Supplementary Table 1: Mutated β2 N-termini and artificial N-termini

	1	11	21	31	41
β2	FIWTSGRTS	SSYRHDEKRN	IYQ <mark>KIR</mark> DHDL	LDKRKTVTAL	KAGEDRAILL
6Q	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>QIQ</mark> DHDL	LDKRKTVTAL	KAGED RAILL
10Q	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>QIQ</mark> DHDL	LD <mark>QQQ</mark> TVTAL	Q AGEDRAILL
6QR#R					
6QR8R	FIWTSGRTS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LDKRKTVTAL	KAGEDRAILL
6QR14R	FIWTSG <mark>Q</mark> TS	SSY <mark>R</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LDKRKTVTAL	KAGEDRAILL
6QK18K	FIWTSGQTS	SSYQHDE <mark>KQ</mark> N	IYQ <mark>QIQ</mark> DHDL	LDKRKTVTAL	KAGEDRAILL
6QR19R	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QR</mark> N	IYQ <mark>Q</mark> IQDHDL	LDKRKTVTAL	KAGEDRAILL
6QK24K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>KIQ</mark> DHDL	LDKRKTVTAL	KAGEDRAILL
6QR26R	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IRDHDL	LDKRKTVTAL	KAGEDRAILL
10QR#R					
10QR8R	FIWTSGRTS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>QIQ</mark> DHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QR14R	FIWTSG <mark>Q</mark> TS	SSY <mark>R</mark> HDE <mark>QQ</mark> N	IYQ <mark>QIQ</mark> DHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QK18K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>K</mark> QN	IYQ <mark>Q</mark> IQDHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QR19R	FIWTSG <mark>Q</mark> TS	SSYQHDEQRN	IYQ <mark>Q</mark> IQDHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QK24K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>KIQ</mark> DHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QR26R	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> I R DHDL	LD <mark>QQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QK33K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LD <mark>KQQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QR34R	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LD <mark>QRQ</mark> TVTAL	Q AGED <u>RAILL</u>
10QK35K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LD <mark>QQK</mark> TVTAL	Q AGED <u>RAILL</u>
10QK41K	FIWTSG <mark>Q</mark> TS	SSY <mark>Q</mark> HDE <mark>QQ</mark> N	IYQ <mark>Q</mark> IQDHDL	LD <mark>QQQ</mark> TVTAL	KAGED <u>RAILL</u>
Artificial N-termini					
FIW30Q	I	TIW QQQQQQQQ	<u> </u>	<u> 000000000</u>	QQ <u>RAILL</u>
FIW P	KK28Q I	TIW <mark>KK</mark> QQQQQQ	<u> </u>	<u> 000000000</u>	QQ <u>RAILL</u>
FIW 2QH	кк270 н	FIW QQ- <mark>KK</mark> QQQ	00 00000000	00 00000000	QQ <u>RAILL</u>
FIW 4QF	KK24Q H	TIW QQQQ <mark>KK</mark> QQ	<u> 000000000</u>	00 00000000	QQ <u>RAILL</u>
FIW 6QF	KK22Q I	TIW QQQQQQ <mark>KK</mark>	<u> </u>	QQ QQQQQQQQ	QQ <u>RAILL</u>
FIW 8QF	кк200 в	TIW QQQQQQQQ	KK ÖÖÖÖÖÖÖÖ	00 00000000	QQ <u>RAILL</u>
FIW 10QH	KK18Q H	TIW QQQQQQQQ	QQ KKQQQQQQ	00 00000000	QQ <u>RAILL</u>
FIW 11QF	KK15Q H	TIW QQQQQQQQ	QQ Q <mark>KK</mark> QQQ	00 00000000	QQ <u>RAILL</u>
FIW 17QF	KK10Q H	TIW QQQQQQQQ	00 0000000-	KK QQQQQQQQ	QQ <u>RAILL</u>
FIW 20QH	KK8Q I	FIW QQQQQQQQ	00 00000000	QQ KKQQQQQQ	QQ <u>RAILL</u>
FIW 22QF	KK6Q I	FIW QQQQQQQ	00 00000000	ÕÕ ÖÕ <mark>KK</mark> ÕÕÕÕ	QQ <u>RAILL</u>
FIW 24QF	KK4Q I	FIW QQQQQQQ	00 00000000	ÕÕ ÖÖÖÖ <mark>kk</mark> öö	QQ <u>RAILL</u>
FIW 25QH	КК2Q В	FIW QQQQQQQ	00 00000000	QQ QQQQQ- <mark>KK</mark>	QQ <u>RAILL</u>
FIW 27QH	KK I	TIW QQQQQQQQ	00 00000000	00 0000000-	KK <u>RAILL</u>

Zhang et al., Supplementary Figure 1.

Figure S1. Controls for autodigestion and linearity of the trypsin digestion rates. (a) Autodigestion by trypsin at 0.1 mg/ml is minimal over a 6 hour period. Solutions of 0.1 mg/ml trypsin were incubated at room temperature for various times and then tested for ability to remove inactivation. Patches were exposed to trypsin within 15 minutes of the nominal time of trypsin incubation. Curves reflect fits of Eq. 1 to the recovery time course. (b), Dependence of digestion time constant from (a) is plotted as a function of trypsin preincubation time. The points under each condition indicate the mean and SEM for a set of 3-4 patches. The open circle represents recovery time course determined at 0.1 mg/ml in a separate set of patches. (c) The dependence of removal of inactivation is plotted as a function of trypsin concentration. The removal of inactivation by trypsin was examined at three different trypsin concentrations (3 patches: 0.02 mg/ml; 7 patches: 0.1 mg/ml; 5 patches: 0.5 mg/ml). Lines represent fits of Eq. 1. (d), Digestion time constants from (c) are plotted as a function of [trypsin].

Supplementary Figure 2.

Figure S2. A complete model of protection against trypsin digestion of β 2-subunit inactivation domains during resting conditions and during inactivation. The model incorporates both of the inactivation-dependent protection and resting potential models given in the main text. The entry of channels into the states within the dotted box describes the time course of removal of inactivation by trypsin digestion. Inactivation domains in red are considered accessible to trypsin, in black are protected with the antechamber, and, in blue, are inactivated (and protected). All terms are identical to those given for Fig. 4 and 6 in the main paper. Simulations based on this full model using the same parameters as those used in Fig. 4 and Fig. 6 to define resting and inactivated conditions yielded results identical to those in the main text paper.