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Parietal  Reach  Region  (PRR)
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Potential  Advantages  of  
PRR  Neurons for 
Prosthetic  Systems
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PRR neurons encode: 

• The plan to reach to a target

• The plan for the upcoming reach

• The plan with respect to the eyes

Reach
Plan1 second

H E

Batista, Buneo, Snyder, Andersen (1999) Science 285.

PRR neurons may: 

• not encode muscle forces

• reorganize little following injury

• adapt quickly to calibrate the system



Courtesy Bionic 
Tech.

Motor

Visual

Courtesy Bionic Tech.

Recording from Many Neurons:
Chronic Electrode Array 
in PRR



Arm Control Systems

Artificial Sensors

Key variables
• intended reach location
• intentional and cognitive mind state 
•external sensor variables

target



Key Challenges and Research Agenda

1) What control signals can be decoded?
• arm reach direction
• “logical” variables corresponding to intent

• Target/no target, go, scrub, replan, path sequence, via point ……

2) Best decode method: accuracy, robustness, SNR?

3) How many neural signals needed?

4) Construct a dynamic model of human intent?

5) Adaptive Algorithms?

6) System latency?

7) Safe arm control algorithms? (incorporating external sensors?)



Estimating  the  Planned  Reach  Direction
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Neuron 1
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Time

PRR receptive fields span workspace. For any given reach... Calculate probability of all reaches:

Complete set of reaches: P(n|x) ... measure spike trains: n P(x|n) P(n)  =  P(n|x) P(x)

Select most probable: max (P(x|n))

Treatment follows that of:  Zhang, Ginzburg, McNaughton, Sejnowski (1998) J.
Neurophysiol. 79, Brown et. al, (1998)
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Reach tuning in 49 PRR 
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Decoding Logical Signals

No Move
Spike train

Plan

No Plan
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…
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Reach 
Target

StopScrub ?

Planning involves a sequence of logical decisions

Decoding  logical states and transitions is key to:

• accurate decoding of reach

• purposeful and effective control of prosthetic



Simple Finite State Machine  (FSM) model
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Logical planning sequence 
can be idealized as a FSM 
(this one is crude).  Need to:

• Detect transitions

• Determine current State
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Condition &

• Move/No Move Condition

• ...

Logical Decoding can be 
added to current framework 

During this period we have
• demonstrated target, go decoding

• shown how very simple FSM model can 
improve decoding
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A “Go” Signal in the LFP

12 
electrodes
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Single Trial Data

Power in 15-25 Hz band
• averaged over channels

• average over trials
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The “go” signal

Data from array implant
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Prosthetic-System Testbed:  Physical  Setup
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Prosthetic-System Testbed Architecture
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Future Integrated/Implantable Systems
(M. Mojaridi et. al, JPL)
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neuro-prosthetic system diagram electronic electrode interface
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Diagram of neuro prosthetic data acquisition system 



Movable Tetrode Arrays



Generalization
Future implantable human sensors will

• measure many signals in parallel

• have wireless telemetry

• have low-power on-board processing circuitry

• be able to continually adjust their geometry (via 
miniature on-board actuators) to optimize signal quality

CNSE/Lee have expertise in MEMS, wireless, low-power 
VLSI, sensor processign 


