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Abstract

In vitro cultured neurons form a bi-dimensional physical model of the brain. In spite of their
simpli6ed level of organization, they provide a useful framework to study information processing
in the nervous system. NeuroBIT is an EU-funded project, aimed at developing algorithms and
techniques that allow for establishing a bi-directional connection between cultured neurons and
external devices (e.g., robots). The main purpose is to enable ‘embodied’ in vitro experiments,
in which neural populations are provided with an actual physical body. Embodiment is likely
to be crucial in studying the mechanisms of sensorimotor integration, control and adaptation in
living systems. Here we present the general objectives of the project, and show the results of
preliminary experiments and simulations.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, Reger et al. [10] have proposed an innovative experimental paradigm,
aimed at studying learning (in particular, sensorimotor adaptation) and, in general,
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synaptic plasticity in the nervous system. They connected a lamprey brain, isolated
and kept alive in vitro, bi-directionally to a mobile robot. Actuators were controlled
by the recorded neural activity and sensors were used to drive neural stimulation, so
that the robot played the role of an arti6cial body. Although the brain and the robot
were alien to each other, the resulting bio-arti6cial system was shown to be able of
interacting with its environment (e.g., to follow or escape from a light source). Such
capability can be analyzed and manipulated experimentally: for instance, it is possible
to simulate lesions and then to observe the resulting adaptation processes (if any), or
to investigate on-line, closed-loop learning paradigms. In fact, embodiment has been
suggested to be an essential condition for emergence of ‘intelligent’ behaviors. Simi-
lar experiments [3,11] have been performed with populations of neurons, cultured on
micro-electrode arrays (MEAs). Although the latter are extremely simpli6ed models
of the brain due to their inherently bi-dimensional structure and random connectivity,
they allow chronic experiments and multi-site recording/stimulation. DeMarse et al. [3]
interfaced a cultured neuronal network to a computer-simulated animal, moving in-
side a virtual world. Shahaf and Marom [11], through a simple conditioning paradigm,
managed to induce a pre-determined, site-speci6c response. In both cases, very simple
spatio-temporal stimulation patterns were used (isolated pulses or short bursts on few
sites); however, in order to convey ‘sensory’ information, the patterns of stimulation
that have to be delivered to the preparation should be structured in time, and dis-
tributed in space. The aim of the EU-funded NeuroBIT project is to develop the tools
and the technologies for connecting portions of living nervous tissue bi-directionally
with external devices (i.e., a robot), with the purpose of enabling ‘embodied’ in vitro
experiments on sensorimotor learning and memory. Here we describe the expected out-
comes, discuss algorithms and techniques for interfacing the neural preparation with
external devices, and show the results of experiments and simulations.

2. Materials and methods

2.1. Neural preparation

Primary cultures of cortical neurons were selected as a suitable neurobiological sys-
tem for chronic experiments [5]. Populations of in vitro cultured neurons are sponta-
neously active and their pattern of activity can be modulated by means of simple train-
ing paradigms [6]. Neurons were extracted from rat embryos (17–18 days), and cultured
on planar arrays of 60 TiN/SiN electrodes(Multichannel Systems). A mini-incubator,
under development, consisting of a microelectrode array and a heating and temperature
control system, will allow longer term experiments and to perform stimulation and/or
recording during development.

2.2. Characterization of spontaneous and evoked behaviors

Spontaneous 6ring activity was measured continuously over a period of almost 5
weeks in vitro. To this end, the culture chamber was 6rmly sealed to prevent any
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evaporation of medium. Firing activity was measured by recording the times of occur-
rence of the spontaneous action potentials with a time resolution of 0:1 ms. For these
long-term recordings, we used MEAs with diHerent electrode diameters of 10, 20 and
30 �m, respectively. The spontaneous 6ring activity was analyzed at several time scales
[12]. An overall impression of developmental changes was obtained by calculating the
6ring rate in number of spikes per hour for each recording site in the MEA over the
whole 33 DIV period of recording. At a time scale of minutes the spontaneous 6ring
activity showed an ongoing alternation of periods of low level 6ring rates and short
periods of highly synchronized 6ring at many recording sites (network bursts). These
network bursts have been analyzed in detail focusing on the spatial and temporal pat-
terns of 6ring within these bursts at a time scale of milliseconds. Network bursts were
automatically detected by means of an algorithm based on the product of total network
6ring rate and number of active sites. The time point at which this product was max-
imal was taken as the center of a network burst. Statistical estimates for the patterns
of 6ring within network bursts were obtained by averaging the 6ring activity of all
network bursts detected within periods of 4 h, aligned according to their time centers.
Additional methods to characterize spontaneous behavior, particularly bursting, in-

cluded the inter-spike interval (ISI), the inter-burst interval (IBI), and the mean duration
of individual bursts [9]. A Wavelet-based denoising algorithm [8], and one for burst
detection based on the Hurst parameter were also developed. More speci6cally, we
used a modi6ed version of an algorithm that was originally proposed [1] to monitor
fractal-like behavior of communications traJc.
In studies of the evoked behavior and in closed-loop experiments, we started to

record the neural activity of the preparation after 17 days in vitro (DIV) to allow
for the formation of mature connectivity. To describe the spatial pattern of 6ring that
is evoked by single stimuli in selected sites, we used post-stimulus time histograms
(PSTH) in addition to the techniques developed to study spontaneous behavior.

2.3. Bi-directional neural interface

For each experiment, we identi6ed two sets of MEA channels to be, respectively,
the recording (output) and stimulation (input) sites, i.e. the ‘motor’ and ‘sensory’ areas
of our model brain. A personal computer running a real-time operating system kernel
is responsible for (i) neural recording from the output sites, and generation of the
control signals for the external device; and (ii) recording of the ‘sensory’ signals from
the external device, and generation of the corresponding neural stimulation patterns on
the input sites. A second computer provides an experiment front-end to control sys-
tem con6guration and experimental parameters. A speci6cally developed programmable
stimulator generates continuously varying spatio-temporal patterns of stimuli. Stimula-
tion channels can be con6gured individually, by direct programming, or as part of
(future) training protocols.

2.4. Coding and decoding techniques

Sensory information from the external device has to be translated into a spatio-
temporal pattern of stimulation. We assumed that the 6ring rate of neurons in the
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‘sensory’ portion of the brain is largest when the sensor input has a speci6c, preferred
value, and decreases otherwise. This corresponds to the notion of ‘receptive 6eld’. If
the sensors are arranged topographically, so that each is characterized by a speci6c
position, dj, to account for partial receptive 6eld superposition we assume that for
each stimulation site, i = 1; : : : ; M , there is a ‘preferred’ stimulus position di, so that
stimulus intensity, i.e. si(t); i = 1; : : : ; M , is computed as

si(t) =
6∑

j=1

G(‖dj − di‖)uj(t) =
6∑

j=1

Gijuj(t):

The time-varying activity of the simulated receptive 6elds was used to modulate
the instantaneous frequency of the trains of stimuli delivered to the input sites. We
adopted a rate coding scheme, and treated stimulus intensity as the instantaneous rate
of stimulation. We experimented two alternative methods for generation of the corre-
sponding trains of stimuli: Poisson (i.e., rate speci6es the mean of an inhomogeneous
Poisson-distributed process), or perfect integrate-and-6re (i.e., rate directly modulates
the frequency of a pulse train). The two methods correspond, respectively, to gamma
distributions of, respectively, order 1 and order ∞ [4].
The raw signal from the output sites is sampled at 10 kHz, and individual spikes are

detected on-line by means of a threshold algorithm that is based on a 3 ms moving
window. The threshold is established, for each experiment, during an early characteri-
zation phase on each individual channel. Blanking of stimulus artifact is based on the
algorithm of Wagenaar and Potter [13]. For each recording site, the instantaneous 6ring
rate Ui(t); i=1; : : : ; N is estimated through a 6rst-order low-pass 6lter, with =100 ms.
The spatio-temporal pattern of neural activity is then translated (‘decoded’) into a lower
dimensional set of motor commands. Any ‘decoding’ strategy is clearly arbitrary; one
possibility (a ‘spatial’ decoding strategy) is to assume that the motor command is
coded into the average activity of each output region:

x(t) =
xmax

Umax

1
N

N∑

j=1

Uj(t):

Population coding is another simple and biologically ‘plausible’ rule, based on the idea
that each recording site is assigned (a priori) a ‘preferred’ control command (in the
present case, an angular speed), and the control signal is computed as a weighted sum:

x(t) =
∑N

i=1 xi · Ui(t)∑N
j=1 Uj(t)

:

In the latter case, normalization guarantees insensitivity of the generated control signals
on the baseline spontaneous activity (including network bursts).

2.5. Control of a mobile robot

The above coding and decoding methods are relatively general, and can be applied
to interface the neural preparation with diHerent kinds of external devices. To prove
the feasibility of closed-loop, embodied experiments, we connected the neuron culture
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to a Khepera II miniature mobile robot, with two wheels and eight infra-red (IR)
proximity sensors, which can move inside a circular playground, containing a number
of obstacles. We used two separate sets of recording sites to control the left and right
wheels of the robot, and two stimulation sites to code the activity of left and right
sensors.

3. Results

3.1. Neuron culture characterization

Cultures can be maintained healthy and spontaneously active over many weeks in
vitro. Starting with isolated cells after plating, neurons soon grow out by forming den-
dritic and axonal arborizations. At the end of the 1st week in vitro, suJcient synaptic
connectivity has been formed to allow the network to generate spontaneously action
potentials and synchronized network bursts. During further development the networks
bursts showed a signi6cant broadening in the 3rd week in vitro, and a subsequent short-
ening of the leading edge in the 4th week in vitro. Neurons appeared to 6re within
network bursts with signi6cant temporal relationships, while these temporal patterns
remained highly stable over long periods of recording. Many neurons maintained their
phase relations over the full period of recording. Analysis of the mean 6ring rates in
relation to the size of the electrodes revealed that the mean 6ring rate recorded at
electrodes with diameters of 10 and 20 �m was not diHerent, but was doubled at the
30 �m diameter electrode, which implies that the latter has detected action potentials
from more than one neuron (multi-unit), whereas the smaller electrodes have recorded
activity from single units.

3.2. Burst on Hurst detection (BOHD) algorithm

To characterize burst activity, we developed an innovative method based on the
self-similarity or fractal property of the recorded neural signal. The basic assumption
is that self-similarity of the signal increases during bursts. By using the Hurst parameter
[7] as an estimator of fractal behavior, we can identify intervals of bursting activity;
see Fig. 1 for an example.
A distinctive property of this approach is that no previous spike detection is necessary

as this approach rejects automatically the noise through aggregation. Analysis is quite
robust to the presence of noise, as noise typically has short-term dependences.

3.3. Analysis of evoked behaviors

An underlying requirement for the assumption of functional specialization is that
diHerent patterns of stimulation are able to induce diHerent spatial distributions of ac-
tivity. To assess whether this was the case, we systematically stimulated the preparation
on a number of diHerent sites (half the total) with bipolar pulses, delivered every 5 s,
and analyzed the resulting neural activity at population level. Analysis of IBI, burst



1070 S. Martinoia et al. / Neurocomputing 58–60 (2004) 1065–1072

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10 5
-20  

-10  

0  

10

20

30
Trace from the M.E.A.

20 40 60 80 100 120 140 160 180 0.7  

0.8  

0.9  

1  

1.1  Hurst parameter evolution ( with W=1s , S=0.1s )

Samples 

Samples 

µV
 

H
 

Fig. 1. Evolution of the Hurst parameter in relation to the neural signal from one recording site.

duration and PSTH shows that population activity can indeed be modulated; there is
a clear dependence of population dynamics on the sites of stimulation, and distinct
patterns of activation can be induced.
We developed a simple procedure for selection of the most suitable input and output

sites (i.e. the sensory and motor areas) of our brain model. We selected as outputs those
sites that were signi6cantly responsive to electrical stimulation. Input sites were selected
based on their capability to evoke diHerent spatial distributions of activity on the output
sites. To drive the development of cultured neurons toward functional specialization,
we also developed micro-electrode arrays with a compartmentalized structure. We plan
to use them in alternative to the matrix-shaped MEAs.

3.4. Robot control through neural activity

We initially focused on a simple obstacle avoidance task, i.e. a ‘Braitenberg vehicle’
[2] as the target behavior. Decoding and encoding schemes were tested in controlling
the movements of the robot. Fig. 2 shows a portion of a closed-loop experiments.
We used 16 sites as outputs (eight per wheel). The speeds of the robot wheels were
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Fig. 2. A closed-loop experiment. (A). From top to bottom: neural activity in the output (motor) areas,
estimated instantaneous 6ring rates and computed angular speeds of the robot wheels. (B). From top to
bottom, activity of the robot sensors, rates and corresponding patterns of stimulation.

computed through a ‘spatial’ decoding scheme. Sampling of sensory inputs and updating
of speed commands was performed at 10 Hz. As the robot approaches an obstacle by
its left/right side, the increased signal recorded by at least one of the sensors on that
part is reMected on the increasing of the stimulation frequency of the corresponding
channel; see Fig. 2.

4. Discussion

Network bursts constitute a prominent mode of spontaneous 6ring in dissociated rat
cortical cultures. The observed temporal relationships of 6ring of individual neurons
within these network bursts may reMect the pattern of synaptic connectivity and the
Mow of spontaneous 6ring through the network. Therefore, stability of these tempo-
ral relationships suggests a stable connectivity, even during periods of developmental
changes, so that the spatio-temporal pattern within network bursts can be considered as
a dynamic blueprint of the neuronal network. Ongoing research will investigate whether
these dynamic blueprints are related to input–output relationships, and whether changes
in the network induced by strong stimulation also alter these dynamic blueprints.
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Experiments on evoked behavior focused on the eHects of spatio-temporal stimula-
tion, and con6rmed previous studies (e.g. [11]), suggesting that naOPve preparations are
relatively unstructured, with high connectivity and ‘weak’ synapses. Spatial selectivity
of evoked responses supports the choice of using specialized regions for input and out-
put. As for closed-loop experiments, a further step will be to experiment stimulation
protocols that are driven by robot performance and are capable of inducing changes in
selected synapses, thus leading to speci6c behaviors.
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