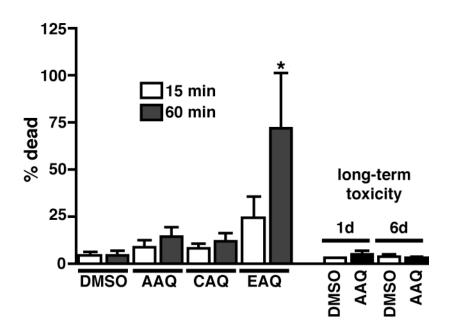
Photochemical control of endogenous ion channels and cellular excitability

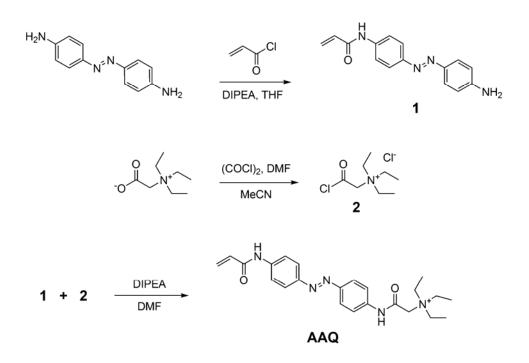

Doris L Fortin, Matthew R Banghart, Timothy W Dunn, Katharine Borges, Daniel A Wagenaar, Quentin Gaudry, Movses H Karakossian, Thomas S Otis, William B Kristan, Dirk Trauner & Richard H Kramer

Supplementary figures and text:

Supplementary Figure 1 Neuronal survival after PAL treatment Supplementary Methods

Supplementary Figure 1. Neuronal survival after PAL treatment

Cultured hippocampal neurons were incubated with PALs for the indicated time and processed immediately after treatment for a Live/Dead Assay (Molecular Probes) to quantify cell survival. EAQ, but not AAQ and CAQ, caused more toxicity than vehicle alone (* p < 0.001 One-way ANOVA, Tukey's post-test). To assess long-term toxicity, neurons were treated with AAQ for 15 minutes then returned to their normal growth medium for an additional 1 or 6 days. AAQ treatment had no effect on long-term survival (n = 4-8 field of cells for each condition).

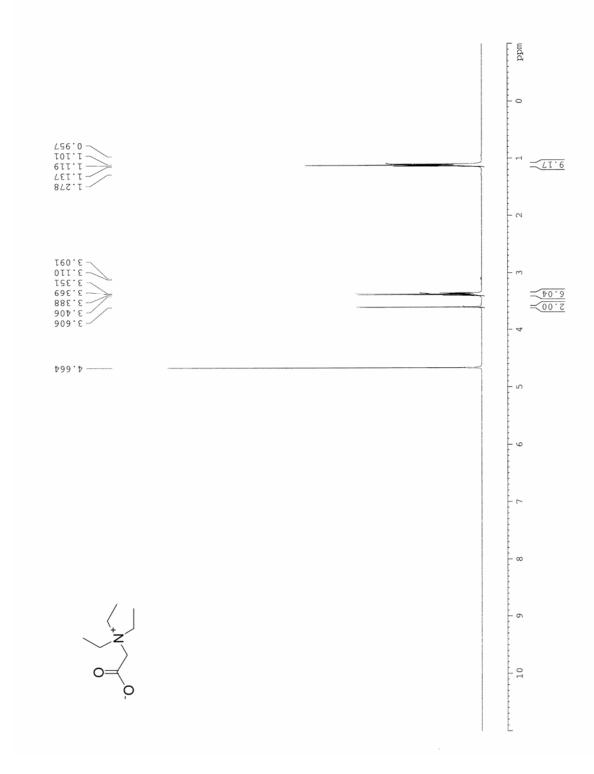


Supplementary methods

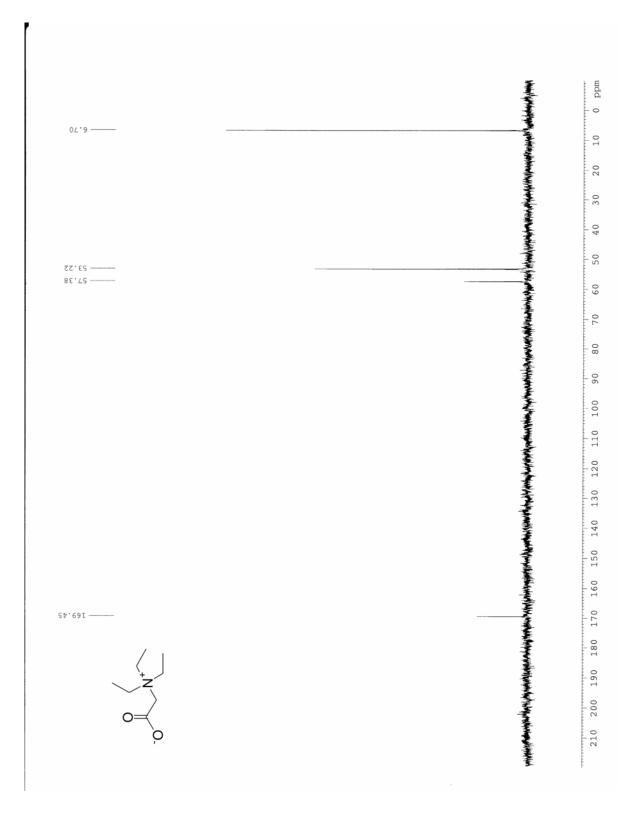
Electrophysiology. The bath solution for voltage-gated K^+ channel recordings contained in mM: 138 NaCl, 1.5 KCl, 1.2 MgCl₂, 2.5 CaCl₂, 5 HEPES, 10 glucose, pH 7.4 and when necessary, 20 µM bicuculline, 25 µM 6,7-dinitroquinoxaline-2,3-[1H,4H]-dione (DNQX) and 1 µM tetradotoxin (TTX). The intracellular solution contained in mM: 10 NaCl, 135 K-gluconate, 10 HEPES, 2 MgCl₂, 2 MgATP, 1 EGTA, pH 7.4. For recordings of BK-mediated currents, 1 mM CaCl₂ was added to the intracellular solution. For recordings of voltage-gated Na⁺ channels, the bath solution contained in mM: 150 NaCl, 2 CaCl₂, 0.5 CdCl₂, 10 HEPES, 5 glucose, pH 7.4; and the intracellular solution contained in mM: 100 CsCl, 30 NaCl, 10 EGTA, 1 CaCl₂, 2 MgCl₂, 2 ATP, 0.05 GTP, 10 HEPES, 5 glucose, pH 7.4. L-type calcium channel currents were recorded in a bath solution containing (in mM): 105 Tris-HCl, 0.8 MgCl₂, 5.4 KCl, 20 BaCl₂, 0.02 TTX, 10 HEPES, 5 glucose, pH 7.4. The intracellular solution contained (in mM): 70 Cs₂-Aspartate, 20 HEPES, 11 EGTA, 1 CaCl₂, 5 MgCl₂, 5 glucose, 5 ATP, pH 7.4. Solutions were adjusted to 300-310 mOsm. Cerebellar slices recordings were performed in aCSF containing in mM: 119 NaCl, 26 NaHCO₃, 11 glucose, 2.5 KCl, 2.5 CaCl₂, 1.3 MgCl₂, and 1 NaH₂PO₄ and saturated with 95% O₂ and 5% CO₂. RGC recording saline solution contained (in mM): 125 NaCl, 2.5 KCl, 2.5 CaCl₂, 1.5 MgCl₂, 1.25 NaH₂PO₄, 33.7 NaHCO₃, and 10 glucose, pH 7.4.

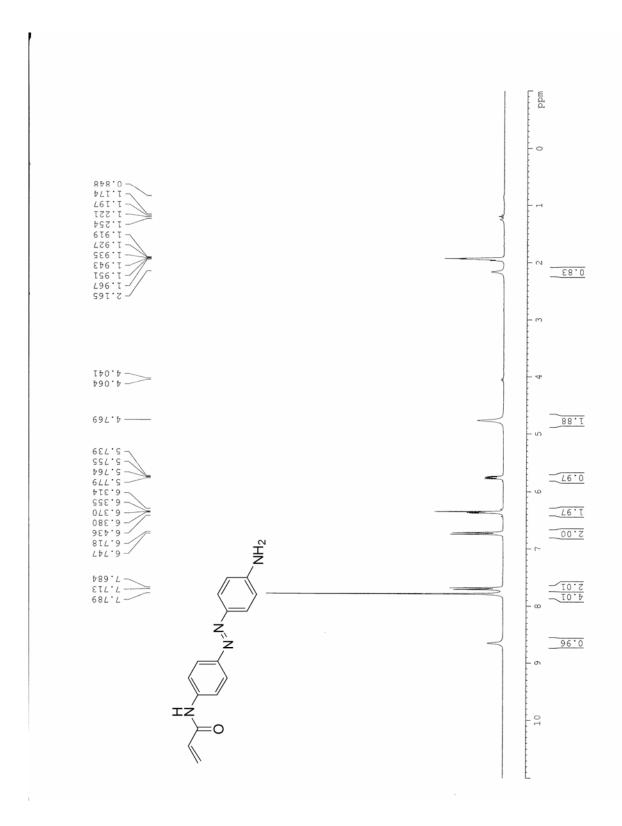
General chemical methods. Reactions were carried out under N_2 atmosphere in flame-dried glassware. Tetrahydrofuran (THF) was distilled from Na/benzophenone immediately prior to use. Acetonitrile (MeCN), and diisopropylethylamine (DIPEA) were distilled from CaH₂ immediately prior to use. All other reagents and solvents were used without further purification from commercial sources. Flash column chromatography was carried out with EcoChrom ICN SiliTech 32–63 D 60 Å silica gel. Reverse-phase chromatography was carried out with Waters Preparative C18 Silica Gel WAT010001 125 Å and Waters Sep-Pak Vac 20 cc C18 Cartridges WAT036925. Reactions and chromatography fractions were monitored with either Merck silica gel 60F254 plates or Analtech C18 silica gel RPS-F 52011 plates, and visualized with 0.1N HCl. NMR spectra were measured in specified solvents and calibrated from residual solvent signal on a Bruker DRX spectrometer at 500 MHz for ¹H spectra and 125 MHz for ¹³C spectra and either a

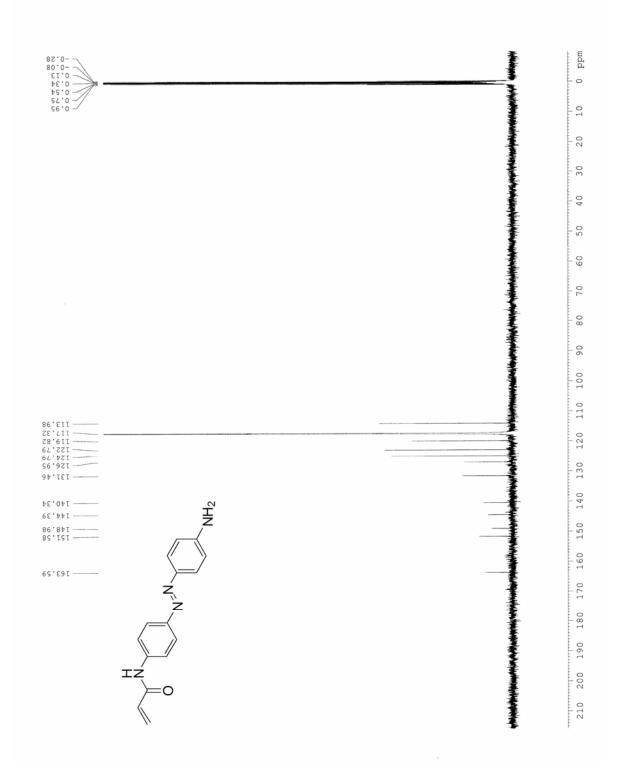
Bruker AVB or Bruker AVQ spectrometer at 400 MHz for ¹H spectra and 100 MHz for ¹³C spectra. IR spectra were measured with a Genesis FT-IR spectrometer by thin film.



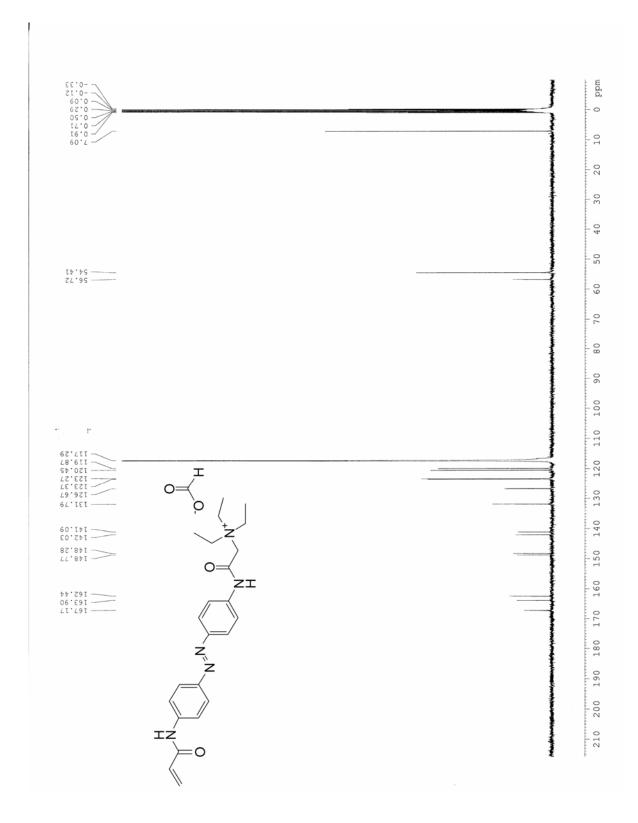
Scheme for synthesis of AAQ


4-acrylamido-4'-aminoazobenzene (1). To a solution of 4,4'-diaminoazobenzene (200 mg, 0.94 mmol) and DIPEA (0.1 ml, 0.56 mmol) in THF (300 ml) at 0°C was added acryloyl chloride (0.04 ml, 0.47 mmol) in THF (5 ml) over 1 h. The reaction was stirred for 15 min, warmed to room temperature and stirred for 1 h, at which time the crude mixture was removed of solvent *in vacuo* and immediately dry loaded onto silica gel (2 g). Silica gel chromatography through a wide column (10% EtOAc in DCM gradient to 75%) followed by solvent removal *in vacuo* provided 4-acrylamido-4'-azobenzene as an orange solid (91 mg, 0.34 mmol, 72% yield): ¹H (CD₃CN, 300MHz): 4.77 (s, 2H); 5.74-5.78 (m, 1H); 6.36-6.38 (m, 2H); 6.73 (d, 2H, J=8.7); 7.70 (d, 2H, J=8.7); 7.79 (s, 4H); 8.66 (s, 1H). ¹³C (CD₃CN, 125MHz): 114.9, 120.8, 123.7, 125.7, 127.9, 132.4, 141.3, 145.3, 149.9, 152.5, 164.5. IR (thin film): 2925, 1671, 1598, 1536, 1244. HRMS (FAB+): calculated for C₁₅H₁₅N₄O – 267.1256, found – 267.1246 (M+). The remaining 4,4'-diaminoazobenzene was isolated for reuse.


2-triethylammonium acetic acid chloride chloride (2). Triethylammonium acetate was prepared as described previously¹. ¹H (D₂O, 400MHz): 1.12 (t, 9H, J=7.2); 3.38 (q, 6H, J=7.2); 3.61 (s, 2H). ¹³C (D₂O, 100MHz): 6.7, 53.2, 57.4, 169.5. IR (thin film): 1626, 1458, 1395. HRMS (ESI+): calculated for $C_8H_{18}NO_2 - 160.1338$, found – 160.1341 (MH+). To a solution of triethylammonium acetate (520 mg, 3.25 mmol) in MeCN (3 ml) was added a 2 M solution of oxallyl chloride in DCM (1.6 ml, 3.25 mmol) followed by several drops of DMF. The solution was stirred at ambient temperature for 15 min, removed of solvent *in vacuo* and dried under vacuum for 1 hr to remove residual HCl. The product was then taken up in DMF (10 ml) and used without further purification.


Acryl-Azo-QA (AAQ) (3). To a solution of 4-acrylamido-4'-aminoazobenzene **1** (90 mg, 0.33 mmol) and DIPEA (0.12 ml, 0.66 mmol) in DMF (5 ml) at 0°C was added 2-triethylammonium acetic acid chloride chloride **2** (0.41 mmol) in DMF and stirred for 15 min, then warmed to ambient temperature and stirred for 1 h at which time the solvent was removed *in vacuo*. Reverse phase silica gel chromatography (0.1% formic acid in H₂O to 50% MeCN: 0.1% formic acid in H₂O) followed by solvent removal *in vacuo* provided **AAQ** as an orange solid (109 mg, 0.24 mmol, 70% yield): ¹H (CD₃CN, 400MHz): 1.30 (t, 9H, J=7.2); 3.52 (q, 6H, J=7.2); 4.47 (s, 2H); 5.72-5.75 (m, 1H); 6.33-6.38 (m, 1H); 6.54-6.61 (m, 1H); 7.75-7.79 (m, 4H); 7.87-7.90 (m, 4H); 8.72 (s, 1H); 10.21 (s, 1H); 12.88 (s, 1H). ¹³C (CD₃CN, 100MHz): 8.1, 55.4, 57.7, 120.8, 121.4, 124.2, 124.3, 127.6, 132.8, 142.1, 143.0, 149.3, 149.7, 163.4, 154.9, 168.1. IR (thin film): 2986, 1684, 1594, 1541, 1250. HRMS (FAB+): calculated for C₂₃H₃₀N₅O₂ – 408.2400, found – 408.2395 (M+).




.

References

1. Challenger, F.; Taylor, P.; Taylor, B. Journal of the Chemical Society, Abstracts 1942, 48-55.