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I N T R O D U C T I O N

Voltage-gated potassium (Kv) channels are present in 
all cells, and they fulfill a wide variety of important roles. 
In neurons and excitable cells, for example, Kv chan-
nels open and close in response to changes in mem-
brane voltage and are involved in the generation and  
propagation of electrical signals (Hille, 2001). Kv channels 
are tetramers, with each subunit containing six mem-
brane-spanning helices, termed S1 through S6 (Swartz, 
2004). The channel pore is collectively formed by the S5 
and S6 portions of each subunit and is surrounded by 
four voltage-sensing domains, each constructed from  
the S1–S4 portion of a single subunit (Long et al., 2007). 
Basic residues in the S4 helix of each voltage-sensing  
domain move in response to changes in voltage, produc-
ing a measurable gating current (Bezanilla, 2002) and 
driving the opening of the S6 gate located at the intracel-
lular end of the pore (Yellen, 2002).

The gating mechanism of the Shaker Kv channel has 
been particularly well studied, with extensive evidence re-
vealing that gating involves multiple early activation steps 
as the four voltage sensors move between resting (R) and 
activated (A) states, followed by a final opening transition 
where the S6 gate moves from a closed (C) to an open (O) 
state. This conceptual model (Scheme 1), taken from the 
work of Ledwell and Aldrich (1999), is supported by elec-
trophysiological investigation of the wild-type and mu-
tant Shaker Kv channels (Bezanilla et al., 1994; Hoshi  
et al., 1994; Stefani et al., 1994; Zagotta et al., 1994a,b; 
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Schoppa and Sigworth, 1998a,b,c; Smith-Maxwell  
et al., 1998a,b; Ledwell and Aldrich, 1999; Sukhareva  
et al., 2003; del Camino et al., 2005; Pathak et al., 2005). 
The Shaker ILT mutant (V369I, I372L, and S376T)

  

(SCHEME 1)

has been a particularly useful tool because the R to A 
steps occur at considerably more negative voltages com-
pared with the final opening transition (Smith-Maxwell 
et al., 1998a,b; Ledwell and Aldrich, 1999). Although 
most of the gating charge in ILT moves during the early 
transitions between the R and A states, a significant 
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630 Motion of the S4 helix as Kv channels open

residues at F416 and R362. These metal bridges cause 
an apparent rightward shift in the voltage–activation re-
lationship, suggesting either a closed-state stabilization 
or an open-state destabilization. In contrast, Broomand 
et al. (2003) found that disulphide bonds between these 
same two Cys residues do not form when channels are 
held closed at negative voltages, but do form when cells 
are repeatedly depolarized to open channels, leading 
them to conclude that bridging between these residues 
only occurs in the open state. Although there are appar-
ent discrepancies between these reports, both of these 
bridges between S4 and S5 have robust effects on chan-
nel gating, making them ideal candidates for constrain-
ing the position and motions of the S4 helix relative to 
the pore if the states in which they exist and their rates 
of formation can be determined. Here, we explore the 
state dependence and kinetics of Zn2+ bridges between 
His residues at positions R362 in S4 and either F416 or 
A419 in S5 of the Shaker Kv channel. Our results offer 
a resolution to the discrepancies regarding the state de-
pendence of binding at F416, demonstrate that the S4 
helices move during the final opening transition, and 
constrain the distance of this motion.

M AT E R I A L S  A N D  M E T H O D S

Molecular biology
DNA of Shaker H4 Kv channel, with N-type inactivation removed 
(IR) by deleting residues 6–46 (Zagotta et al., 1990), subcloned 
into a GW1-CMV expression vector (Vernalis), was provided by 
M. Holmgren (National Institutes of Neurological Disorders 
and Stroke [NINDS], National Institutes of Health, Bethesda, 
MD). Onto this channel background, the V369I, I372L, S376T, 
R362H, and A419H mutations were introduced using either 
standard two-step PCR or a QuikChange mutagenesis kit (Agi-
lent Technologies), and each construct was sequenced in the 
NINDS core facility.

Cell culture
HEK 293 cells and Chinese hamster ovary cells were obtained 
from American Type Culture Collection and cultured in either 
Dulbecco’s modified eagle medium (DMEM) or DMEM/F12  
supplemented with 10 mM glucose and 10% FBS obtained from 
Invitrogen. On the first day after trypsination and plating onto 
glass microscope slide coverslips, cells were transfected using 5 µl 
FuGene6 (Roche) and 1–2 µg each of the appropriate Shaker 
channel DNA and pGreenlantern (GFP) DNA (originally from 
Invitrogen). Currents were recorded 20–72 h after transfection, 
or on occasion, cells were trypsinized 24–48 h after transfection, 
replated, and recorded 15–48 h later.

Electrophysiology
All experiments were preformed at room temperature (22°C). 
Recording pipettes were pulled from borosilicate glass capillary 
tubes (model GC150F-7.5; Harvard Bioscience) using a horizon-
tal puller (model P97; Sutter Instrument Co.). Pipette resistances 
ranged from 1 to 3 MΩ. Extracellular Zn2+ was applied using a rapid 
solution perfusion system (RSC 200; Bio-Logic), where 10–20-ms  
exchange times were obtainable with carefully positioned lifted 
whole cells or outside-out patches (much longer exchange times 
were observed when cells remained attached to coverslips).  

gating charge can be measured during the final opening 
transition (Ledwell and Aldrich, 1999), raising the pos-
sibility that the voltage sensors might also move during 
the late opening transition. The strongest evidence to 
support this type of late S4 motion is that probes at-
tached to the external end of the S4 helix exhibit fluo-
rescence changes during the final opening transition 
(Pathak et al., 2005). Although voltage sensor move-
ments may occur during both early and late steps in the 
gating of Shaker Kv channels, the position of the crucial 
S4 helix relative to other parts of the protein and the 
extent to which this helix moves during specific transi-
tions remain unresolved. In addition, linking the x-ray 
structures of Kv channels to specific states in gating 
models obtained from functional experiments is not 
straightforward. The internal gate regions in the three 
Kv channel structures solved thus far appear to have 
been caught in an open state (Jiang et al., 2003; Long  
et al., 2005, 2007); however, more information is needed 
to understand how the voltage sensors in these struc-
tures relate to those in functional channels embedded 
in a native lipid environment, in particular, given the 
inherent flexibility of voltage sensors (Jiang et al., 2003; 
Cuello et al., 2004; Lee et al., 2005; Chakrapani et al., 
2008; Vamvouka et al., 2008) and the growing apprecia-
tion for the influence of lipids on channel structure  
and function (Ramu et al., 2006; Schmidt et al., 2006;  
Milescu et al., 2007, 2009; Schmidt and MacKinnon, 
2008; Xu et al., 2008).

Metal bridges between introduced cysteine (Cys) or 
histidine (His) residues offer a powerful approach to 
explore the position and motions of defined regions of 
proteins, as shown for the gate region of the Shaker Kv 
channel (Holmgren et al., 1998; Webster et al., 2004; 
del Camino et al., 2005), and more recently for P2X re-
ceptor channels (Li et al., 2010). Lainé et al. (2003) dis-
covered that a Zn2+ bridge can form between two His 
residues introduced in Shaker channels: one at A419 in 
the extracellular end of the S5 helix in the pore do-
main, and the other at R362, the R1 position of the S4 
helix within the voltage sensor. Zn2+ causes a leftward 
shift in the voltage–activation relationship for these 
channels, suggesting either an open-state stabilization 
or a closed-state destabilization. This bridge occurs in 
the presence of nanomolar concentrations of Zn2+, indi-
cating that the equilibrium affinity of Zn2+ is quite high. 
Similar results can be obtained in the Kv1.2 channel  
after neutralization of several acidic residues that are not 
present in Shaker (Lewis et al., 2008). One possibility is 
that the bridge occurs between residues that are in close 
proximity and thus might be expected to form rapidly 
(i.e., high on rate). Alternatively, the two His residues 
might only rarely encounter each other, a scenario in 
which the bridge would form slowly and the high affin-
ity would result instead from a very low off-rate. Lainé  
et al. (2003) also examined metal bridges between Cys 
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Three-state model (Scheme 2). We extended the two-state model 
by adding a single state representing Zn2+ binding to the open 
state, with a single concentration-dependent transition. For all of 
the models in Fig. 7, we keep all of the rate constants determined 
for the two-state model in the absence of Zn2+ the same, adjusting 
only the Zn2+ binding and unbinding rates. By adjusting the ratio 
of the Zn2+ on-rate to the Zn2+ off-rate, this three-state model  
reproduces the steady-state G-V curves in both control and in the 
presence of Zn2+ (Fig. 7, Scheme 2, A). However, with these con-
straints it is not possible to reproduce the voltage-dependent 
opening and closing rates in the presence of Zn2+. The simulated 
current relaxations are always too slow (Fig. 7, Scheme 2, B).  
Using slower rates for Zn2+ binding and unbinding than those 
shown further slows the opening and closing rates, whereas using 
faster Zn2+ on- and off-rates has no effect.

Four-state model (Scheme 3). The four-state model incorporates 
Zn2+ binding to both the pre-open (A) and open (O) states. This 
model has one additional free parameter compared with the three-
state model, a constant (c) allowing for faster opening of Zn2+-
bound channels and faster Zn2+ binding in the open state. If c 
approaches 1, then Zn2+ does not promote channel opening (and 
the model is unable to reproduce the steady-state G-V curve in the 
presence of Zn2+). As long as c is larger than 25, then by adjusting 
the ratio of the Zn2+ on-rate to the Zn2+ off-rate, this model is able 
to reproduce the steady-state G-V relation in the presence of Zn2+ 
(Fig. 7, Scheme 3, A). This model can reproduce any particular 
voltage-dependent opening and closing rates in the presence of 
Zn2+. By increasing the Zn2+ on- and off-rates, the voltage-dependent 
opening and closing rates can be made faster than any of the data. 
However, the shape of the relationship between opening/closing 
rates as function of voltage in the presence of Zn2+ does not fit across 
the entire voltage range with a single set of Zn2+ binding and unbind-
ing rates. When c is larger than 200, the shape of this relationship 
becomes quite steep, and if the closing rate constant is adjusted to  
fit the closing rate at negative voltages, the rates at positive voltages 
are too fast, similar to those illustrated in Fig. 7 (Scheme 4, B).  
As c is lowered to 100, the shape of the relationship becomes shal-
lower, but not enough to adequately describe the data (Fig. 7, 
Scheme 3, B). Additionally, the predicted relaxation rates in the 
presence of Zn2+ are biphasic. As c is lowered, the amplitude of the 
slow phase decreases at negative voltages, becoming insignificant 
around 40 mV with the rate constants used. When the relaxation 
is approximated by fitting with a single-exponential function, this 
disappearance of the slow phase causes an abrupt change in the re-
ported  near 40 mV (Fig. 7, Scheme 3, B).

10-state model (Scheme 4). The 10-state model shown in Scheme 
4 models each of the four Zn2+ binding sites while allowing Zn2+ to 
bind to voltage sensors in both the pre-open and the open posi-
tions. This 10-state model has the same number of free parameters 
as the four-state model. In the absence of Zn2+, this model again 
reverts to the same two-state model. If c is >2.2, the 10-state model 
is able to reproduce the steady-state G-V in 1 µM Zn2+, as shown in 
Fig. 7 (Scheme 4, A). With a c value of 30, the 10-state model is 
able to fit the opening and closing rates at negative voltages (Fig. 7, 
Scheme 4, B). By adjusting c and the Zn2+ binding and unbinding 
rate constants, this model can be adjusted to fit the opening rates. 
At lower values of c (e.g., 3.5) and with kb = 2 × 107 M1s1 and ku = 
17 s1, the 10-state model predicts opening and closing rates in 
Zn2+ that are biphasic, similar to that observed for the four-state 
model. This model also cannot fit all of the determined opening 
and closing rates with a single set of rate constants.

15-state model (Scheme 5). We considered a 15-state model  
in which the final transition of each voltage sensor can occur  

The internal (pipette) solution contained (in mM): 160 KCl,  
1 EGTA, 10 HEPES, and 0.5 MgCl2, pH 7.4 with KOH. The external 
solution contained (in mM): 45 KCl, 100 NaCl, 10 HEPES,  
0.5 MgCl, and 2 CaCl, pH 7.2 with KOH. Dilute Zn2+-containing 
recording solutions were made fresh daily from a 1-M stock solution 
in H2O (a decrease in Zn2+ potency was noted in dilute Zn2+- 
containing solutions used several days after being made). Mem-
brane voltage was controlled using a patch clamp amplifier  
(Axon 200B; Axon Instruments). Currents were filtered at 5 kHz 
(eight-pole Bessel; 900 filter; Frequency Devices, Inc.) and digitally 
recorded at 20 kHz using a Digidata board and pCLAMP software 
(both from Axon Instruments).

Data analysis
Off-line analysis was performed using both Clampfit (Axon In-
struments) and Solver (Excel; Microsoft). Error bars are ±SEM. 
Single Boltzmann functions were fit to G-V relations using the 
equation G G e zF V V RT/ ( ) ,max

( )//= + − − −1 1 2 1 where G/Gmax is the nor-
malized conductance determined from tail current amplitudes,  
z is the equivalent charge movement, V1/2 is the half-activation 
voltage, F is Faraday’s constant, R is the gas constant, and T is the tem-
perature in Kelvin.

Modeling
Markov models were used for kinetic simulations. Microscopic re-
versibility was specifically observed. For simplicity, it was assumed 
that channels are either in the open (fully conducting) or closed 
states, with no subconductance states considered. Rate constants 
between states were constrained as described below, with voltage-
dependent rate constants assumed to have exponential voltage 
dependence. Time courses describing the occupancy of each 
state were calculated according to the method described by 
Colquhoun and Hawkes (1995). In brief, the occupancy of each 
state at time t is given by p(t) = p(0)eQt, where p(t) is a row vector 
with one element for each state in the model. p(0) contains the 
occupancy probabilities of each state at t = 0, which is calculated 
using the initial rate constants. The tasks of calculating rate con-
stants, building the Q-matrix, and solving for the above equations 
were performed by original programs run in Mathcad 2000 adapted 
from those in Phillips et al. (2003).

Modeling constraints
Two-state model. To model the late opening transitions that are 
isolated with the ILT mutations, we initially examined how a sim-
ple two-state model consisting of an open state and a closed state 
separated by a single voltage-dependent transition can reproduce 
the control ILT channel data. All of the models shown in Fig. 7  
reduce to a two-state model in the absence of Zn2+. Fitting a single 
voltage-dependent Boltzmann function to the G-V relation in con-
trol provides a measurement of the total voltage dependence of 
the transition and a ratio for the forward and backward rates. By 
constraining the total voltage dependence of both the forward and 
the backward transition, and the ratio of the on-rate to the off-rate, 
this two-state model can reasonably describe the steady-state G-V 
relation in control conditions (Fig. 7 A, control). Next, the kinetics 
of voltage-dependent channel activation and deactivation were fit 
by adjusting how the total voltage dependence of the transition is 
distributed between opening and closing and by changing the 
opening and closing rates. We set values for the opening and the 
closing rates while keeping them at the fixed ratio that reproduces 
the steady-state G-V relation. With these constraints, this model 
provides a reasonable approximation of the kinetics of voltage- 
dependent channel opening and closing (Fig. 7 B, control). As is the 
case for all of these two-state models, the redistribution of states oc-
cupied after a voltage step occurs at a rate governed by  = 1/(ko + kc),  
and the slowest redistribution will thus occur after a voltage step to 
the voltage at the midpoint (V1/2) of the G-V curve.
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632 Motion of the S4 helix as Kv channels open

independently, with pore opening occurring as the fourth voltage 
sensor moves into its open-state position. In the absence of Zn2+, 
this 15-state model simplifies to a five-state model, in contrast to 
the previous schemes, which simplify to two-state models. In this 
five-state model, each voltage sensor is assumed to move indepen-
dently. This five-state model contains the same number of free pa-
rameters as the two-state model. Similarly to the two-state model, 
this five-state model can reproduce the steady-state G-V in the  
absence of Zn2+ (Fig. 8, Scheme 5, A, control). Unlike the two-state 
model where the voltage-dependent opening and closing rates at 
a given voltage are the same (Fig. 7, Schemes 2–4, B, control), the 
five-state model predicts subtle differences between the opening 
and closing rates (Fig. 7, Scheme 5, B), better approximating the 
observed data. In the five-state model, the maximum of the rela-
tionships between opening/closing rates and voltage are both 
leftward shifted from the predictions of the two-state model, more 
closely resembling the observed channel data. We constrained 
the 15-state model to reproduce the opening and closing rates 
observed in the absence of Zn2+. This 15-state model can fit the 
steady-state G-V relation in the presence of Zn2+ by adjusting the 
ratio of the Zn2+ on-rate to the Zn2+ off-rate (Fig. 8, Scheme 4, A). 
By setting appropriate values for the Zn2+ on- and off-rates, this 
model can reasonably closely reproduce how opening and closing 
rates vary as a function of voltage (Fig. 8, Scheme 4, B).

R E S U LT S

To provide constraints on the location and movement  
of the voltage sensors relative to the pore, we examined 
Shaker channels with IR (Zagotta et al., 1990) and with 
mutations R362H in the voltage sensor and either A419H  
or F416H in the pore domain. We expressed these chan-
nels in HEK cells and used either whole cell or outside-out 
patch recording to examine the macroscopic voltage-acti-
vated potassium currents they produce. To determine the 
state dependence and kinetics of Zn2+ bridge formation 
between A419H in the channel pore domain and R362H 
in the voltage sensor, we examined the effects of Zn2+ on 
the steady-state channel conductance from Shaker IR 
R362H and A419H (419H/362H) channels (Fig. 1). To 
assure that steady-state conductance has been reached 
and is not distorted by changes in the kinetics of channel 
activation or deactivation, channel conductance was deter-
mined from normalized tail currents after both channel 
activation and channel deactivation. We find that 1 µM 
Zn2+ causes a dramatic leftward shift in a plot of the aver-
age steady-state conductance verses membrane voltage 
(G-V curve) (Fig. 1 G), revealing that Zn2+ is either stabi-
lizing the open state or destabilizing a closed state, consis-
tent with the previous reports (Lainé et al., 2003; Lewis  
et al., 2008). To demonstrate that the leftward shift of the 
G-V curve by Zn2+ application is caused by Zn2+ being coor-
dinated by the two introduced His residues, we examined 
the effects of Zn2+ on channels with or without single His 

Figure 1. Zn2+ shifts the G-V relation of 419H/362H channels to 
negative voltages. Macroscopic currents from 419H/362H chan-
nels expressed in a HEK cell in either control external solution 
(black) or 1 µM Zn2+ (blue) and average steady-state conductance 
verses voltage relations determined from tail current measure-
ments for a population of cells. (A) Voltage protocol illustrating 
5-mV incrementing steps to voltages between 100 and 0 mV con-
secutively applied after an 800-ms prepulse to 150 mV. Holding 
voltage was 100 mV. (B) Representative macroscopic current 
records obtained in control solution using the protocol illustrated 
in A. (C) Macroscopic current traces recorded in the presence 
of 1 µM Zn2+ using the voltage protocol shown in A. (D) Voltage 
protocol illustrating 5-mV steps to voltages between 100 and 0 mV  
consecutively applied after a 100-ms prepulse voltage step to  
+100 mV to open the channels. (E) Representative macroscopic 
current records showing channel deactivation in control solu-
tion using the protocol illustrated in D. (F) Macroscopic current 
traces recorded in the presence of 1 µM Zn2+ using the voltage 
protocol shown in D. (G) Normalized steady-state channel con-
ductance determined from tail current measurements after both 
activation (B and C) and deactivation (E and F), plotted as a func-
tion of membrane voltage. Data points are the mean normalized 
conductance determined after both activation and deactivation 

for three to four cells similar to that illustrated in A–F in either 
control (black) or 1 µM Zn2+ (blue). Smooth red curves are best 
fits of single Boltzmann functions to the data in Zn2+ (V1/2 = 72 mV 
and z = 4.8) and in control (V1/2 = 36 mV and z = 3.3).
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residues introduced. We find that unlike the effects  
observed with millimolar Zn2+ concentrations (Sack and 
Aldrich, 2006), 10 µM Zn2+ causes no appreciable changes 
in their G-V relationships (Fig. 2), confirming that the 
bridge is formed between 362 and 419.

The binding of Zn2+ to open channels
The effects of Zn2+ on the 419H/362H G-V curve occur 
at voltages where these channels exist in a combination 
of both open and closed states and therefore could result 
from Zn2+ binding to either open or closed states. Zn2+ 
binding to and stabilizing channels in the open state 
would be expected to slow channel closing kinetics, 
whereas Zn2+ binding to and destabilizing a closed state 
would speed channel opening. To distinguish between 
these two possibilities, we examined the effect of Zn2+ on  
the kinetics of channel opening and closing (Fig. 3). We 
quantified channel opening and closing rates by fitting  

Figure 2. 10 µM Zn2+ has no effect on the G-V relations for con-
trol Shaker Kv channel constructs. Normalized steady-state chan-
nel conductance, as determined from tail currents, plotted as a 
function of membrane voltage. Each point is the average from 
three to six experiments. Data recorded in control are plotted 
as black symbols, and that recorded in 10 µM Zn2+ are plotted 
as blue symbols. (A) Wild-type Shaker IR channels, (B) A419H 
Shaker IR channels, and (C) R362H Shaker IR channels.

Figure 3. Zn2+ binds to and stabilizes 419H/362H channels in 
the open state. Kinetics of opening and closing for 419H/362H 
channels expressed in a HEK cell in either control external solu-
tion (black) or 1 µM Zn2+ (blue). (A) Voltage protocol for exam-
ining the kinetics of channel opening after 5-mV incrementing 
steps to voltages between 100 and 0 mV consecutively applied  
after an 800-ms prepulse to 150 mV. Holding voltage was 100 mV.  
(B) Representative macroscopic current records obtained in con-
trol solution using the protocol illustrated in A. (C) Macroscopic 
current traces recorded in the presence of 1 µM Zn2+ using the 
voltage protocol shown in A. (D) Voltage protocol for examin-
ing the kinetics of channel closing after 5-mV steps to voltages  
between 100 and 0 mV consecutively applied after a 100-ms  
prepulse voltage step to +100 mV to open the channels. (E) Repre-
sentative macroscopic current records showing channel deac-
tivation in control solution using the protocol illustrated in D.  
(F) Macroscopic current traces recorded in the presence of 1 µM 
Zn2+ using the voltage protocol shown in D. In B, C, E, and F, red 
curves are single-exponential fits to the current records after ini-
tial lags in current activation. (G) Mean time constants () from 
single-exponential fits to channel activation (filled symbols) and 
deactivation (open symbols) in either control (black diamonds) 
or 1 µM Zn2+ (blue squares), plotted as a function of the voltage 
at which the current was recorded. n = 3–4 cells.
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634 Motion of the S4 helix as Kv channels open

channels in both the open state and a “pre-open” state, 
where S4 has already activated and the gate has not yet 
opened. Equal stabilization of pre-open and open states 
would be expected if the S4 helix did not actually move 
during the final opening transition. Alternatively, the 
Zn2+ bridge might stabilize the open state compared 
with the pre-open state, which would demonstrate that 
S4 moves during the final opening transition. Although 
it is difficult to distinguish between these scenarios in 
the wild-type Shaker Kv channel because the final open-
ing transition is forward biased, the ILT mutations facil-
itate isolation of the pre-open state from the open state 
(Ledwell and Aldrich, 1999). To determine if Zn2+ 
bridges form between R362H and A419H in both pre-
open and open states, we introduced the R362H and 

single-exponential functions to the changes in macro-
scopic currents observed after voltage steps (Fig. 3, B, C, 
E, and F, red lines). By plotting the average time con-
stants () from these single-exponential functions against 
the membrane voltage at which the traces were recorded 
(Fig. 3 G), we find that the deactivation rate (filled sym-
bols) in Zn2+ (blue) is dramatically slower than in control 
(black), whereas the activation rate is relatively unaltered. 
These results indicate that Zn2+ binds to and stabilizes 
Shaker 419H/362H channels in the open state.

Preferential binding of Zn2+ to open compared with  
pre-open channels
The results thus far are consistent with the possibility 
that the 419H/362H Zn2+ bridge equally stabilizes  

Figure 4. Zn2+ shifts the G-V relation of 419H/362H/
ILT channels to negative voltages. Macroscopic currents 
from 419H/362H/ILT channels expressed in a HEK cell 
in either control external solution (black) or 1 µM Zn2+ 
(blue), and average steady-state conductance verses voltage  
relations determined from tail current measurements for 
a population of cells. (A) Voltage protocol illustrating  
10-mV incrementing steps to voltages between 50 and 
+110 mV consecutively applied after a 150-ms prepulse to 
150 mV. Holding voltage was 100 mV. (B) Representative 
macroscopic current records obtained in control solution 
using the protocol illustrated in A. (C) Macroscopic cur-
rent traces recorded in the presence of 1 µM Zn2+ using  
the voltage protocol shown in A. (D) Voltage protocol  
illustrating 10-mV steps to voltages between 50 and  
+110 mV consecutively applied after a 12-ms prepulse voltage 
step to +200 mV to open the channels. (E) Representative 
macroscopic current records showing channel deactiva-
tion in control solution using the protocol illustrated in D.  
(F) Macroscopic current traces recorded in the presence of  
1 µM Zn2+ using the voltage protocol shown in D. (G) Nor-
malized steady-state channel conductance determined from 
tail current measurements after both activation (B and C) 
and deactivation (E and F), plotted as a function of mem-
brane voltage. Each symbol type is from a different cell ex-
amined like the one illustrated in A–F. The G-V relation for 
each cell was fit with a single Boltzmann function and aver-
age values from these fits: V1/2 = 152.6 ± 0.6 and z = 0.95 ±  
0.01; n = 13 for control; V1/2 = 66.52 ± 0.8 and z = 0.72 ± 0.08; 
n = 12. Solid lines are single Boltzmann functions with 
mean values for V1/2 and z values. For reference, fits of 
single Boltzmann function to the G-V data for the non-ILT 
background (see Fig. 1) are plotted as dashed lines.

 on D
ecem

ber 2, 2010
jgp.rupress.org

D
ow

nloaded from
 

Published November 29, 2010

http://jgp.rupress.org/


 Phillips and Swartz 635

A419H mutations into the ILT background (forming 
419H/362H/ILT channels) and used protocols similar 
to those in Fig. 1, adjusting voltages to accommodate 
the shifted voltage dependence of ILT channels (Fig. 4). 
Comparing the steady-state G-V curves in Fig. 4 G re-
veals that Zn2+ causes an 85-mV shift to more negative 
voltages, which is significantly larger than the 35-mV 
shift in the G-V curve observed in the control (non-ILT) 
background (Fig. 1 G, illustrated as dashed lines in  
Fig. 4 G). Although there is large cell-to-cell variability 
in the voltage dependence of opening in ILT channels 
(Fig. 4 G), consistent with previous studies of this mu-
tant (Smith-Maxwell et al., 1998b), it is clear that the 
ILT mutations have a dramatic effect on the voltage de-
pendence of channel opening, and that the addition of 
Zn2+ shifts the channels from the pre-open into the 
open state. In ILT channels containing only one or nei-
ther of the His substitutions, these concentrations of 
Zn2+ did not cause any significant shift in the G-V rela-
tions (not depicted), suggesting that Zn2+ bridges be-
tween 419H and 362H largely counteract the effect of 
the ILT mutations on the final opening transition. Ex-
amination of the effects of Zn2+ on the kinetics of channel  
opening and closing (Fig. 5) reveals that the closing rate  
is dramatically slower in the presence of Zn2+ (blue sym-
bols) compared with control (black symbols), and that 
the activation rates are relatively unaffected (Fig. 5 G), 
similar to that observed in the 419H/362H channels 
(Fig. 3 G). Collectively, these results show that Zn2+ binds 
to and stabilizes 419H/362H/ILT channels in the open 
state relative to the pre-open state, revealing that there 
is movement between R362H in S4 and A419H in the 
pore during the final opening transition.

Kinetics of Zn2+ binding to open channels
Zn2+ coordination between 362H and 419H constrains 
the location of these two positions in the S4 and S5 heli-
ces because coordination can occur only in a limited 
number of ideal geometries and precise distances (Alberts 
et al., 1998). However, Zn2+ coordination may trap the 
S4 in a rarely sampled position that would not be repre-
sentative of its relative position in the open state. Our 
next objective was therefore to explore the kinetics of 
Zn2+ bridge formation because the Zn2+ on-rate places a 
lower limit on how often the voltage sensor is located in 
the appropriate position for Zn2+ coordination. The 
large increase in channel current seen at some voltages 

Figure 5. Zn2+ binds to and stabilizes 419H/362H/ILT channels 
in the open state. Kinetics of opening and closing for 419H/362H/
ILT channels expressed in a HEK cell in either control external 
solution (black) or 1 µM Zn2+ (blue). (A) Voltage protocol for ex-
amining the kinetics of channel opening after 10-mV increment-
ing steps to voltages between 50 and +110 mV consecutively 
applied after a 150-ms prepulse to 150 mV. Holding voltage 
was 100 mV. (B) Representative macroscopic current records 
obtained in control solution using the protocol illustrated in A. 
(C) Macroscopic current traces recorded in the presence of 1 µM 
Zn2+ using the voltage protocol shown in A. (D) Voltage protocol 
for examining the kinetics of channel closing after 10-mV steps 
to voltages between 50 and +110 mV consecutively applied after  
a 12-ms prepulse voltage step to +200 mV to open the channels. 
(E) Representative macroscopic current records showing channel  
deactivation in control solution using the protocol illustrated in D.  

(F) Macroscopic current traces recorded in the presence of  
1 µM Zn2+ using the voltage protocol shown in D. In B, C, E, and F, 
red curves are single-exponential fits to the current records after 
initial lags in current activation. (G) Mean time constants () from 
single-exponential fits to channel activation (filled symbols) and 
deactivation (open symbols) in either control (black diamonds) 
or 1 µM Zn2+ (blue squares), plotted as a function of the voltage 
at which the current was recorded. n = 12–13 cells.
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636 Motion of the S4 helix as Kv channels open

upon Zn2+ application to 419H/362H/ILT channels 
provides a convenient means of assessing the kinetics of 
bridge formation. When Zn2+ is rapidly applied to the 
extracellular solution, we observe rapid increases in 
channel current ( = 10–100 ms; Fig. 6) that vary as 
functions of both voltage and Zn2+ concentration, indi-
cating that the rate of bridge formation is fast. Recovery 
after the removal of Zn2+ is also rapid ( = 30–100 ms; 
Fig. 6) and voltage dependent, but independent of Zn2+ 
concentration. Simulations using models incorporating 
four bridges per channel suggest that the underlying 
Zn2+ binding rate is likely to be >107 M1s1, and the 
Zn2+ unbinding rate is probably between 10 and 120 s1 
(Figs. 7 and 8). The rapid unbinding rate indicates 
that the Zn2+ bridge between 362 and 419 is not capable 
of trapping a rarely sampled conformation. The rate of 
metal bridge formation is more rapid than the rate of 
106 M1s1 observed for Cd2+ coordination within the in-
ternal pore regions of the Shaker Kv channel (del Camino 
and Yellen, 2001) or the P2X receptor channel (Li et al., 
2010), examples where at least three Cys residues coor-
dinate the metal ion. Collectively, the rapid binding and 
unbinding rates for 419H/362H channels suggest that 
bridging occurs in the open state, and in that state, His 
residues at 362 in S4 and 419 in S5 are optimally posi-
tioned to coordinate Zn2+.

Can Zn2+ bind before channels open?
The experimental results thus far with 419H/362H 
channels suggest that Zn2+ binds rapidly to the open 
state and stabilizes it over the pre-open state, requiring 
that Zn2+ bind more tightly to the open state than to the 
pre-open state. These results do not exclude the possi-
bility that Zn2+ is able to weakly bind channels in the 
pre-open state before the S4 helices have undergone 
their final movement. To explore this possibility, we 
consider multiple kinetic models to explain the actions 
of Zn2+ on the final opening transition of 419H/362H/
ILT channels (Figs. 7 and 8). Ledwell and Aldrich 
(1999) found that much of their data obtained on ILT 
channels at positive voltages could be reproduced using 
a two-state model to represent the final opening transi-
tion between the pre-open and open states. We initially 
explored whether a simple three-state model with Zn2+ 
binding only to the open state (Fig. 7, Scheme 2) can 
reproduce our data for 419H/362H/ILT channels over 
voltage ranges that similarly focus on the final opening 
transition (refer to Materials and methods). As observed 
by Ledwell and Aldrich (1999) for ILT channels, in the 
absence of Zn2+, both the steady-state G-V curve and the 
voltage-dependent activation and deactivation rates 
from 419H/362H/ILT channels can be reasonably well 
described using a single set of rates for the transition 
between pre-open and open states (Fig. 7, shown in 
black). However, this three-state model is unable to repro-
duce the voltage-dependent activation and deactivation 

Figure 6. Rapid binding and unbinding of Zn2+ for 419H/362H/
ILT channels. Opening of channels in response to Zn2+ applica-
tion and closing after the removal of Zn2+ at different voltages. 
(A) Voltage protocol illustrating 25-mV steps to six different volt-
ages between 25 and +150 mV, each consecutively applied from 
a holding potential of 50 mV. (B) Representative macroscopic 
currents recorded in response to consecutively applied voltage 
pulses (A), which open channels in a cell bathed continuously in 
control solution. (C) Representative currents where the external 
solution is rapidly switched from control to 1 µM zinc (same cell 
as in B). (D) Current record from a pipette with no patch (open 
tip), where the solution flowing over the pipette tip is switched 
between the control extracellular solution and similar solution 
containing 160 mM KCl, illustrating rapid solution exchange 
(in this case, 4 ms). (E) Expanding view of current increases 
and decreases seen upon the application (above) and removal 
(below) of Zn2+ (data from C). Best fits of single-exponential 
functions are shown as red lines. (F) Mean time constants () 
from single-exponential fits to changes in current upon Zn2+ ap-
plication (filled blue symbols) or removal (open black symbols). 
Squares, 1 µM Zn2+; n = 7–15; diamonds, 0. 1 µM Zn2+; n = 4–5. 
Experiments were performed using both outside-out patches and 
whole cell recordings. There was no systematic variability in the 
time constants recorded in the two configurations; therefore, the 
data were combined.
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additional free parameter, a constant that represents 
how much tighter Zn2+ binds to the open state than the 
pre-open state and how much faster Zn2+-bound chan-
nels open. Although this model can describe the voltage-
dependent activation and deactivation rates in the 
presence of Zn2+ better than Scheme 2, a single set of 

rates in the presence of Zn2+; regardless of how fast we 
make the Zn2+ binding and unbinding rate constants, 
the predicted voltage-dependent activation and deactiva-
tion rates in Zn2+ are always too slow (Fig. 7, shown in 
blue). We also considered a model in which Zn2+ can bind 
to the pre-open state (Fig. 7, Scheme 3), necessitating one 

Figure 7. Kinetic models of 
419H/362H/ILT channels that 
fail to describe gating of the 
channel in the absence or pres-
ence of Zn2+. (Scheme 2) A three-
state model in which Zn2+ binds 
to channels in the open state but  
not the pre-open state (O and A,  
respectively). (Scheme 3) A four-
state model in which Zn2+ is al-
lowed to bind to channels in both 
the open and pre-open states  
(O and A, respectively). (Scheme 4)  
A 10-state model with four in-
dependent Zn2+ binding sites, 
where Zn2+ can bind to channels  
in both the open and pre-open 
states (O and A, respectively). 
(A) Steady-state G-V relations in 
control (black) and 1 µM Zn2+ 
(blue) from Fig. 4 G. Model 
predictions are shown as red 
curves using the following rate 
constants. Scheme 2: ko = 2.31 
s1 e(25.2V), kc = 683 s1 e(12.6V), 
kb = 5.05 × 1010 M1s1, and ku = 
2,200 s1; Scheme 3: ko = 2.31 
s1 e(25.2V), kc = 683 s1 e(12.6V), kb =  
7.5 × 106 M1s1, ku = 100 s1, 
and c =100; Scheme 4: ko = 2.31  
s1 e(25.2V), kc = 683 s1 e(12.6V),  
kb = 8 × 106 M1s1, ku = 163 s1, and 
c = 30. (B) Mean time constants 
() from the single-exponential 
fits to channel activation (filled 
symbols) and deactivation (open 
symbols), plotted as a function 
of the voltage in either control 
(black) or 1 µM Zn2+ (blue) from 
Fig. 5 G. Red lines represent time 
constants of the best fit of single-
exponential functions to the sim-
ulated current relaxations using 
the scheme shown to the left and  
the rate constants given in A. Refer  
to Materials and methods for fur-
ther description of these models.
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638 Motion of the S4 helix as Kv channels open

Scheme 5 better reproduces subtle features of the voltage-
dependent activation and deactivation rates. These rates 
are not identical in the voltage range where they over-
lap, and their individual maxima do not occur at the 
midpoint of the G-V (Fig. 8), as is the case for a two-state 
model (see control conditions in Fig. 7). In the pres-
ence of Zn2+, Scheme 5 reproduces the activation and 
deactivation rates better than the four- or 10-state mod-
els, even though this model has one fewer free parame-
ter. Considering these models leads us to conclude that 
Zn2+ must bind to 419H/362H/ILT channels before the 
channel actually opens. Schemes 3 and 4 accomplish 
this by allowing Zn2+ to bridge before and after the final 
movement of the S4 helix, whereas in Scheme 5, each 
S4 can move independently and Zn2+ can bridge any 
given S4 (with an S5) only after it has moved into its  
final state. In this case, channel opening cannot occur 
until all of the S4 helices have moved.

A distinct bridge with Zn2+ binding to the pre-open state
Our next objective was to explore the state dependence 
of Zn2+ bridges between His residues introduced at R362 
in S4 and F416 in S5, one helical turn below the 419  

rate constants cannot reproduce all of the rates over the 
voltage range studied (Fig. 7).

The models discussed thus far are oversimplified rep-
resentations of the final opening transition that is iso-
lated with the ILT mutations because they do not take 
into account that each channel contains four Zn2+ bind-
ing sites, one between each of the four S4 and S5 heli-
ces. Scheme 4 extends the four-state model to a 10-state 
model by adding individual Zn2+ binding reactions to 
both the pre-open and open states (Fig. 7), but never-
theless fails to reproduce all of the activation and deac-
tivation rates in the presence of Zn2+ (Fig. 7, shown in  
blue). In the final model we considered (Fig. 8, Scheme 5),  
each voltage sensor is able to move independently be-
tween a pre-open (A) and open (O) position, but Zn2+ 
can only bind after a given S4 has moved to its O 
position. Unlike the other models, all of which reduce 
to a simple two-state model in the absence of Zn2+, this 
scheme expands the final opening transitions into four 
independent transitions. In each of these transitions, S4 
moves between activated and “open” positions, with the 
channel only opening to a conducting state when the 
last of the four S4 helices moves into the open position. 

Figure 8. Kinetic models of 419H/362H/ILT data reveal that Zn2+ can bind before channels open. Scheme 5 is a 15-state model in 
which each S4 can independently move between pre-open and open positions (A and O, respectively). In this case, the channel is open 
(conducting) only when all four voltage sensors move into the open position, indicated by the yellow shading, and each S4 can form 
a Zn2+ bridge with S5 only after an S4 has moved to the final open position. (A) Steady-state G-V relations in control (black) and 1 µM 
Zn2+ (blue) from Fig. 4 G. Model predictions are shown as red curves using the following rate constants: ko = 30 s1 e(12.7V), kc = 258 s1 e(12.6V),  
kb = 1.25 × 109 M1s1, and ku = 113 s1. (B) Mean time constants () from the single-exponential fits to channel activation (filled symbols) 
and deactivation (open symbols), plotted as a function of the voltage in either control (black) or 1 µM Zn2+ (blue) from Fig. 5 G. Red lines 
represent time constants of the best fit of single-exponential functions to the simulated current relaxations using Scheme 5 and the rate 
constants given in A.
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the open state (Broomand et al., 2003), an alternate 
possibility that would be consistent with all the data is 
that bridges between 362 in S4 and F416 in S5 only form 
after the voltage sensors have activated and entered the 
pre-open state. The inhibitory effect in both instances 
could be explained if these bridges stabilize the pre-
open state relative to the open state. To explore this 
possibility, we studied channels containing F416H and 
R362H mutations (416H/362H) and initially determined 

position studied thus far. Lainé et al. (2003) previously 
reported that Cd2+ bridges between Cys residues at  
F416 and R362 produce a slowing of opening and an 
apparent rightward shift in the G-V relationship, whereas 
Broomand et al. (2003) found that disulphide bonds 
between these same two Cys residues do not form when 
channels are held closed, but form readily when cells 
are repeatedly depolarized to open channels. Although 
this group concluded that the disulphide bond forms in 

Figure 9. Zn2+ slows the opening of 416H/362H Shaker channels. (A and D) Voltage protocols used to investigate activation of chan-
nels when depolarizing from negative voltages (150 mV; A) or intermediate voltages (50 mV; D). Steps are in 20-mV increments to 
voltages between 120 and +80 mV, followed by a repolarizing step to 100 mV to elicit tail currents. Holding voltage was 100 mV, 
and the membrane voltage was stepped to either 150 or 50 mV for 400 ms before eliciting test depolarizations. (G) Protocol to study 
deactivation of channels after a 100-ms prepulse to +100 mV. (B, E, and H) Representative macroscopic current traces consecutively 
recorded from a HEK cell bathed in control solution in response to the voltage protocol shown above. (C, F, and I) Macroscopic current 
traces consecutively recorded from a HEK cell bathed in Zn2+ (10 µM)–containing solution in response to the voltage protocol shown 
above. The red curves in B, C, E, and F represent single-exponential fits to the current traces elicited by depolarization to +60 mV.  
(J) Normalized steady-state channel conductance, as determined from tail currents after both activation and deactivation, plotted as a 
function of membrane voltage for control (black) and 10 µM Zn2+ (blue). Each point is a mean conductance from four to six cells, simi-
lar to the one illustrated in A–I. Red lines are the best fits of single Boltzmann functions to the data, with V1/2 = 24.5 mV and z = 1.75 
for control and V1/2 = 21 mV and z = 1.51 for 10 µM Zn2+. (K and L) Comparison of macroscopic current traces elicited by a step to  
+60 mV from a prepulse voltage of either 150 mV (magenta) or 50 mV (black or blue) in either control (K) or 10 µM Zn2+ (L).  
(M) Bar graph of averaged  determined from single-exponential fits to the current relaxations during pulses to +60 mV after a prepulse 
voltage of either 50 or 150 mV in both control and Zn2+ from three different channel constructs. n = 3–6.
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640 Motion of the S4 helix as Kv channels open

presence of Zn2+, the kinetics of opening from a hold-
ing potential of 50 mV are significantly slower com-
pared with opening from 150 mV (Fig. 9, M, liter). 
The kinetics of opening from either voltage in control 
solutions are similarly rapid (Fig. 9 K), as are those for 
either 362H or wild-type cells in both control and Zn2+ 

G-V relations (Fig. 9 J) using tail currents obtained after 
steps of both activation (Fig. 9, A–F) and deactivation 
(Fig. 9, G–I). There is a slight weakening of the voltage 
dependence in the presence of 10 µM Zn2+ (Fig. 9, blue) 
compared with control (black), which results in a small 
rightward shift of the G-V curve at some voltages. In the 

Figure 10. Zn2+ slows the opening of 416H/362H/ILT channels from the pre-open state. (A and D) Voltage protocols used to investi-
gate the activation of channels when depolarizing from negative voltages (150 mV; A) or intermediate voltages (50 mV; D). Steps are 
in 25-mV increments to voltages between 100 and +150 mV, followed by a repolarizing step to 75 mV to elicit tail currents. Holding 
voltage was 80 mV, and the membrane voltage was stepped to either 150 or 50 mV for 200 ms before eliciting test depolarizations. 
(G) Protocol to study deactivation of channels after a 100-ms prepulse to +150 mV. (B, E, and H) Representative macroscopic current 
traces consecutively recorded from a HEK cell bathed in control solution in response to the voltage protocol shown above. (C, F, and I)  
Macroscopic current traces consecutively recorded from a HEK cell bathed in Zn2+ (10 µM)–containing solution in response to the 
voltage protocol shown above. The red curves in B, C, E, and F represent single-exponential fits to the current traces elicited by depo-
larization to +150 mV. (J) Modified measurement of steady-state channel conductance that has been normalized to the conductance at 
+150 mV, as determined from tail currents after both activation and deactivation, plotted as a function of membrane voltage for control 
(black) and 10 µM Zn2+ (blue). Each symbol type represents the average conductance from a single cell, like the one illustrated in A–I. 
(K and L) Comparison of macroscopic current traces elicited by a step to +150 mV from a prepulse voltage of either 150 mV (magenta) 
or 50 mV (black or blue) in either control (K) or 10 µM Zn2+ (L). (M) Bar graph of averaged  determined from single-exponential fits 
to the current relaxations during pulses to +150 mV after a prepulse voltage of either 50 or 150 mV in both control and Zn2+ from 
three different channel constructs. n = 3–4.
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tude of steady-state currents at the end-test depolarizations 
and insignificant effects on the G-V at the most depolar-
ized voltages, suggesting that either Zn2+ must unbind 
before the channel can open or that it stabilizes a pre-
open state relative to the open state.

To distinguish whether Zn2+ is bridging 416H/362H in 
the pre-open state that is stabilized by the ILT mutations 
or some earlier partially activated state, we introduced 
the 416H/362H mutations into the ILT background.  
A modified G-V from 416H/362H/ILT channels that has 
been normalized to the conductance and +150 mV is 
plotted for multiple cells in Fig. 10 J, where no consistent 

(Fig. 9 M), revealing that this effect of Zn2+ occurs only 
in 416H/362H (Fig. 9 M). The fast opening rate in Zn2+ 
during steps from 150 mV is consistent with Zn2+ being 
unable to bind at 150 mV, where the voltage sensors 
remain in the resting state, whereas the slower opening 
rate in Zn2+ during steps from 50 mV suggests that 
Zn2+ is binding at 50 mV, where some channels are in 
partially activated states. The channel needs to be held 
at 50 mV for only 100 ms to observe slowing of opening 
(Fig. 9, M, liter), indicating that the rate of Zn2+ binding 
in this case is also quite rapid. Although Zn2+ slows open-
ing from 50 mV, it has only small effects on the ampli-

Figure 11. Bridging positions in the x-ray structures of Kv1.2 channels. (A) Ribbon representation of the Kv1.2 paddle chimera x-ray 
structure (Protein Data Bank accession no. 2R9R) viewed from the extracellular side of the membrane. The three residues shown with 
stick representations are Q290 in S4 and both F344 and A347 in S5, residues that are equivalent to R362, F416, and A419 in the Shaker 
Kv channel. (B) Stereo pairs of the S4 and S5 helices of the Kv1.2 paddle chimera. Same orientation as in A. (C) Stereo pairs of the S4 
and S5 helices of the Kv1.2 paddle chimera viewed from the side. (D) Stereo pairs of the S4 and S5 helices of the Kv1.2 x-ray structure 
(Protein Data Bank accession no. 2A79) viewed from the extracellular side of the membrane as in B. The three residues shown with 
stick representations are R294 in S4 and both F348 and A351 in S5, residues that are equivalent to R362, F416, and A419 in the Shaker 
Kv channel.
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642 Motion of the S4 helix as Kv channels open

viewed from outside) and movement toward S5 would 
be necessary to allow for optimal coordination. In con-
trast, the residue equivalent to R362 in the structure of 
the open Kv1.2 paddle chimera (R290) is positioned closer 
to 419 (A347 in the chimera), with a distance between 
C atoms of 8.5 Å (Fig. 10, A–C), which is more compat-
ible with the strict requirements for Zn2+ coordination 
(Alberts et al., 1998).

The equilibrium of voltage sensors between resting 
and activated states, as reflected in the gating charge 
(Q) versus voltage (V) relation, is sensitive to the initial 
voltage from which gating currents are elicited. For ex-
ample, in a variety of voltage-activated channels and the 
Ci-VSP voltage-sensitive phosphatase, Q-V relations ex-
hibit a pronounced shift to negative voltages when gat-
ing currents are elicited from positive voltages (Bezanilla 
et al., 1982; Olcese et al., 1997; Villalba-Galea et al., 
2008). Villalba-Galea et al. (2008) have proposed that 
prolonged activation of voltage sensors at positive volt-
ages causes them to shift into a relaxed state, and that 
the crystal structures of Kv channels represent this re-
laxed state rather than the activated state. Our con-
straints with bridges between S4 in both pre-open and 
open states are compatible with the crystal structure of 
the Kv1.2 paddle chimera, as discussed above, suggest-
ing that the structural differences between activated 
and relaxed voltage sensors are relatively subtle and un-
likely to involve a substantial repositioning of the S4  
helix relative to S5.

To understand the state dependence of Zn2+ bridging 
between 362 and 419, we explored a range of kinetic  
models. A key conclusion that we take from these models  
is that the bridge can form before channels open even 
though the bridge ultimately stabilizes the open state 
(Figs. 7 and 8; and see below). Models where bridges 
can only form in the open state (e.g., Fig. 7, Scheme 2) 
poorly reproduce the observed kinetics of opening and 
closing in the presence of Zn2+, when they are also con-
strained to fit the observed shift in the closed–open 
equilibrium evident in the G-V relations. This is because 
the opening and closing rates in the absence of Zn2+ 
limit how rapidly Zn2+ can bind and how fast the chan-
nel can close after Zn2+ unbinding. Models that treat 
the final opening transition as a single concerted mo-
tion of the four voltage sensors and gate (e.g., Fig. 7, 
Schemes 2–4) also cannot reproduce the observed ki-
netics of opening and closing even if they allow for 
bridging before opening of the channel. In contrast, 
Scheme 5 (Fig. 8) reproduces the observed kinetics of 
opening and closing in both the absence and presence 
of Zn2+ by allowing each voltage sensor to independently 
move between pre-open and open positions before the 
channel actually opening. These findings together im-
ply that the final opening step defined using the ILT 
construct is not actually a single transition but likely in-
volves movement of each S4 helix between pre-open 

effect of Zn2+ can be seen. These ILT-containing chan-
nels are not fully opened even at +200 mV, and without 
reaching the top of the G-V, it is difficult to distinguish 
small inhibitory effects of Zn2+ bridging from the vari-
able gating properties of ILT channels (see Fig. 4 and 
Smith-Maxwell et al., 1998b). Nevertheless, Zn2+ does 
produce a clear slowing of channel opening when elicited 
by depolarizations from a holding voltage of 50 mV, 
where many channels are in the pre-open state, but not 
when elicited by depolarization from 150 mV, where 
the voltage sensors are in the resting state. The slow 
opening of ILT channels observed in the presence of 
Zn2+ from a holding voltage of 50 mV is not observed 
in several channel constructs lacking the F416H mutation, 
consistent with the effect arising from a bridge between 
362 and 416. Collectively, these results suggest that Zn2+ 
bridges form between 362 and 416 in the pre-open state 
and stabilize that state relative to the open state.

D I S C U S S I O N

The objective of this study was to explore the state de-
pendence of bridges between S4 and S5 to constrain the 
location and motions of the S4 helix during the final 
opening step in the Shaker Kv channel. Our results on 
metal bridges formed between His residues at 362 in S4 
and 419 in S5 suggest that this bridge greatly favors the 
open state compared with the pre-open state (Figs. 1–5), 
providing a clear demonstration that the S4 helix moves 
relative to S5 during the final opening transition. We 
also studied Zn2+ bridges between 362 in S4 and 416 in 
S5, and in this case our results suggest that the bridge 
forms when the channels enter the pre-open state after 
the early steps in voltage sensor activation and before 
the final opening transition (Figs. 9 and 10). Collec-
tively, these results suggest that the S4 helix moves dur-
ing the final opening transition from a position where a 
His at 362 in S4 can favorably bridge with 416 in S5 to 
one where 362 favorably bridges with 419. In the x-ray 
structure of the Kv1.2 channel, the C atom of the resi-
due equivalent to 419 is located 6.6 Å extracellular to 
that of the 416 equivalent, whereas in the Kv1.2 paddle 
chimera structure, this distance is 5.1 Å (Long et al., 
2005, 2007) (Fig. 11, B–D), suggesting that the R1 posi-
tion of the S4 helix moves in an extracellular direction 
during the final opening transition. Our results also 
demonstrate that the kinetics of bridge formation in 
the open state between 362 and 419 are rapid (Fig. 6), 
indicating that His residues at these positions must  
often be ideally positioned to coordinate Zn2+. In the 
open Kv1.2 structure, the residue equivalent to R362 
(R294) is not ideally positioned to bridge with 419 (A351 
in Kv1.2), as the distance between C atoms of these two 
residues is too long (13.7 Å) for His at these positions to 
coordinate Zn2+ (Alberts et al., 1998) (Fig. 11 D), although 
only a modest rotation of the S4 helix (counterclockwise 
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