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1 Introduction

Recent successes in the study of brain-machine interfaces (Lebedev and Nicolelis, 2006;
Hochberg et al., 2006) raise an obvious question: What are the theoretical barriers to the successful
use of neural prosthetics in general, and how well can such devices be expected to perform? Neu-
ral prosthetics fall into two classes (Nicolelis, 2001). Neural stimulation devices such as cochlear
implants and deep-brain stimulators for Parkinson’s patients consist of an electrode (or multiple
electrodes) that electrically stimulates a population of neurons. On the other hand, neural control
devices (e.g., prosthetic limbs and EEG-computer interfaces) rely on summation potentials recorded
from multiple neurons to control a mechanical device. How well these prostheses can perform de-
pends on, in the first case, how effectively information from the stimulation device can be conveyed
through the population and in the second, how accurately the interface can extract information
from a population. We investigate the accuracy of neural prosthetics using an information theoretic
approach.

In this framework, neurons (or populations of neurons) are viewed as a communication channel.
A stimulus signal S is encoded into a signalX , which then serves as the input to a system for further
processing. This system could be a single neuron, a population of neurons, or several layers of
neural systems. Regardless, we implicitly assume that this system introduces noise, making it
difficult to decode the stimulus. The system produces a spike train output, denoted by Y . Although
a stimulus estimate may not explicitly be produced in an actual neural system, the ability of the
system to transmit information about the stimulus is characterized by how well the stimulus could
be estimated from Y . Therefore, we conceptually place an optimal decoder immediately after the
channel that produces a stimulus estimate �S to the best of its ability. The quantity that determines
this estimate’s quality is the capacity of the channel, defined as the maximum mutual information
between X and Y over all inputs (defined by their probability distribution) that belong to some
constraint class � :

C � lim
T�∞

max
p�X�:p�X���

1
T
I�X ;Y � �

Here, T represents the time over which the stimulus is sent and decoded.
Spike trains are modeled as point processes (Johnson, 1996; Snyder, 1975). Mathematically,

the point process channel produces a sequence of events that encodes an input signal Xt accord-
ing to an intensity μ�t;�t�, which represents how the instantaneous event rate depends on the
input Xt and on the process’s history�t . Kabanov (1978) derived the capacity of the single point
process channel when the minimal and maximal instantaneous rates are constrained according to
λmin � μ�t;�t�� λmax. In most cases of interest in neuroscience, the minimum-rate constraint is
zero and the resulting capacity formula is

C�1� �
λmax
e ln2

bits/s�

where C�1� denotes the single-neuron capacity. Kabanov’s derivation showed that the capacity of
any point process satisfying the intensity constraint cannot exceed the Poisson process’s capacity.
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The significance of capacity for stimulus estimation becomes evident when viewed in the con-
text of the rate-distortion function. This quantity measures how accurately a source must be en-
coded to achieve any specified degree of error (Berger, 1971). The quality of �S is characterized by
the distortion (error) d�S� �S� between the signal and its estimate. The average distortionD equals the
expected value of the distortion with respect to the joint distribution of the signal and its estimate:

D� �

�
d�S� �S��. The rate-distortion function��D� is defined to be the minimal mutual information

between the signal and its estimate when the average distortion is no greater than D. To character-
ize how well a specific source S (as described by its probability distribution) can be encoded, the
minimization is calculated with respect to all conditional distributions p��S�S�, regardless of how the
signal is encoded, corrupted, and processed.

��D� � lim
T�∞

min
p��S�S�:��d�S�

�S���D

1
T
I�S; �S�

The rate-distortion function for any error measure is strictly convex and equals zero at some maxi-
mum distortion Dmax (Berger, 1971). Zero rate means nothing about the signal is encoded and the
estimation system simply makes an intelligent guess.

Although rate has units of bits/s, rate-distortion functions can be meaningfully calculated for
all cases, even those where no physical bits play a role. Shannon’s rate-distortion theory states
that if a communication channel or processing system having capacity C intervenes between an
encoder and decoder, the point at which capacity equals the rate-distortion function defines the
minimum achievable distortion Dmin: C � ��Dmin�. Since this result holds for any source and
any distortion function, capacity dictates the ultimate limit to which a communication system can
convey information about any source signal regardless of how error is quantified. Because all rate-
distortion curves are strictly decreasing and convex, increasing capacity alwaysmeans reducing the
smallest achievable average distortion. For example, when the stimulus is a bandlimited Gaussian
random process having bandwidthW , we find that the minimal mean-squared-error distortion for a
single neuron decreases exponentially in its maximal spike rate.

Dmin � Dmax exp

�
�
λmax
e �W

�

Consequently, computing the capacity of different neural population models provides an objec-
tive comparison of how effectively different structures can convey information. In work under
review (Johnson and Goodman, 2007), we derived the capacity for several population structures
wherein each neuron’s output is modeled as a Poisson process. We extend and interpret that work
here to characterize how well neural prostheses can perform.

2 Results

As a baseline, consider the population structure shown in Figure 1a. There, each neuron in a
population of size M is independently innervated. Simple manipulations using the properties of
mutual information show that the total capacity of this population equals the sum of the individual
capacities: C�M� � ∑mC

�1�
m .

2.1 The Neural Stimulation Channel

Our population model for an electrical stimulation prosthetic is shown in Figure 1b. Here, a sin-
gle input drives M individual neurons, modeling how a single electrical stimulation affects several
neighboring neurons. Somewhat surprisingly, the capacity of this channel is identical to the in-
dependent input case. Independent Poisson processes driven by a common input act like a single
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Figure 1: Several configurations of parallel channels for vector and common input cases are shown.

Poisson process having a rate equal to the sum of the individual rates. Since a Poisson process’s ca-
pacity is proportional to the maximal rate, the common-input capacity is proportional to population
size, just as in the separate-input case.
2.2 The Neural Control Channel

Most neurally controlled prosthetics use aggregated recordings of simultaneous activity of many
neurons. To model this situation we sum the outputs of the baseline population to produce
a single output, Y � ∑mYm, as shown in Figure 1c. Summing the outputs models unsorted
extracellular recordings made with a single-electrode and EEG recordings that represent the
superposition of many identical neural signals. According to the Data Processing Inequal-
ity (Cover and Thomas, 2006), aggregating the outputs can only decrease the mutual information
because the identity of which neuron produced a given output spike is lost. However, this result
does not provide any detail on how much capacity is reduced.

As Figure 2 shows, the resulting capacity, expressed as a multiple of the single-channel capac-
ity, never exceeds two. Consequently, not separating an aggregate recording into its constituents
greatly reduces the information that can be gleaned, with the aggregate information flow being less
than what two single-neuron channels can sustain. Since many recording protocols use more than
one electrode, we also studied the extent to which using two electrodes could enhance capacity.
Here, each electrode sums the activities from a subpopulation that overlaps the other, mimicking
the typical situation with a gross electrode recording. We found that while aggregating from two
subpopulations substantially increases capacity from the single electrode case, it is still far less than
the unaggregated, single-input capacity.

3 Conclusions

The two populations we analyzed a neural population having a single, common input and an ag-
gregated recording from any population model two common neural prosthetic situations. The first
describes electrical stimulation situations, such as cochlear implants, in which each electrode ex-
cites multiple neurons. The second models the use of gross recordings, such as EEGs and unsorted
extracellular recordings, to control devices. Our capacity results suggest that electrical stimulation
faces no fundamental barriers to creating viable replacement sensory or motor inputs. The only
question that remains is finding the most effective stimulation signal. On the other hand, using
gross recordings for controlling motion must somehow surmount the limitations that our capacity
results indicate must be present. The sharp reduction of channel capacity means that the best-case
distortion must increase, exponentially in the Gaussian case described previously, and cannot be
better than if two neurons’ signals alone were used to drive the prosthesis. This capacity barrier
can be lifted in three ways. First, using more electrodes does help, but these must be processed
properly to extract the available information. Secondly, if the original constituents could be com-
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Figure 2: The capacity of the aggregated channel first decreases, then grows slowly with the population size
M. The line shows capacity in the case when the entire population is summed together. The shaded area
shows the range of capacities that using two summations afforded. The variation depends on the degree of
overlap between the equal-sized subpopulations that contributed to the summations. In the common-input
scenario that models the electrical stimulation prosthesis, capacity is proportional toM.

pletely untangled from the aggregate using spike sorting techniques, no capacity decrease would
occur. Finally, recent work has shown that feedback can increase capacity, though the results do
not indicate by how much (Venkataramanan and Pradhan, 2005). Thus, visual feedback may play a
crucial role in enabling artificial limb motion guided by neural control.
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