA1 activation was observed at zinc concentrations as low as 300 nM, with an effector concentration for halfmaximum response (EC50) of approximately 2 µM. However, at concentrations higher than 300 µM, zinc also exhibited an inhibitory effect on TRPA1 (data not shown), which suggests that there might be a low-affinity inhibitory site for zinc in TRPA1 (ref. 18). We also tested for activation by another heavy metal with properties similar to those of zinc: cadmium. Much like zinc, cadmium was a potent TRPA1 agonist (EC₅₀ of $\sim 2 \mu$ M, data not shown), whereas no activation of TRPV1, TRPV2, TRPV3, TRPV4 or TRPM8 was observed.

We next tested whether TRPA1 is required for zinc responses in DRGs. Sensory neurons from $Trpa1^{-/-}$ mice were completely unresponsive to zinc, but they retained responsiveness to capsaicin (**Fig. 1c,d**). These results indicate that TRPA1 is the sole target for zinc-induced sensory neuron responses as assayed by calcium imaging.

Mustard oil application caused a larger number of neurons to respond than zinc, which suggests that not all TRPA1-expressing neurons respond to zinc (Fig. 1a). A similar phenomenon was observed when comparing the TRPA1-specific agonists cinnamaldehyde and mustard oil (more neurons responded to mustard oil)¹¹.

Zinc induces nociception through TRPA1

We next investigated whether TRPA1 is involved in the pain and irritation effects of zinc *in vivo*. In spite of the fact that zinc is well documented as an irritant in humans, to our knowledge the direct nociceptive effect of zinc in mice had not been tested. In agreement with the described noxious effects of zinc, injection of 30 mM zinc acetate in mouse hindpaw caused licking and flicking of the injected paw, which indicates irritation and/or pain (**Fig. 2a**). In a control experiment no responses were observed in mice injected with 30 mM calcium acetate, which indicates that the behavior is mediated by zinc rather than the counter ion acetate (**Fig. 2b**). *Trpa1^{-/-}* mice displayed a substantially attenuated zinc-induced nociception. These results indicate that TRPA1 is required for the irritation and pain symptoms associated with excess zinc exposure.

Figure 1 Zinc activates sensory neurons through TRPA1. (a) Ratiometric calcium imaging of cultured mouse dorsal root ganglia neurons. Each trace corresponds to fluorescence in a single neuron. Neurons were exposed to 30 µM ZnCl₂, 100 µM mustard oil and 100 mM KCl for the indicated times (black bars). DRG neurons were isolated from Trpa1+/+ mice, facilitating a direct comparison to c. Mustard oil-responsive neurons are shown in red. 21% of the neurons responded to ZnCl₂, and 48% responded to mustard oil. (b) Zinc dose-response relationship on HEK293 cells expressing TRPA1, measured using FLIPR assay. Data points indicate average (± s.e.m.) of fluorescence increase in 4 wells. The EC_{50} (± s.e.m.) was determined at 2.3 \pm 0.3 μ M. (c) Calcium imaging of Trpa1^{-/-} DRG neurons, exposed to 30 µM ZnCl₂, 1 µM capsaicin and 100 mM KCl for the indicated times. Note the absence of zinc-responsive neurons. (d) Summary of zinc responses in neurons isolated from $Trpa1^{+/+}$ and $Trpa1^{-/-}$ mice. Average % (± s.d.) of three (Trpa1^{+/+}) and two (Trpa1^{-/-}) individual preparations are shown. In total, 1,900 Trpa1+/+ neurons were tested, among which 243 responded to ZnCl₂. Out of 1,141 Trpa1^{-/-} neurons tested, 0 responded to ZnCl₂.

The use of millimolar zinc concentrations in these experiments is consistent with other nocifensive behavioral studies involving TRPA1 agonists such as formaldehyde (5), iodoacetamide (6) and mustard oil, for which solutions of 66 mM (0.2%), 15 mM and 75 mM, respectively, have been used, even though *in vitro* experiments indicate micromolar EC_{50} values^{16,19,20}. The differences between the *in vivo* and *in vitro* potency of these compounds may reflect their pharmacokinetic properties or the route of exposure.

Zinc activates TRPA1 via an intracellular site

We next set out to characterize the mechanism by which zinc activates TRPA1. First we investigated whether activation requires intracellular components or is membrane-delimited. To answer this question we measured zinc-induced currents in cell-detached membrane patches of HEK293 cells expressing TRPA1. Using the inside-out configuration, we perfused zinc onto the intracellular face of the membrane, which induced a reversible and concentration-dependent TRPA1 activation (Fig. 3a-d). Dose-response experiments revealed that intracellular zinc at a concentration as low as 10 nM activated TRPA1, with an EC₅₀ of approximately 50 nM (Fig. 3a-c). Therefore, TRPA1 is much more sensitive to zinc when assayed intracellularly. Channel activity was inhibited by ruthenium red and camphor (7), two known TRPA1 blockers, and was not observed in control patches without TRPA1 (refs. 10,21) (Supplementary Fig. 1 online and data not shown). We also observed that 10 nM zinc augments TRPA1 activation by calcium, thus providing further evidence that low levels of zinc modulate TRPA1 activity (Supplementary Fig. 2 online).

Figure 2 TRPA1 mediates zinc-induced nocifensive behavior. (**a**,**b**) Zinc acetate (**a**) or calcium acetate (**b**) at a concentration of 30 mM was injected in the hindpaw of wild-type and *Trpa1*^{-/-} mice, and nocifensive responses (paw flicking and licking) were recorded over a period of 5 min (see Methods for details). Error bars represent s.e.m.

ARTICLES

These results suggest that zinc activates TRPA1 in a membranedelimited fashion. Zinc activated TRPA1 channels at both positive and negative membrane potentials in the inside-out configuration (**Fig. 3d**). On the other hand, zinc (100 nM) applied to inside-out patches from untransfected HEK293 cells failed to evoke channel activities in five out of five patches (data not shown).

In the above experiments, zinc was only added to the intracellular buffer. In fact the extracellular (pipette) buffer contained 1 mM EGTA, which strongly chelates zinc ($K_{d(Zn)} \sim 1$ nM), which indicates that TRPA1 is activated specifically by intracellular zinc. In the reciprocal experiment, we used the outside-out configuration to perfuse zinc onto the extracellular face of the membrane while chelating intracellular zinc with 1 mM EGTA. In contrast to intracellular zinc, extracellular zinc did not increase single channel activity above basal level, even though a control agonist did, which suggests that extracellular zinc by itself is unable to activate the channel (**Fig. 3e,f**). These data suggest that zinc activates TRPA1 through intracellular sites.

TRPA1 is zinc permeable

Because zinc is not membrane permeable, the above data raised the question of how extracellularly applied zinc can cause TRPA1 activation in intact HEK293 cells and neurons. One possibility is that zinc enters the cell through active uptake via zinc transporters or through ion channels co-expressed with TRPA1. Given that TRPA1 could be activated by zinc in various cell types (CHO, HEK293, DRG; Fig. 1 and data not shown), we hypothesized that TRPA1 itself might mediate the zinc influx. To explore this, we used intracellular zinc imaging using the zinc-selective fluorophore fluozin-3 (8)²². In agreement with our hypothesis, zinc imaging revealed that extracellular application of zinc resulted in zinc influx in TRPA1-transfected HEK293 cells, which was absent in cells transfected with vector control (Fig. 4a). No fluorescence increase was observed upon addition of ionomycin (9), which indicates that the signal could not have been due to influx of calcium (Fig. 4a).

Figure 3 Zinc activates TRPA1 through intracellular sites. (a) TRPA1 channel activity in an excised inside-out patch in response to indicated concentrations of ZnCl₂. EGTA (1 mM) was included in the pipette solution. (b) Histogram illustrates zinc-induced single channel open probability in an excised inside-out patch as shown in a. NPo refers to channel open probability. (c) Concentration-response curve of zinc-evoked increase of single channel open probability of TRPA1 in excised inside-out patches. All points were normalized to the effect of 100 nM zinc. The curve shown is the best fit of the data to the logistic equation $y = E_{max}/(1 + (x/EC_{50})^{-n})$, where E_{max} is the maximal response, EC₅₀ is the agonist concentration producing 50% of the maximal response and n is the slope factor. Numbers of patches tested at each concentration are indicated. Error bars represent s.e.m. (d) Zinc-activated TRPA1 channels at both positive and negative membrane potentials in an excised patch with inside-out patch configuration. Voltage ramps of 200 ms to +100 mV after a brief (20 ms) step to -100 mV from holding potential of 0 mV were applied every second in the absence (basal) and presence of 300 nM zinc. (e) TRPA1 channel activity in an excised outside-out patch in response to ZnCl₂ and mustard oil (MO). No activity is observed in response to zinc (n = 6). EGTA (1 mM) was included in the pipette solution. (f) Histogram illustrates the time course and effect of zinc and MO on single channel open probability of TRPA1 as shown in d.

To test whether zinc permeation is also a property of natively expressed TRPA1, we assayed intracellular zinc levels in dorsal root ganglia, after exposure to zinc. Notably, neurons from $Trpa1^{+/+}$ mice exhibited increases in fluozin-3 fluorescence ranging from 1 to ~8 times the basal level. In contrast, the fluorescence increases in neurons from $Trpa1^{-/-}$ mice were limited largely to less than twofold (**Supplementary Fig. 3** online). These results suggest that natively expressed TRPA1 mediates zinc influx. Notably, TRPA1-independent mechanisms of zinc influx may also exist, as zinc induced moderate fluorescence increases in $Trpa1^{-/-}$ neurons.

These results indicate that TRPA1 can facilitate zinc influx. It is known that TRPA1, like many other TRP channels, exhibits basal channel activity in the absence of any stimulus^{23,24}. We therefore proposed a working model in which zinc enters the cell through lowlevel basal activity of TRPA1 channels resulting in subsequent full activation through zinc interaction with intracellular sites. To further test this hypothesis, we generated a mutation in the selectivity filter of TRPA1 known to affect TRP channel permeability to divalent cations²⁵. This mutant channel (D915A) was functional, but exhibited a lower conductance than the wild-type channel, which is indicative of a mutation affecting the ion permeation pathway (Supplementary Fig. 4a-c online). Notably, no zinc influx could be observed in this mutant, even in the presence of saturating concentrations of the TRPA1 agonist cinnamaldehyde. This suggests that TRPA1 D915A abolishes zinc permeation (Fig. 4b). Consistent with this, no activation of TRPA1 D915A by zinc was observed in whole-cell configuration, despite the fact that zinc activated large currents at both positive and negative membrane potentials in wild-type TRPA1 (Fig. 4c-d). TRPA1 D915A is robustly activated by zinc in inside-out patches, which demonstrates that this mutant channel can still be activated by intracellular zinc (Fig. 4e,f). These results suggest that activation by extracellular zinc requires its permeation through TRPA1 to gain access to intracellular sites.

Structural requirements for zinc activation

To further elucidate the mechanism underlying zinc activation, we set out to identify structural elements required for TRPA1 activation by zinc. Detailed insight into protein-zinc interaction sites has come from structural studies on metalloenzymes. These indicate that zinc binding is most commonly mediated by the coordination of multiple side chains from aspartate, glutamate, histidine and cysteine residues, with

the latter two being most prevalent among zinc binding sites^{1,26}. Although TRPA1 bears no apparent structural similarity to metalloenzymes, it does contain three N-terminal cytoplasmic cysteine residues that have been implicated in channel activation by electrophilic (cysteine-reactive) TRPA1 agonists^{27,28}. We therefore investigated whether these cysteines are also involved in zinc activation.

TRPA1 mutants in which these cysteines were replaced by serines were tested for responses to zinc, cinnamaldehyde (a cysteine-reactive agonist) and flufenamic acid (10; FFA, a nonreactive compound that we recently found to be a potent human TRPA1 agonist). Individual mutation of the cysteines only moderately affected the zinc responses (Supplementary Fig. 5a-c and Supplementary Table 1 online). A human TRPA1 channel mutated at all three cysteines responded substantially less to zinc (Supplementary Fig. 5d-f and Supplementary Table 1). However, zinc activation was not completely absent. Cinnamaldehyde responses were also substantially reduced as was expected. The non-electrophilic agonist FFA also activated this mutant less potently, which suggests that the loss in zinc activation may in part be due to a more general defect of channel function.

Because the triple-cysteine mutant still exhibited notable zinc activation, we used further mutagenesis studies to investigate whether other cysteine or histidine residues are required for zinc activation. We thus individually mutated every histidine and cysteine present in human TRPA1 (Supplementary Fig. 6; Supplementary Tables 1

Figure 4 Zinc permeation through TRPA1 is required for activation by extracellular zinc. (a) Zinc imaging (fluozin-3) of wild-type TRPA1transfected cells exposed to 30 μ M ZnCl₂ (red trace) or 2 μ M ionomycin (IM, blue trace) at the indicated time (arrow). Vector control-transfected cells were exposed to 30 μM ZnCl_2 (black trace). (b) Zinc imaging of cells transfected with wild-type TRPA1 (red trace), D915A mutant (blue trace) and vector control (black trace). Cells were exposed to 30 μ M ZnCl₂ in combination with cinnamaldehyde (CA, 1 mM) at indicted time (arrow). (c) Time course of zinc (30 μ M)-activated whole-cell currents taken at +100 mV or -100 mV membrane potential in HEK293 cells transfected with wild-type TRPA1 or TRPA1 D915A mutant. (d) 30 µM zinc-induced whole-cell current densities at +100 and -100 mV of HEK293 cells transfected with wild-type TRPA1 and TRPA1 D915A mutant clones (n = 8 for wild type and n = 7 for TRPA1 D915A mutant). Error bars represent s.e.m. (e) Zinc increased single channel opening in an inside-out patch excised from a HEK293 cell transfected with TRPA1 D915A (n = 7). Single channel traces are taken at +80 mV. (f) Histogram illustrates concentration-dependent activation of single channels in an excised insideout patch from a TRPA1 D915A mutant-expressing HEK293 cell.

and 2 online). This led us to identify the C1021S mutant in the C-terminal cytoplasmic region, which shows a partial but highly specific loss of zinc sensitivity (Fig. 5a-c; Supplementary Table 1). Combining this mutation with the N-terminal C641S mutation (which among the three N-terminal mutations appeared most selectively affected in its zinc sensitivity) resulted in a mutant that was severely compromised in its responses to zinc, whereas activation by other agonists was not substantially affected (Fig. 5a-c; Supplementary Table 1). Among the histidine mutants, H983A caused a severe loss of zinc activation, whereas other agonists could still activate these channels, albeit less potently (Fig. 5d-f). In our mutagenesis experiments, we disregarded mutants that were inactive in response to a non-electrophilic agonist. Thus structural elements required for activation by all agonist types would have been missed.

Figure 5 Role of cysteine and histidine residues in TRPA1 activation by zinc. Dose-response profiles for the indicated TRPA1 mutants in response to cinnamaldehyde (a cysteine-reactive TRPA1 agonist), FFA (a nonreactive TRPA1 agonist) and ZnCl₂ as determined by calcium imaging (FLIPR). (**a**–**c**) C1021S (brown squares), C641S (red triangles) and combined C1021S C641S double mutant (inverted blue triangles) compared with wild-type TRPA1 (black circles). (**d**–**f**) H983A (inverted blue triangles) mutant compared with wild-type TRPA1 (black circles). Error bars represent s.e.m.

Figure 6 H983A and C641S C1021S double mutant exhibit decreased intracellular zinc sensitivity. (**a**–**c**) Single channel activity in excised insideout patches of HEK293 cells expressing wild-type, H983A and C641S C1021S TRPA1 at holding potential of +80 mV in response to 10 nM (**a**), 100 nM (**b**) and 1,000 nM (**c**) ZnCl₂. All responses were normalized to the open probability of 500 μ M cinnamaldehyde-evoked response in the same patch. *n* = 7 for wild type, *n* = 6 for H983A mutant and *n* = 7 for C641S C1021S mutant. Error bars represent s.e.m.; **P* < 0.05; ns refers to no significance. (**d**) Cartoon of human TRPA1 with position of histidine and cysteine residues involved in channel activation. Darker green circles indicate cysteines specifically involved in zinc activation.

As the above experiments tested responsiveness to extracellular zinc, the loss in zinc activation could be explained by either a defect in zinc influx or a loss of sensitivity to intracellular zinc. Therefore we tested the most zinc-insensitive mutants in inside-out patches. Zinc application to the intracellular side of the membrane showed that both the C641S C1021S and H983A mutants were severely deficient in intracellular zinc sensitivity (**Fig. 6a–c**). Importantly, single channel conductance of these mutant channels was similar to that of wild-type TRPA1 (**Supplementary Fig. 4**). Taken together, these results demonstrate that both intracellular cysteine and histidine residues are involved in TRPA1's sensitivity to intracellular zinc.

DISCUSSION

Overexposure to zinc is often associated with acute irritation and inflammation. However, whether this is due to direct activation of nociceptors or to indirect consequences of zinc toxicity has not been investigated. In this study, we find that zinc potently excites nociceptive sensory neurons in a TRPA1-dependent mechanism. Furthermore, zinc-induced irritation is substantially reduced in Trpa1^{-/-} mice. These results suggest that TRPA1 is a major target for sensory symptoms elicited by zinc exposure. Although our data suggest a major role for TRPA1, a minor zinc irritation remained in Trpa1^{-/-} mice, which indicates that additional zinc-sensing mechanisms may exist. Furthermore, zinc toxicity (with symptoms including inflammation and even fever) is likely complex. Although activation of TRPA1 in lung or gut sensory neurons forms an attractive hypothesis to explain at least some of these symptoms, further studies will be required. Given our finding that cadmium is also a TRPA1 agonist, further studies could also test the role of TRPA1 in cadmium toxicity, the symptoms of which appear similar

to those of zinc toxicity, including gastrointestinal and respiratory pain, irritation and inflammation^{29,30}.

The result that TRPA1 acts as a sensor for exogenous zinc raises the question of whether TRPA1 can also sense endogenous zinc. Endogenous free zinc ions are increasingly recognized as a signaling molecule, and dynamic fluctuations of both intra- and extracellular free zinc have been reported. In hippocampal neurons for instance, zinc released from presynaptic vesicles can lead to synaptic concentrations of 10-30 µM, which inhibits NMDA (11) and GABA (12) receptor function, and in mast cells intracellular free zinc is upregulated upon IgE receptor (FceRI) signaling^{2,31}. TRPA1 is among the most zinc-sensitive ion channels and receptors presently known, which suggests that TRPA1 might play an important role in sensing endogenous zinc^{32,33}. Our results show that 10 nM intracellular zinc is enough to modulate TRPA1 activity. Intracellular free zinc concentrations have been estimated to be in the picomolar to nanomolar range, although little is known about variations in concentration in different mammalian cell types³⁴. Possibly, upregulation of intracellular free zinc could yield concentrations in a range where it could augment TRPA1 function and thus participate in nociception, hyperalgesia and allodynia. Notably, histochemical stainings of DRG neurons have shown the presence of intracellular zinc, and have documented an increase of this staining upon neuronal injury³⁵.

In addition to intracellular zinc, extracellular endogenous zinc could activate TRPA1. In analogy to hippocampal neurons, several studies have indicated the existence of zinc-containing vesicles in dorsal root ganglia neurons and in layers of the dorsal horn involved in sensory transmission^{35–37}. Therefore, vesicular zinc release at the spinal projections of the dorsal root ganglia could potentially affect TRPA1 channels present there³⁸. It should be noted here that under some conditions zinc can also have antinociceptive effects, which suggests that zinc modulation of sensory signaling is likely complex³⁹⁻⁴¹. Sensory neurons also innervate peripheral targets that have high levels of zinc. Skin, the major innervation target of sensory neurons, is, for instance, highly enriched with zinc, containing 32 times more total zinc than plasma⁴². Another intriguing innervation target is the pancreatic islets of Langerhans. Islet beta cells have been shown to co-secrete zinc with insulin, and extracellular concentrations of 0.6-7 µM free zinc have been measured, which would be sufficient for TRPA1 activation and modulation^{43,44}. Notably, TRPV1-expressing sensory neurons have recently been shown to innervate the vicinity of islets, and to control beta cell stress and islet inflammation in autoimmune diabetes⁴⁵. Given that TRPA1 is expressed in TRPV1expressing neurons, zinc could act as a messenger for a neuroendocrine link between pancreas and sensory neurons. Whether dynamic changes in endogenous zinc can regulate TRPA1 requires further study. Notably, modulation by zinc is readily reversible in nature, which is in contrast to recently proposed TRPA1 modulation by reactive endogenous metabolites8.

Our findings indicate that zinc activation of TRPA1 is reversible and membrane delimited. Although it is not formal proof, this is consistent with a direct effect of zinc on the channel. Our results further show that TRPA1 activation is mediated via intracellular zinc interaction sites. TRPA1 activation by extracellular zinc thus requires zinc influx. Many TRP channels, including TRPA1, exhibit tonic (basal) activity, and TRPA1 is shown here to be zinc permeable (but not gated by extracellular zinc, as demonstrated in outside-out patches)^{23,24}. Thus our preferred model is that tonic activity of TRPA1 mediates influx of small amounts of zinc, which can initiate further activation. Consistent with this model, a D915A mutation in the ion permeation pathway of TRPA1 abolished zinc permeation and activation by

ARTICLES

extracellular but not intracellular zinc. This model may explain the large difference in EC_{50} for intracellular zinc (as measured using inside-out patches) and extracellular zinc as measured in intact cells (using a fluorescent imaging plate reader (FLIPR)). In the former experiment, intracellular zinc has direct access to the intracellular activation site, whereas in the latter experiment activation depends on accumulation of intracellular zinc, which is limited by the rate of influx through TRPA1 on one hand and zinc homeostatic mechanisms present in intact cells on the other (including zinc chelation by intracellular proteins). Thus higher concentrations of extracellular zinc are required to achieve the same effect as intracellular zinc.

Whether TRPA1-independent mechanisms of zinc influx in sensory neurons, such as through zinc transporters, can also influence zinc activation of TRPA1 remains to be determined. Furthermore, mechanisms of zinc activation may be complicated, and we cannot rule out that full activation may require zinc interactions with both intra- and extracellular sites. Regardless of mechanism, intracellular action of zinc is an important determinant of TRPA1 activation.

TRPA1 is activated by various reactive and nonreactive chemicals, by cold temperatures, and in response to receptor-mediated phospholipase C activation⁴⁶. The activation of TRPA1 by zinc has given us further insight into the diversity of noxious signals that can activate TRPA1. Zinc-protein interactions have been well studied in metalloproteins and suggest that zinc binding involves coordination by two to four amino acid side chains, with cysteine and histidine being the most prevalent coordinating sites^{1,26}. Consistent with this, we identified two cysteine (Cys641 and Cys1021) residues and one histidine (His983) residue that clearly affect zinc sensitivity. The N-terminal Cys641, which was previously identified as a residue involved in responses to reactive chemicals, showed only a modest requirement for zinc sensitivity. This finding does, however, indicate that zinc sensitivity and cysteine reactivity may use partly overlapping mechanisms. The modest deficits in known cysteine mutants led us to identify additional residues involved in zinc activation. The two newly identified residues (Cys1021 and His983) reside in the intracellular C-terminal domain of the channel, which to our knowledge has not been previously implicated in TRPA1 activation (Fig. 6d). Cys1021 displays the most selective requirement for zinc responses, as mutation in this residue shows profound deficits in response to zinc, but not to FFA or cinnamaldehyde. This indicates that zinc activation is at least partly separable from activation by cysteine modifiers and nonreactive chemicals. His983 is the most robust zinc mutant, severely affecting zinc responses. However, His983 is also partly required for other TRPA1 agonists. Notably, Cys641 and His983 are conserved between mouse and human TRPA1, and Cys1021 is a histidine in the mouse sequence, which suggests a possible functional conservation. Although mutagenesis studies have to be interpreted with caution, it is tempting to hypothesize that zinc directly binds to the cysteine and histidine residues identified. As the identified residues are in distinct domains of the protein, this raises the question of whether the N and C termini come together to form a zinc binding site. Alternatively, the different sites could form multiple zinc binding sites. Notably, intracellular zinc sites have also been described in voltage-gated K⁺ channels⁴⁷.

Our studies show that the activation of TRPA1 by zinc can explain some of the pathological consequences of zinc toxicity. In addition, the activation of TRPA1 by zinc has given us further insight into the diversity of noxious signals that are sensed by TRPA1, and the diversity of mechanisms involved in the activation of this ion channel. Future studies will address how zinc binding or covalent modification of cysteines and histidines translates into TRPA1 ion channel activation. Given the sensitivity of TRPA1 to nanomolar concentrations of zinc, future work will also address whether this channel plays a role in sensing endogenous zinc.

METHODS

DRG neurons, cell culture and genetic constructs. Dissociation and culturing of mouse DRG neurons was performed as previously described⁴⁸. HEK293 cells were grown at 37 °C, 5% CO₂ in DMEM containing 4.5 mg ml⁻¹ glucose, 10% (v/v) heat-inactivated fetal bovine serum, 50 units ml⁻¹ penicillin and 50 µg ml⁻¹ streptomycin. For calcium imaging, zinc imaging and electrophysiological studies, cells were transfected with the desired complementary DNA using Fugene 6.0 (Roche Diagnostics) following the manufacturer's protocol. cDNA for human TRPA1, rat TRPV1, rat TRPV2, mouse TRPV3 and rat TRPV4 were in the pcDNA3/5-FRT vector. Human TRPM8 was in the pcDNA4-TO vector. All site-directed mutants were generated by QuikChange II XL site-directed mutagenesis kit (Stratagene) and verified by DNA sequencing (we used human instead of mouse TRPA1 for all studies described here because mouse mutants showed more pronounced overall channel dysfunction in the FLIPR assay).

Calcium and zinc imaging. For single cell intracellular calcium and zinc imaging, dorsal root ganglion neurons were isolated and cultured for 24 h on polylysine-coated coverslips as described⁴⁸. For single cell zinc imaging, neurons were incubated for 45-75 min at 37 °C with 4 µM fluozin-3-AM (a cell-permeant zinc indicator used for detecting low intracellular Zn²⁺ levels and small concentration changes) and 0.04% (v/v) pluronic F127 (Invitrogen) in assay buffer (10 mM HEPES-buffered Hanks' balanced salt solution: 1.26 mM Ca²⁺, 0.9 mM Mg²⁺, 5.8 mM K⁺, 138.6 mM Na⁺, Invitrogen). After loading, cells were washed and constantly perfused with assay buffer. Images of cells (excitation 490 nm, emission 530 nm) were captured with a cooled CCD camera attached to an inverted microscope (Nikon) and analyzed using MetaFluor software (Universal Imaging Corporation). For single cell calcium imaging, a similar procedure was used¹⁰. Briefly, cells were loaded with the ratiometric fluorophore fluo-2 and imaged (excitation 340 and 380 nm, emission 510 nm) while constantly perfused with assay buffer (10 mM HEPES-buffered Hanks' balanced salt solution). ZnCl2 was added to the buffer as indicated, and experiments were performed at room temperature (23-25 °C).

Intracellular calcium imaging of HEK293 cells was performed using a 384-well fluorescent imaging plate reader (FLIPR, Molecular Devices) essentially as described⁴⁹. Briefly, HEK293 cells were transfected with the desired cDNA (50 ng per well) and seeded in black 384-well clear bottom plates at a density of 8,000 cells per well. Two days after transfection, cells were washed with FLIPR assay buffer (see below), loaded with fluo-3 (Invitrogen) according to manufacturer's protocol, washed again and placed on FLIPR to measure fluorescence increase upon addition of agonist. For intracellular zinc imaging, fluo-3 was replaced by the zinc-specific fluorophore fluozin-3 (Invitrogen) and 1.25 mM probenecid was included in the assay buffer to block dye leakage observed with this fluorophore. For both Ca2+ and Zn2+ imaging, the FLIPR assay buffer consisted of 20 mM HEPES-buffered Hanks' balanced salt solution (Invitrogen; 1.26 mM Ca²⁺, 0.9 mM Mg²⁺, 5.8 mM K⁺, 138.6 mM Na⁺). Doseresponse curves were fitted to a variable slope sigmoidal dose-response curve (PRISM and Sigmaplot), and error bars represent s.e.m. EC_{50} values \pm s.e.m. are indicated (Sigmaplot).

Electrophysiological recordings. HEK293 cells were cotransfected with enhanced green fluorescent protein (EGFP) and wild-type or mutant human TRPA1 constructs in wells of 24-well plates. Transfected HEK293 cells were reseeded on 12 mm round glass coverslips (Warner Instruments) one day after transfection. Whole-cell recordings were performed the following day. Recording pipettes were pulled from micropipette glass (Sutter) to 2–4 M Ω when filled with a low buffered internal solution containing 140 mM CsCl, 2.0 mM MgCl₂, 0.02 mM EGTA, 10 mM HEPES, pH 7.2. Bathing solution contained 140 mM NaCl, 5 mM KCl, 2 mM CaCl₂,

1 mM MgCl₂, 10 mM glucose and 10 mM HEPES, pH 7.4. To prevent TRPA1 desensitization, after the formation of whole-cell configuration, cells were perfused in the same solution except without addition of calcium. Isolated cells were voltage clamped in the whole-cell mode using an EPC9 (HEKA Instruments Inc) amplifier. Voltage commands were made from the Pulse and PulseFit program, and the currents were recorded at 5 kHz. Voltage ramps of 200 ms to +100 mV after a brief (20 ms) step to -100 mV from holding potential of 0 mV were applied every second. Cells were continuously perfused with the bath solution through a Valve-Bank perfusion system (Automate Scientific). For inside-out and outside-out patches, both the pipette solution and bath solution contained (in mM) 140 CsCl, 1 EGTA, 1 MgCl₂, 10 HEPES, pH 7.4. Excised patches were held constantly at desired potentials while compounds were repetitively applied and washed from the bath. Single channel currents were recorded at 10 kHz and filtered at 3 kHz. For quantitative analysis of single channel recording data, the Pulse files were converted to Axon Binary Files (ABF Utility, Synaptosoft). Data were analyzed and plotted using Clampfit 9.2 (Molecular Devices). Single-channel events were identified on the basis of the half-amplitude threshold-crossing criteria. P(open) was determined from idealized traces as the ratio of the sum of all open durations to the total trace duration. Values are given as the means \pm s.e.m.; *n* represents the number of measurements. To determine the statistical significance of differences between the means, a t-test was used. Differences were judged to be statistically significant when P < 0.05. All experiments were performed at 25 °C. For Zn²⁺- or Ca²⁺-buffered external solutions, total Zn²⁺ and Ca²⁺ concentrations were determined using the MaxChelator (http://www.stanford.edu/~cpatton/maxc.html) according to program instructions.

Behavioral experiment. Nocifensive behavior upon intraplantar hindpaw injection was assayed as described⁵⁰. Animals were injected intraplantarly with 20 μ l 0.9% (w/v) saline containing 30 mM zinc acetate or calcium acetate (Sigma). The pH of calcium acetate solution was titrated to match the pH of the zinc acetate solution (pH 6.4). Time spent on nocifencive behavior (flicking, licking and lifting injected paw) was recorded during 5 min. Genetically modified animals were tested and compared with their control (wild-type) littermates. *Trpa1*^{-/-} mice were kindly provided by D. Corey (Harvard Medical School)¹⁶. All experiments were performed blind with respect to genotype and were conducted with the approval of the The Scripps Research Institute Animal Research Committee. Student's *t*-test was used for all statistical calculations. Error bars represent s.e.m.

Note: Supplementary information and chemical compound information is available on the Nature Chemical Biology website.

ACKNOWLEDGMENTS

We thank J. Mathur, T. Earley, J. Watson and M. Garrett for excellent technical support, T. Miyamoto (The Scripps Research Institute) and B. Xiao (The Scripps Research Institute) for supplying mutant TRPA1 constructs, and T. Jegla and members of the Patapoutian lab for helpful discussions. We thank D. Corey (Harvard Medical School) for the *Trpa1^{-/-}* mice. We also thank the following individuals for generously sharing reagents: M. Caterina (Johns Hopkins University) for rat TRPV1 and N. Prevarskaya (Universite des Sciences et Technologies de Lille) for human TRPM8. This research Foundation.

Published online at http://www.nature.com/naturechemicalbiology/ Reprints and permissions information is available online at http://npg.nature.com/ reprintsandpermissions/

- Vallee, B.L. & Falchuk, K.H. The biochemical basis of zinc physiology. *Physiol. Rev.* 73, 79–118 (1993).
- Frederickson, C.J., Koh, J.Y. & Bush, A.I. The neurobiology of zinc in health and disease. *Nat. Rev. Neurosci.* 6, 449–462 (2005).
- 3. Barceloux, D.G. Zinc. J. Toxicol. Clin. Toxicol. **37**, 279–292 (1999).
- Blanc, P.D., Boushey, H.A., Wong, H., Wintermeyer, S.F. & Bernstein, M.S. Cytokines in metal fume fever. Am. Rev. Respir. Dis. 147, 134–138 (1993).
- Adamson, I.Y., Prieditis, H., Hedgecock, C. & Vincent, R. Zinc is the toxic factor in the lung response to an atmospheric particulate sample. *Toxicol. Appl. Pharmacol.* 166, 111–119 (2000).

- Kuschner, W.G., D'Alessandro, A., Wong, H. & Blanc, P.D. Early pulmonary cytokine responses to zinc oxide fume inhalation. *Environ. Res.* 75, 7–11 (1997).
- Ozaktay, A.C. *et al.* Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. *Eur. Spine J.* 15, 1529–1537 (2006).
- Patapoutian, A., Tate, S. & Woolf, C.J. Transient receptor potential channels: targeting pain at the source. *Nat. Rev. Drug Discov.* 8, 55–68 (2009).
- Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).
- Story, G.M. *et al.* ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. *Cell* **112**, 819–829 (2003).
- Bandell, M. *et al.* Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. *Neuron* **41**, 849–857 (2004).
- Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).
- Macpherson, L.J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).
- Obata, K. *et al.* TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. *J. Clin. Invest.* **115**, 2393–2401 (2005).
- Bautista, D.M. *et al.* TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. *Cell* **124**, 1269–1282 (2006).
- Kwan, K.Y. *et al.* TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. *Neuron* 50, 277–289 (2006).
- Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. *Annu. Rev. Neurosci.* 29, 135–161 (2006).
- Riera, C.E., Vogel, H., Simon, S.A. & le Coutre, J. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **293**, R626–R634 (2007).
- Macpherson, L.J. *et al.* An ion channel essential for sensing chemical damage. *J. Neurosci.* 27, 11412–11415 (2007).
- McNamara, C.R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA 104, 13525–13530 (2007).
- Macpherson, L.J. et al. More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343 (2006).
- Gee, K.R., Zhou, Z.L., Ton-That, D., Sensi, S.L. & Weiss, J.H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. *Cell Calcium* **31**, 245–251 (2002).
- Xu, H., Delling, M., Jun, J.C. & Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. *Nat. Neurosci.* 9, 628–635 (2006).
- Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884 (2007).
- Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. *J. Biol. Chem.* 283, 32691–32703 (2008).
- Patel, K., Kumar, A. & Durani, S. Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. *Biochim. Biophys. Acta* 1774, 1247–1253 (2007).
- Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).
- Hinman, A., Chuang, H.H., Bautista, D.M. & Julius, D. TRP channel activation by reversible covalent modification. *Proc. Natl. Acad. Sci. USA* 103, 19564–19568 (2006).
- Barnhart, S. & Rosenstock, L. Cadmium chemical pneumonitis. Chest 86, 789–791 (1984).
- Nordberg, G. Excursions of intake above ADI: case study on cadmium. *Regul. Toxicol. Pharmacol.* 30, S57–S62 (1999).
- Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–645 (2007).
- Mathie, A., Sutton, G.L., Clarke, C.E. & Veale, E.L. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. *Pharmacol. Ther.* 111, 567–583 (2006).
- Hershfinkel, M., Moran, A., Grossman, N. & Sekler, I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. *Proc. Natl. Acad. Sci.* USA 98, 11749–11754 (2001).
- Krezel, A., Hao, Q. & Maret, W. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. *Arch. Biochem. Biophys.* 463, 188–200 (2007).
- Jo, S.M., Danscher, G., Schroder, H.D. & Suh, S.W. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. *Biometals* 21, 151–158 (2008).
- Velazquez, R.A., Cai, Y., Shi, Q. & Larson, A.A. The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. *J. Neurosci.* 19, 2288–2300 (1999).
- Danscher, G. et al. Inhibitory zinc-enriched terminals in mouse spinal cord. Neuroscience 105, 941–947 (2001).
- Kosugi, M., Nakatsuka, T., Fujita, T., Kuroda, Y. & Kumamoto, E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. *J. Neurosci.* 27, 4443–4451 (2007).

ARTICLES

- 39. Larson, A.A. & Kitto, K.F. Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. J. Pharmacol. Exp. Ther. 282, 1319–1325 (1997).
- Safieh-Garabedian, B. *et al.* Zinc reduces the hyperalgesia and upregulation of NGF and IL-1 beta produced by peripheral inflammation in the rat. *Neuropharmacology* 35, 599–603 (1996).
- Nelson, M.T. et al. Reducing agents sensitize C-type nociceptors by relieving highaffinity zinc inhibition of T-type calcium channels. J. Neurosci. 27, 8250–8260 (2007).
- King, J.C., Shames, D.M. & Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 130, 1360S–1366S (2000).
- Gee, K.R., Zhou, Z.L., Qian, W.J. & Kennedy, R. Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124, 776–778 (2002).
- Qian, W.J., Aspinwall, C.A., Battiste, M.A. & Kennedy, R.T. Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. *Anal. Chem.* **72**, 711–717 (2000).

- Razavi, R. *et al.* TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. *Cell* **127**, 1123–1135 (2006).
- Bandell, M., Macpherson, L.J. & Patapoutian, A. From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. *Curr. Opin. Neurobiol.* 17, 490–497 (2007).
- Wang, G., Strang, C., Pfaffinger, P.J. & Covarrubias, M. Zn2+-dependent redox switch in the intracellular T1–T1 interface of a Kv channel. *J. Biol. Chem.* 282, 13637–13647 (2007).
- Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).
- Bandell, M. *et al.* High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. *Nat. Neurosci.* 9, 493–500 (2006).
- 50. Petrus, M. *et al.* A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. *Mol. Pain* **3**, 40 (2007).

