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Parietal Reach Region (PRR)

D. Yan Essen, H. Drury (1998) D. Yan Essen, H. Drury (1998}

Monkey Human



Potential Advantages of
PRR Neurons for
Prosthetic Systems

PRR neurons encode:

* The plan to reach to a target
» The plan for the upcoming reach
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PRR neurons may: s e S e

» The plan with respect to the eyes

* not encode muscle forces

* reorganize little following injury IAAM._ ‘M MM

» adapt quickly to calibrate the system 1 second Cue/Pl\an\ Reach

Batista, Buneo, Snyder, Andersen (1999) Science 285.



Recording from Many Neurons:
Chronic Electrode Array
In PRR

Courtesy Bionic
Tech.



Arm Control Systems
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Key Challenges and Research Agenda

1) What control signals can be decoded?
e arm reach direction
» “logical” variables corresponding to intent
 Target/no target, go, scrub, replan, path sequence, viapoint ......

2) Best decode method: accuracy, robustness, SNR?
3) How many neural signals needed?

4) Construct a dynamic model of human intent?

5) Adaptive Algorithms?

6) System latency?

/) Safe arm control algorithms? (incorporating external sensors?)



Estimating the Planned Reach Direction

PRR receptive fields span workspace.

Complete set of reaches: P(n|x)
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For any given reach...

... measure spike trains: n

5deg

Calculate probability of all reaches:

P(x|n) P(n) = P(nlx) P(x)

Select most probable: max (P(x|n))

Treatment follows that of: Zhang, Ginzburg, McNaughton, Sejnowski (1998) J.
Neurophysiol. 79, Brown et. al, (1998)




Reconstruction Performance

Reach tuning in 49 PRR
neurons

Neurons recorded one at a time
(Monkey CKY)
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Decoding Logical Signals

Reach
o arget

Direction 1 - Move <:T J
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Target/ No Move
Spike trai Direction n
No Plan

Planning involves a sequence of logical decisions

Decoding logical states and transitions is key to:

« accurate decoding of reach

 purposeful and effective control of prosthetic



Simple Finite State Machine (FSM) model

_ - Clontir_lue Logical planning sequence
Baseline s Q28 can be idealized as a FSM
, oo (this one is crude). Need to:

» Detect transitions

Done = Scrub ?

 Determine current State

Achieved Logical Decoding can be

added to current framework

. . . P(<)P(v
During this period we have P(¢|v) = (f)p(() <)
V
» demonstrated target, go decoding f — . Reach Direction &
 shown how very simple FSM model can » Target/No Target Logic
Condition &

improve decoding

* Move/No Move Condition



A “Go” Signal in the LFP

A Single Trial Data
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“Naive” Classification of State Evolution

(.e., decoding without benefit of FSM model)
(250 msec windows)

..--» Misclassified “Go”
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Prosthetic-System Testbed: Physical Setup
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Prosthetic-System Testbed Architecture

Minimize
Pre-amp / filter Main-amp / filter

estimation err

> : > / > +> 4' 32 12-bit A/ID DSP Spike
Head-stage 32 32 32 Converters sorters

+}1f Spike Path A
32

Pre-amp / filter Main-amp
M | 12-bit AID High-
30 32 32 x | Converter spged
LFP Path iy
PCI BUS
BUS
| 11 4
100 Mbit/s I L
Reward EYte_" TCP/IP Graphics Graphics
Client pgﬁlelr?tn Spectral Analysis Client PC |« Client Client
Trial Arm- Spectral Analysis Client PC |« I I
Evgnts position > ® Spectral Spike-sort
y Client Client : ] _ Anal. Client
i
! Eye/Arm i
< 4 Trial Spectral Analysis Client PC |«
100 Target Status
‘A ; Client/Server Client n
3\< Q Mbit/s v
_’ TCP/I
Display P Behavioral Control Decode Decode
PC PC Client v Client
A A Hybrid Controller
* X, Y 100 Mbit/s _
rCPIP Reach Estimate Server
Neural Data Server

(courtesy K. Shenoy) PC



Future I ntegrated/I mplantable Systems

(M. Mojaridi et. a, JPL)
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Movable Tetrode Arrays
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Generalization

Future implantable human sensors will
e measure many signalsin paralle
» have wireless telemetry
 have low-power on-board processing circuitry

* be able to continually adjust their geometry (via
miniature on-board actuators) to optimize signal quality

CNSE/Lee have expertisein MEM S, wireless, low-power
VLS, sensor processign



