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Tässä työssä käsitellään EEG-pohjaisia aivokäyttöliittymiä. Erityisesti keskitytään

Adaptive Brain Interface (ABI) -nimiseen aivokäyttöliittymään, jota käytetään työn ko-

keellisessa osassa. Kokeissa käytettiin uutta ABI-laitteistoa, joka saatiin Teknillisen

korkeakoulun Laskennallisen tekniikan laboratorioon marraskuussa 2001.

Aivokäyttöliittymissä on kaksi päälähestymistapaa: ajatustehtäviä käyttävä EEG hah-

montunnistus ja EEG:n itsesäätelyyn perustuvaan väline-ehdollistuminen. EEG:n mit-

taaminen ja aivokäyttöliittymän komponentit esitellään. Erityisesti tarkastellaan käyt-

täjälle annettavaa palautetta ja harjoittelua. Aivokäyttöliittymien suorituskyvyn mit-

taaminen esitellään monipuolisesti. Työssä esitellään tarkemmin ABI:a ja viittä muuta

aivokäyttöliittymää, joita myös verrataan useista eri näkökulmista. Aivokäyttöliit-

tymien suorituskyvyn vertaaminen osoittautui vaikeaksi tulosten erilaisista raportoin-

timenetelmistä johtuen.

Työssä raportoidaan tulokset kokeista, joissa kolme koehenkilöä harjoitteli ABI:n käyt-

töä noin tunnin päivässä viitenä peräkkäisenä päivänä käyttäen kolmea ajatustehtävää.

Jokaisesta mittauksesta esitetään tulokset yhteisesiintymämatriisina ja kanavakapa-

siteettina. Lisäksi kunkin koehenkilön tuloksista esitetään kuvaajat, joissa voi nähdä

ajatustehtävien oikeiden ja väärien luokitusten osuuksien kehittymisen 5 päivän aikana.

Tuloksissa oli suuria yksilöllisiä eroja. Suorituskyky vaihteli paljon mittauksesta toiseen

eikä varsinaisesta kehitystä tapahtunut viiden päivän aikana kenelläkään koehenkilöistä.

Tulokset olivat huonompia kuin aikaisemmalla ABI-laitteistolla saadut. Mitään yksit-

täistä syytä tulosten heikkenemiselle ei löydetty.
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This work deals with EEG-based brain computer interfaces, concentrating on the Adap-

tive Brain Interface (ABI), which is used in the experimental part of this work. The

new ABI equipment, obtained in the Laboratory of Computational Engineering of the

Helsinki University of Technology in November 2001, was used in the experiments.

Brain computer interfaces (BCIs) are divided into two main approaches: the EEG pattern

recognition approach based on different mental tasks and the operant conditioning ap-

proach based on the self-regulation of the EEG response. The measurement of the EEG

and components of a BCI are presented. Feedback and training the user receives are es-

pecially studied. The measurement of the BCI performance is reviewed extensively. The

ABI and five other BCIs are examined and then compared from different viewpoints.

The performance comparison of the different BCI systems proved to be difficult because

the different methods of reporting results.

The results of the experiments in which three subjects trained to use the ABI during

five consecutive days about an hour per day using three mental tasks are reported. The

results of every recording are presented as confusion matrices and channel capacities. In

addition, graphs showing the development of the correct and false classifications for all

mental tasks are displayed.

There were substantial individual differences in the results. The performance varied a

lot between the recordings and no actual development occurred during the five days with

any of the subjects. The results were worse than those obtained with the older ABI

equipment. No single reason for the weakening of the results was found.
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Chapter 1

Introduction

There are two aims in this work. The other is to provide a comprehensive review and

comparison of the most important Brain Computer Interface (BCI) systems developed to

this day. The other is to test the performance of the new Adaptive Brain Interface (ABI)

device obtained in the laboratory of the Computational Engineering in November 2001.

Brain-Computer Interface (BCI) is a communication system, which enables the user to

control special computer applications by using only his or her thoughts. Different research

groups have examined and used different methods to achieve this. Almost all of them are

based on electroencaphalography (EEG) recorded from the scalp. The EEG is measured

and sampled while the user imagines different things (for example, moving the left or

the right hand). Depending on the BCI, particular preprocessing and feature extraction

methods are applied to the EEG sample of certain length. It is then possible to detect

the task-specific EEG signals or patterns from the EEG samples with a certain level of

accuracy.

First signs of BCI research can be dated back to 1960’s, but it was in 1990’s when the

BCI research really got started. Faster computers and better EEG devices offered new

possibilities. To date there have been over 20 BCI research groups. They have taken

different approaches to the subject, some more successful than others. Less than half of

the BCI research groups have build an online BCI, which can give feedback to the subject.

None of the BCIs have yet become commercial and only a couple have been tested outside

laboratory environments.

Despite the technological developments numerous problems still exists in building effi-

cient BCIs. The biggest challenges are related to accuracy, speed and usability. Other
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interfaces are still much more efficient. If a disabled person can move eyes or even one

muscle in a controlled way, the interfaces based on eye-gaze or EMG switch technol-

ogy are more efficient than any of the BCIs today. However, BCI could provide a new

communication tool for people suffering from so called locked-in syndrome. They are

completely paralyzed physically and unable to speak, but cognitively intact and alert.

Locked-in syndrome can be caused, for example, by amyotrophic lateral sclerosis (ALS),

high-level spinal cord injure or brain stem stroke. In its severest form people are not able

to move any muscle in their body.

Adaptive Brain Interface (ABI) is a BCI which has been developed under the project

“Adaptive Brain Interfaces” financed by European Commission. The project started in

1998 and ended in 2001. The ABI is based on the pattern recognition approach. In this

approach the user concentrates on different mental tasks, for example, moving the left

hand or visually rotating a cube. The classifier is trained with EEG data containing the

different mental tasks. The trained classifier can then classify EEG online and provide

feedback for the user.

In this work basics of Brain-Computer Interface (BCI) are explained. Six different BCI

systems (including ABI) are reviewed and then compared with each other. One week

training with three subjects was carried out with a new ABI device in the Laboratory of

Computational Engineering. Test results are presented and discussed.

In the second chapter, the basics of brain computer interface are described. Functional

areas of the brain, EEG and its measurement are described. BCIs are divided into two

main approaches called pattern recognition and operant conditioning approaches. BCI

components are described briefly. Feedback, training and BCI performance are described

in more detail. Finally, several BCI categories are introduced.

The third chapter provides the review and comparison of the six BCI systems, which

are BCIs developed at the Alberta and the Oxford universities, a BCI developed at the

Wadsworth Center, a Thought Translation Device and a Graz BCI and the ABI. The ABI

is covered in more detail than other five.

The fourth chapter introduces the new ABI system. It presents the experimental methods

and the results from five days training with three subjects. It also describes subject reports

of mental task strategies and feedback experiences. Finally, it provides discussion on the

results, mental tasks and feedback. The fifth chapter provides the conclusions of this

work.
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Chapter 2

Brain-Computer Interfaces (BCIs)

In the first international meeting devoted to BCI research held in June 1999 at the Rens-

selaerville Institute near Albany, New York, it was defined as follows: “A brain-computer

interface is a communication system that does not depend on the brains normal output

pathways of peripheral nerves and muscles”[66].

According to this definition, a BCI should be able to detect the user’s wishes and com-

mands while the user remains silent and immobilized. In order to do this, the brain activity

must be monitored. Today there exists various techniques to do this. These include, for

example, functional Magnetic Resonance Imaging (fMRI) [26], magnetoencephalography

(MEG) [23], Positron Emission Tomography (PET), Single Photon Emission Computer

Tomography (SPECT) [18], optical brain imaging, single neuron recording (with micro-

electrodes) and electroencephalography (EEG) [43].

From these methods, MEG, EEG and single neuron recording give continuous and instan-

taneous recordings of the brain activity (time resolution about 1 ms), which is required

for real-time BCI. However, MEG is not practical to be used with BCI. The MEG mea-

surements are made using a large device inside a magnetic shielded room. The single

neuron recording, on the other hand, requires that the electrodes are inserted inside the

skull. Therefore, almost all of BCIs reported to date have been based on EEG.

How can BCI then detect the user’s commands from the EEG? There are two main ap-

proaches in achieving this. In the first approach the subject concentrates on a few mental

tasks (for example, imagining the left hand movement or the cube rotation). Concentra-

tion on these mental tasks produce different EEG patterns. The BCI (or the classifier in

particular) can then be trained to classify these patterns. The ABI and several other BCIs
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Figure 2.1: A BCI based on the classification of two mental tasks. The user is
thinking task number 2 and the BCI classifies it correctly and provides feedback
in the form of cursor movement.

(see e.g. [16, 58, 48, 32]) are based on this kind of pattern recognition approach.

In the second approach the user has to learn to self-regulate his or her EEG response, for

example change the �-rhythm amplitude [65]. Unlike in the pattern recognition approach,

the BCI itself is not trained but it looks for particular changes (for example higher am-

plitude of a certain frequency) in the EEG signal. This requires usually a long training

period, because all the training load is on the user. This kind of approach can be called an

operant conditioning approach.

According to Allison [1] there are at least five components necessary for effective BCI

system: 1) Knowing what to look for; 2) Knowing the relevant physiological signals; 3)

Gathering the data from the user; 4) Extracting useful information from the raw signal; 5)

Interface design.

Figure 2.1 shows a schematic picture of a BCI, which is based on pattern recognition

approach. The BCI can classify two mental tasks and provides feedback in the form of

cursor control. It has also “reject” option, if the probability of the classification does not

exceed some predefined level.

The purpose of this chapter is to explain the concept of the BCI. First, the other part of the

interface, the human brain, is examined. Then, the basic principles of electroencephalog-

raphy (EEG) are explained. BCIs are divided into two above mentioned approaches.

Then, the EEG measurement and the components of BCI system are defined. Feedback,

human training issues and BCI performance measurement are explained after that. Fi-

nally, in the last section, BCIs are classified to different categories.
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2.1 The human brain

The average human brain weights around 1400 grams. The brain can be divided into

four structures: cerebral cortex, cerebellum, brain stem, hypothalamus and thamalus. The

most relevant of them concerning BCIs is the cerebral cortex. The cerebral cortex can be

divided into two hemispheres. The hemispheres are connected with each other via corpus

callosum. Each hemisphere can be divided into four lobes. They are called frontal, pari-

etal, occipitaland temporallobes. Cerebral cortex is responsible for many “higher order”

functions like problem solving, language comprehension and processing of complex vi-

sual information [12]. The cerebral cortex can be divided into several areas, which are

responsible of different functions. These areas can be seen in Figure 2.2. The functions

are described in Table 2.1. This kind of knowledge have been used when with BCIs based

on the pattern recognition approach. The mental tasks are chosen in such a way that they

activate different parts of the cerebral cortex.

Figure 2.2: Functional areas of the brain [12]

Cortical Area Function
Auditory Association Area Complex processing of auditory information
Auditory Cortex Detection of sound quality (loudness, tone)
Speech Center (Broca’s area) Speech production and articulation
Prefrontal Cortex Problem solving, emotion, complex thought
Motor Association Cortex Coordination of complex movement
Primary Motor Cortex Initiation of voluntary movement
Primary Somatosensory Cortex Receives tactile information from the body
Sensory Association Area Processing of multisensory information
Visual Association Area Complex processing of visual information
Wernicke’s Area Language comprehension

Table 2.1: Cortical areas of the brain and their function [12]
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2.2 Electroencephalography (EEG)

Electroencephalography (EEG) is a method used in measuring the electrical activity of the

brain. This activity is generated by billions of nerve cells, called neurons. Each neuron

is connected to thousands of other neurons. Some of the connections are excitatory while

others are inhibitory. The signals from other neurons sum up in the receiving neuron.

When this sum exceeds a certain potential level called a threshold, the neuron fires nerve

impulse. The electrical activity of a single neuron cannot be measured with scalp EEG.

However, EEG can measure the combined electrical activity of millions of neurons [25].

The temporal resolution of EEG is very good: millisecond or even better. However, the

spatial resolution is poor. It depends on the number of electrodes, but the maximum

resolution is in centimeter range whereas, for example, in MEG, PET or fMRI it is in

millimeter range [21]. The ongoing EEG is characterized by amplitude and frequency.

The amplitudes of the EEG signals typically vary between 10 and 100 �V (in adults more

commonly between 10 and 50 �V) [47].

The electrical activity goes on continuously in every living human’s brain. We may sleep

one third of our life times, but the brain never rests. Even when one is unconscious the

brain remains active. Much of the time, the brain waves are irregular and no general

pattern can be observed [62].

Allison [1] lists four prerequisites, which must be met for the activity of any network of

neurons to be visible in EEG signal: 1) The neurons must generate most of their electrical

signals along a specific axis oriented perpendicular to the scalp; 2) The neuronal dendrites

must be aligned in parallel so that their field potentials summate to create a signal which

is detectable at a distance; 3) The neurons should fire in near synchrony; 4) The electrical

activity produced by each neuron needs to have the same electrical sign.

All this means that an overwhelming majority of neuronal communication is practically

invisible in EEG. However, there exists various properties in EEG, which can be used as

a basis for a BCI:

1. Rhythmic brain activity

2. Event-related potentials (ERPs)

3. Event-related desynchronization (ERD) and event-related synchronization (ERS).
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Band Frequency [Hz]
Delta (�) < 3.5
Theta (�) 4-7.5
Alpha (�) 8-13
Beta (�) >13

Table 2.2: Common EEG frequency ranges [47]

2.2.1 Rhythmic brain activity

Depending on the level of consciousness, normal people’s brain waves show different

rhythmic activity. For instance, the different sleep stages can be seen in EEG. Different

rhythmic waves also occur during the waking state [62]. These rhythms are affected by

different actions and thoughts, for example the planning of a movement can block or

attenuate a particular rhythm. The fact that mere thoughts affect the brain rhythms can be

used as the basis for the BCI.

The EEG can be divided into several frequency ranges as displayed in Table 2.2. They are

named after Greek letters (�, �, �, �, ). These ranges set the limits in which the different

brain rhythms(named according to same letter as the frequency range) can be observed.

The order of the letters is not logical and can be understood only in the historical view

[47].

Figure 2.3 illustrates examples of the brain rhythms. These rhythms (alpha, beta, delta

and theta) are explained later in this section according to Niedermayer [47]. Note that

the list in Table 2.2 is not the definite list of the brain rhythms. Many other rhythms have

been proposed in EEG literature. One of them is the mu rhythm. It is also included in this

section, because it has significance in BCI research.

Delta rhythm. EEG waves below 3.5 Hz (usually 0.1-3.5 Hz) belong to the delta waves.

Infants (around the age of 2 months) show irregular delta activity of 2-3.5 Hz (amplitudes

50-100 �V) in the waking state. In adults delta waves (frequencies below 3.5 Hz) are only

seen in deep sleep and are therefore not useful in BCIs.

Theta rhythm. Theta waves are between 4 and 7.5 Hz. Theta rhythm plays an important

role in infancy and childhood. In normal adults theta waves are seen mostly in states of
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drowsiness and sleep. During waking hours the EEG contains only a small amount of

theta activity and no organized theta rhythm. Niedermayer lists some studies in which

the theta activity of 6-7 Hz over frontal midline region had been correlated with mental

activity such as problem solving. However, he did not find it in his own studies.

Alpha rhythm. The International Federation of Societies for Electroencephalography

and Clinical Neurophysiology proposed the following definition of alpha rhythm: Rhythm

at 8-13 Hz occurring during wakefulness over the posterior regions of the head, generally

with higher voltage over the occipital areas. Amplitude is variable but is mostly below

50 �V in adults. Best seen with eyes closed and under conditions of physical relaxation

and relative mental inactivity. Blocked or attenuated by attention, especially visual, and

mental effort.’

The posterior basic rhythm increases in frequency during the childhood and reaches the

frequency 8 Hz (the limit of the alpha rhythm) at the age of 3 years. At the age of 10

years the frequency reaches a mean of about 10 Hz, which is typical mean adult alpha

frequency. The frequency tends to decline in elderly individuals and in dementia.

The alpha rhythm is temporarily blocked, i.e, its amplitude decreased, by eye opening

(see an example in Figure 2.3), other afferent stimuli or mental activities. The degree of

reactivity varies. Usually, eye opening is the most effective manipulation.

Mu rhythm. Mu rhythm frequency is around 10 Hz and amplitude mostly below 50

�V. Although the frequency and the amplitude of the mu rhythm are similar to the alpha

rhythm, the mu rhythm is topographically and physiologically different from the alpha

rhythm. Mu stands for motor and the mu rhythm is strongly related to the functions

of the motor cortex, but also to the adjacent somatosensory cortex. The mu rhythm is

blocked by movements or light tactile stimuli. The fact that the thoughts about performing

movements and readiness to move can also block the mu rhythm, have made it important

in BCI research.

Beta rhythms. Any rhythmical activity in the frequency band of 13-30 Hz may be re-

garded as a beta rhythm. Beta rhythm amplitudes are seldom larger than 30 �V. Beta

rhythms can mainly be found over the frontal and central region. A central beta rhythm is

related to the mu rhythm. It can be blocked by motor activity and tactile stimulation.
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Figure 2.3: (a) Examples of alpha, beta, theta and delta rhythms. (b) Effect of
eye opening in the alpha rhythm [62].

BCIs based on the rhythmic activity

Many BCI researches have considered about using the imagination of hand or foot move-

ments as the basis of the BCI. Therefore, the mu rhythm plays an essential role in them.

Pineda et al. [57] studied the use of the mu rhythm in BCI and concluded that “mu rhythm

is not only modulated by the expression of self-generated movement but also by the ob-

servation and imagination of movement.” Wolpaw et al. [65] have used the self-regulation

of the mu rhythm or central beta rhythm amplitude in their BCI (see also section 3.1.3).

To my knowledge, no other rhythmic activity have been used in BCIs. However, in EEG

biofeedback, self-regulation of, for example, alpha or beta rhythms, has been used exten-

sively [24].

2.2.2 Event-related potentials (ERPs)

Event-related potentials is a common title for the potential changes in the EEG that occur

in response to a particular “event” or a stimulus. These changes are so small that in order
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to reveal them, EEG samples have to be averaged over many repetitions. This removes

the “random” fluctuations of the EEG, which are not stimulus-locked.

Event-related potentials can be divided into exogenous and endogenous. Exogenous ERPs

occur up to about 100 ms after the stimulus onset. They depend on the properties of phys-

ical stimulus (intensity, loudness etc.). The potentials from 100 ms onward are called

endogenous. They depend largely on psychological and behavioral processes related to

the event. Figure 2.4 A demonstrates examples of event-related potentials to visual stim-

ulus and Figure 2.4 B to an auditory stimulus [42].

The most commonly studied ERP is P300. This positive deflection in the EEG occurs

about 300 ms after the stimulus onset. P300 is commonly recorded during an “odd-ball

paradigm”. In it the subject has been told to respond to a rare stimulus, which occurs

randomly and infrequently among the other, frequent stimuli [42].

Evoked potentials(EPs) is a subset of the ERPs, that rise in response to a certain physical

(visual, auditory, somatosensory etc.) stimulus. A typical evoked potential is the Visual

evoked potential(VEP) that reflects the output features of the entire visual pathway. The

EEG over the visual cortex varies at the same frequency as the stimulating light [44].

BCIs based on ERPs

The DC-shifts presented in Figures 2.4 A and 2.4 B are also called slow cortical potentials

(SCPs) by Birbaumer et al. [7]. Birbaumer et al. also describe a BCI called Thought

Translation Device (TTD), which is based on the self-regulation of the SCPs. See section

3.1.4 for more information about the TTD.

The Air Force Research Laboratory have implemented and evaluated two BCIs based on

the VEP detection [40]. In the other BCI the user is trained to control his or her VEP

amplitude while watching a visual stimulus, which is modulated at a fixed frequency. In

the other BCI the user can select “virtual” buttons. Two virtual buttons modulated at

different frequencies are displayed at the same time. The user selects the button simply

by looking at it.

A couple of BCIs have been based on the detection of the P300 [6, 17]. Donchin et al. [17]

describe a BCI in which the user is presented with a matrix of 6 by 6 cells, each containing

one letter of the alphabet. The user concentrates on the cell containing the letter which he

or she wants to select, while each row or column is intensified in a random sequence. This
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Figure 2.4: Averaged event-related potentials to visual (A) and auditory (B) stim-
uli [42].
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produces an oddball sequence where the row or the column containing the attended cell

are “rare” items and elicit a P300. In the online experiments, four subjects could select

the letter of their choice in 56 % of the trials, when the maximum communication speed

was 4.8 characters/min.

BCIs based on detection of readiness potentials(RP’s) have also been proposed by Bar-

reto et al. [5] and Pineda et al. [57]. RP is an ERP which is time-locked to the performance

or the imagination of the movement. It is most prevalent over cortical motor areas [57].

It should be noted, that the BCIs proposed by Middendorf [40] and Donchin et al. [17]

need that the user is able to maintain attention on the “virtual” button or the cell containing

the letter. It is unknown if the locked-in patient can do this long enough for these BCIs to

work with them.

2.2.3 Event-related desynchronization (ERD) and event-related syn-

chronization (ERS)

Event-related desynchronization (ERD) and event-related synchronization (ERS) can be

defined as follows [51]:

1. Event-related desynchronization (ERD) is an amplitude attenuationof a certain

EEG rhythm.

2. Event-related synchronization (ERS) is an amplitude enhancementof a certain EEG

rhythm.

In order to measure an ERD or an ERS, the power of a certain frequency band (for exam-

ple, 8-12 Hz) is calculated before and after certain “event” over a number of EEG trials.

The event can be externally-paced (such as light stimulus) or internally paced (such as

voluntary finger movement). The power (averaged over a number of trials) is then mea-

sured in percentage relative to the power of the reference interval. The reference interval

is defined, for example, as 1 second interval between 4.5 and 3.5 seconds before the event

(i.e. during the rest). The ERS is the power increase (in percents) and the ERD is the

power decrease relative to the reference interval (which is defined as 100 %). To keep the

power at the reference interval at the resting level, the interval between two consecutive

events should be random and not shorter than a few seconds [45].
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Figure 2.5: ERD time courses computed for three different frequency bands (10-
12 Hz, 14-18 Hz, and 36-40 Hz) from EEG trials recorded from electrode position
C3 during right index finger lifting [56].

ERD and ERS can be presented in time and space. Figure 2.5 presents power time courses

for three different frequency ranges (10-12 Hz, 14-18 Hz and 36-40 Hz). EEG was

recorded over the electrode position C3 during the right index lifting. Vertical line at

t=0 presents the movement onset. Figure 2.6 displays ERD maps for the left and the right

motor imagery obtained from a single subject. Using single trial-EEG data, distribution

of the alpha band (9-13 Hz) ERD was calculated. The maps are shown at t=625 ms after

the representation of the cue.

BCI based on ERD and ERS

Pfurtscheller and Aranibar first quantified ERD in 1977. Since then Pfurtscheller devel-

oped a BCI called Graz BCI in 1990s. The Graz BCI is based on detecting ERD and ERS

of the different � and � rhythm bands during the imagined left and right hand movements

(see, for example, [55]). The operating of this BCI was performed in series of trials last-

ing 8 seconds each. The interval between the trials was randomized between 0.5 to 2.5 s

(see section 3.1.5 for information about the trial and the newest developments of the Graz

BCI).
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Figure 2.6: ERD maps for a single subject for the cortical surface of a realistic
head model. The distribution of the alpha band (9-13 Hz) ERD was calculated
for left and right motor imagery [55].

2.3 Two different BCI approaches

What are the thoughts the user thinks in order to control a BCI? An ideal BCI could detect

the user’s wishes and commands directly. However, this is not possible with today’s

technology. Therefore, BCI researches have used the knowledge they have had of the

human brain and the EEG in order to design a BCI. There are basically two different

approaches that have been used. The first one called a pattern recognition approachis

based on cognitive mental tasks. The second one called an operant conditioning approach

is based on the self-regulation of the EEG response.
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2.3.1 Pattern recognition approach based on mental tasks

As discussed in the section 2.1 that different cortical areas have different functions. A few

BCIs including the ABI are based on different mental tasks. These tasks should activate

different cortical areas and produce different EEG rhythms. This approach can be called

the pattern recognition approach. The BCIs based on the pattern recognition approach

include the ABI [16] (see section 3.2), the Oxford BCI [58] (see the section 3.1.2) and the

Alberta BCI [32] (see the section 3.1.1). Keirn and Anderson were to first to study the

possibility of using classification of different mental tasks as a basis of a BCI [29, 2].

The mental tasks used in BCIs have included motor imagery, visual, arithmetic and base-

line tasks. The principle of choosing the different mental tasks is that they produce easily

detectable and different EEG patterns. Activation should occur close to the cortex so that

it can be detected with scalp electrodes. In order to produce different EEG patterns, men-

tal tasks should activate different parts of the brain. Therefore, the knowledge of cortical

areas and their function (see section 2.1) has been used when choosing the mental tasks.

For example, the imagination of the right hand movement should activate the left motor

cortex and the imagination of the left hand movement the right motor cortex. The vi-

sual tasks should activate the visual association area, where as the arithmetic task should

activate the prefrontal cortex.

It should also be noted that some mental tasks suit better to some people than others.

For example, the kind of mental task in which the subject is instructed to imagine rotating

cube around its axis (used for example in [16, 2, 29]) may be too difficult for some people.

Therefore, the mental tasks used in BCI should be individual.

2.3.2 Operant conditioning approach based on self-regulation of EEG

In the section 2.2 different kinds of brain rhythms and event-related potentials were intro-

duced. A couple of BCI research groups have based their BCIs on the self-regulationof

one of these rhythms or potentials. This approach can be called the operant conditioning

approach [31]. Birbaumer et al. [7] (see section 3.1.4) have based their BCI called a

Thought Translation Device (TTD) on the self-regulation of the SCPs and Wolpaw et al.

[65] (see the section 3.1.3) have based their BCI on the self-regulation of � or � rhythms.

This kind of approach differs from the pattern recognition approach in several ways. The

users are not aware of any rhythms or event-related potentials happening in their brains
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unless they receive some kind of feedback(see section 2.6).

According to Kubler et al. [31] there are three elements important for successfully learn-

ing to self-regulate the EEG response:

1. Real-time feedback of the specific EEG activity

2. Positive reinforcement of correct behavior

3. Individual shaping schedule in which progressively more demanding tasks are re-

warded

What are the instructions given to the user in order to acquire control of the specific EEG

activity? Wolpaw et al. [65] report that new users are advised that various kinds of motor

imagery are usually helpful in the beginning to acquire control. Wolpaw et al. also report

that users have said that they use imagery less and less as the training continues.

In the TTD no instructions are given. Users are only instructed to be attentive to the feed-

back and to find most successful mental strategy. There are, however, subjective reports

of mental strategies which have been used with TTD. In the study reported in [7] the pa-

tients used very different mental strategies. Patient 001 used imagery of “electrifying the

brain”, patient 003 gave the “order” to the cursor to move to the bottom of the screen and

patient 004 imagined himself carrying something heavy up a hill and letting it loose at the

top. Patient 002 could not report any systematic mental strategy [31].

2.4 Measuring EEG

In the scalp EEG the electrical activity of the brain is recorded non-invasively, i.e. from

the surface of the scalp using normally small metal plate electrodes. While the number

of the electrodes varies from study to study, they are usually arranged according to an

international 10-20 system. Recordings can be made either using reference electrode(s)

or bipolar linkages. The EEG signal can be affected by many artifacts coming from the

equipment or the subject.
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2.4.1 Electrodes

The EEG is recorded with electrodes, which are placed on the scalp. Electrodes are small

plates, which conduct electricity. They provide the electrical contact between the skin and

the EEG recording apparatus by transforming the ionic current on the skin to the electrical

current in the wires. To improve the stability of the signal, the outer layer of the skin called

stratum corneumshould be at least partly removed under the electrode. Electrolyte gel

is applied between the electrode and the skin in order to provide good electrical contact.

Usually small metal-plate electrodes are used in the EEG recording [63].

2.4.2 Electrode placements

In order to make patient’s records comparable over time and to other patient’s records, a

specific system of electrode placement called International 10-20 systemis used. The sys-

tem is for 21 electrodes. The distance between the specific anatomic landmarks (nasion

and inion, see Figure 2.7) is measured after which the electrodes are placed on the scalp

using 10 and 20 % interelectrode distances. Each electrode position has a letter (to iden-

tify the underlying brain lobe) and a number or another letter to identify the hemisphere

location. Odd numbers are on the left side and even on the right side. Z (for zero) refers

to electrode placements at midline. The system allows the use of additional electrodes.

As can be seen in Figure 2.7 midline (or zero) electrodes are flanked up by electrodes

numbered 3 on the left and 4 on the right.

Figure 2.7: The international 10-20 electrode system: side and top views [11].
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2.4.3 Reference and bipolar recordings

The EEG recordings can be divided into two major categories: Reference recordings

and scalp-to-scalp bipolar linkages. In the reference recording each electrode is referred

to either distant reference electrode, one common electrode on each side of the head

or to combined activity of two or more electrodes. The reference electrode(s) must be

placed on the parts of the body where potential remains fairly constant. Usually reference

electrodes are placed on the ear lobes or on the mastoid bones behind the ear. In addition

to one single reference electrode two reference electrodes shorted together can be used.

In bipolar recordings differential measurements are made between successive pairs of

electrodes [46].

2.4.4 Artifacts

When measuring the EEG, all of the signals do not come from the electrical activity of

the brain. Many potential changes seen in the EEG may be from other sources. These

changes are called artifactsand their sources may be the equipment or the subject. These

artifacts include [34]:

� Technical artifacts

– Mains interruption. The surrounding electrical equipment may induce 50-Hz

or 60-Hz component in the signal.

– Electrode artifacts. If electrodes are improperly attached or in poor condition,

their impedances may vary.

� Physiological artifacts

– Motion artifacts. Subject’s movements cause electrodes or electrode cables to

move.

– EMG artifacts. The tension of muscles (especially masticatory, neck and fore-

head muscles) causes EMG artifacts.

– Cardiac artifacts. The heart causes many different artifacts: ECG, pulsation

artifact, ballistocardiographic artifact, pacer artifact, respiration artifact

– Oculographic artifacts. These include the eye blink artifact and the eye move-

ment artifact.

– Sweating. This can affect, for example, the impedances of the electrodes.
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2.5 BCI components

A typical BCI device consists of several components. These include electrode cap, EEG

amplifiers, computer and subject’s screen. A critical issue is how the user’s commands,

i.e., the changes in the EEG, are converted to actions on the feedback screen or the appli-

cation. This process can be divided into five stages:

1) Measurement of EEG This is done by using the electrodes. Many BCIs use a special

electrode cap, in which the electrodes are already in the right places, typically according

to the international 10-20 system (see section 2.4.2). It saves time because the electrodes

do not have to be attached one by one. Typically, less than 10 electrodes are used in online

(see section 2.9) BCIs with sampling rates of 100-400 Hz.

2) Preprocessing This includes amplification, initial filtering of EEG signal and possi-

ble artifact removal. Also A/D conversion is made, i.e. the analog EEG signal is digitized.

3) Feature extraction In this stage, certain features are extracted from the preprocessed

and digitized EEG signal. In the simplest form a certain frequency range is selected and

the amplitude relative to some reference level measured [65]. Typically the features are

certain frequency bands of a power spectrum. The power spectrum (which describes the

frequency content of the EEG signal) can be calculated using, for example, Fast Fourier

Transform (FFT), the transfer function of an autoregressive (AR) model [61] or wavelet

transform [36]. No matter what features are used, the goal is to form distinctset of features

for each mental task. If the feature sets representing mental tasks overlapeach other too

much, it is very difficult to classify mental tasks, no matter how good a classifier is used.

On the other hand, if the feature sets are distinct enough, any classifier can classify them.

4) Classification The features extracted in the previous stage are the input for the clas-

sifier. Different BCIs can classify different number of classes, typically 2 to 5 classes.

The classifier can be anything from a simple linear model to a complex nonlinear neural

network that can be trained to recognize different mental tasks. With the exception of a

simple threshold detection [65, 7], the classifier can calculate the probabilities for the in-

put belonging to each class (see e.g. [16]). Usually the class with the highest probability

is chosen. However, in some BCI protocols none of the classes may be chosen, if the clas-
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sification probability does not exceed some predefined level. This kind of classification

result can be called “nothing” or “reject”.

5) Device control The classifier’s output is the input for the device control. The device

control simply transforms the classification to a particular action. The action can be, e.g.,

an up or down movement of a cursor on the feedback screen or a selection of a letter in a

writing application. However, if the classification was “nothing” or “reject”, no action is

performed, although the user may be informed about the rejection.

2.6 Feedback

Feedback is an important factor in BCIs. In the BCIs based on the operant conditioning

approach, feedback training is essential for the user to acquire the control of his or her

EEG response. The BCIs based on the pattern recognition approach and using mental

tasks do not definitely require feedback training. However, feedback can speed up the

learning process and improve performance. Cursor control has been the most popular type

of feedback in BCIs. Feedback can have many different effects, some of them beneficial

and some harmful. Feedback used in BCIs has similarities with biofeedback, especially

EEG biofeedback.

2.6.1 Biofeedback in general

Biofeedback can be defined as follows: “Biofeedback is the process in which a subject

receives information about his biological state. Usually a subject is not aware of his

physiological functions, especially those controlled by the autonomic nervous system,

such as heart rate and peripheral vasoconstriction. Biofeedback creates an external loop

by which a subject can monitor one or more of his physiological states.” [49].

The most popular types of biofeedback machines or techniques include: Electroencephalog-

raphy (EEG), electromyography (EMG), skin temperature and galvanic skin response

(GSR). Different feedback methods have been used in different clinical purposes, for

example, treatment of anxiety and muscle tension [49].
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2.6.2 EEG biofeedback

The history of the EEG biofeedback can be dated back to late 1960’s and 1970’s, when

the self-regulation of the alpha rhythm and alpha biofeedback methods were popular. It

was thought that with the help of biofeedback every individual could reach the same state

as yogisor zen buddhists, who were observed to show well modulated alpha during med-

itation. This dream did not come true and the interest in the alpha biofeedback declined

in 1980’s [49]. However, since then the EEG biofeedback has made a “comeback”. It

is no longer concentrated on relaxation and alpha training. Today the EEG biofeedback

(or the neurofeedback as it is sometimes called) is used for the treatment of numerous

disorders, for example Attention Deficit Hyperactivity Disorder (ADHD), panic attacks,

sleep disorders, epilepsy etc. in many countries [24]

The basic idea in the EEG biofeedback is the operant conditioning of certain EEG param-

eters. Typically, the goal of the training is to increase the activity on a certain frequency

band and decrease it in another. This is possible by providing feedback for the subject.

The feedback can be, for example, a car in the computer game. The speed of the car can

be coupled with the desired condition. The car moves faster, if the patient’s EEG gets

closer to the desired condition and slower, if it gets farther [24].

Generally, biofeedback methods used in the clinical EEG biofeedback have been much

more imaginative than in BCI systems. Whereas in the BCI systems the feedback is

in the form of the cursor control in almost all cases, the feedback in EEG biofeedback

has included various kinds of games and visual displays. In addition to visual feedback,

auditory and tactile feedback have also been used [24].

Biofeedback in the form of games is especially important with children. EEG biofeedback

requires attention and the session typically lasts around 30 min. Usually EEG biofeedback

treatment requires tens of sessions. For this reason it is necessary to provide children with

interesting feedback in order to keep them engaged in the treatment.

The EEG biofeedback is closely related to the operant conditioning approach in BCIs. In

fact, the self-regulation of the slow cortical potentials (see the section 2.2.2) have been

used with patients having neurological and psychiatric disorders, for example, untreatable

chronic epilepsy (see e.g. [33]). Today, a BCI called Thought Translation Device is based

on self-regulation of SCPs [7]. However, there is fundamental difference between the use

of BCI and typical EEG biofeedback treatment. In biofeedback treatment the goal is to

reach certain condition and maintain it, whereas in BCIs the goal is that the user learns to
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change his or her EEG between two or more conditions (classes).

2.6.3 Feedback in BCIs

In most BCIs some kind of feedback is provided to the user. The most popular form of

feedback has been the cursor control (see e.g. [65, 7, 58, 32]). In a typical trial , the user

tries to move the cursor to the target, which is located on one side of the screen by using

two commands (i.e., up&down or left&right). At the start of the trial the cursor is at the

middle of the screen. The trial ends when the cursor hits either the target or the opposite

end of the screen. If the target side of the screen is hit, the target can be flashed to indicate

the trial outcome. One trial typically lasts a few seconds. Figure 2.8 shows an example of

the feedback display used in the TTD [8]. After the cursor has hit the target, it blinks and

a smiley face saying “very good” appears as a positive reinforcement.

Why has the cursor control been such a popular type of feedback in BCIs? One reason

may be that the goal of many BCI research groups is to give the user, a disabled person,

an opportunity to operate an ordinary personal computer by thoughts. In addition to this,

there may be other reasons. In Kostov’s et al. [32] words: “We chose cursor movement

because it is objective, easily implemented, simple for the user to learn, and can serve as

a prototype for control of a wide variety of applications.”

The cursor control is an example of continuousfeedback. However, the classifications in

BCIs are made in discrete manner. In order to make cursor movement to look continuous

(i.e the cursor does not make “jumps”), the time between two classifications should be less

than about 60 ms (consider that the film creates an illusion of movement by presenting

still frames at 24 frames per second, i.e., a frame every 41,6 ms). The time steps used in

six BCIs can be seen in Table 3.3.

Ideally continuous feedback would be instantaneous, i.e., real-time. However, this is not

possible with the current BCI systems, which require that some finite sample of EEG

data is analyzed and classified before the feedback can be presented to the screen. For

example, in BCIs presented in Table 3.3, the shortest EEG sample (window in the table)

is 200 ms (in the Wadsworth BCI).

Beside continuous, feedback can also be discrete. ABI uses this kind of feedback by

presenting each mental task as a colored ball. The ball lights up when the EEG sample

is classified as belonging to a corresponding task. With Graz BCI (see section 3.1.5) this
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Figure 2.8: An example of feedback display used in the TTD. After the ball-
like cursor has successfully hit the target, a smiley face appears as a positive
reinforcements. Modified from [8].

kind of discrete feedback has also been used. In the experiment made in 1997 and reported

in [52], the certainty of decision was shown to the user after each 8-second trial. If the

requested movement could be correctly classified, ‘+’ was shown. If the data of current

trial was identified to other class than requested, ‘�’ was shown. Ambiguous results were

shown as ‘o’ .

Feedback can also be graded. Graded feedback is proportional to some variable. In

the same experiment as described above, the size of the ‘+’ and ‘�’-signs identified how

well the classifier recognized the mental tasks (left and right hand movement in this case).

Large signs identified “clear decision” and small signs “decision”.

2.6.4 Effect of feedback

In BCIs using the operant conditioning approach (see section 2.3.2), the feedback about

the performance is essential in skill development, i.e., in acquiring control over the EEG

response. The subject needs to know which imagery moves the cursor up and which

imagery down. However, at the same time the feedback from the cursor movement can

have other effects, some of them beneficial and some of them harmful [39].

Beneficial effects

1. Furnishes continual motivation

2. Ensures attention to the task by maintaining the subject’s interest
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3. Improves performance by allowing rapid reaction to wrong classifications

Harmful effects

1. The feedback stimulus might prevent concentration on internal states

2. The false classifications can elicit frustration and thus affect the EEG response (for

example, cause EEG desynchronization)

3. The correct classifications might lead to anticipation and thus affect the EEG re-

sponse (for example, cause EEG synchronization)

4. The visual feedback stimulus might affect the alpha rhythm

McFarland et al. [39] studied the kinds of short-term effects the removal of cursor move-

ment had on the performance of the subjects who were already trained with the Wadsworth

BCI. They found out, that 2 out of 10 subjects performed significantly better when only

the trial outcome was shown, while 4 other performed significantly worse. Also Kaiser et

al. [27] studied the short-term effects of the feedback with subjects already trained with

the TTD. They found out that the removal of the cursor movement resulted in an initial

performance drop, but was quickly recovered. They suggested that the trial outcome feed-

back could be more important in maintaining the self-control over the EEG signal than

continuous feedback (i.e., the cursor movement). However, they suggested that further

research is needed to elucidate this question.

In BCIs using the pattern recognition approach, feedback is not essential, because they are

based on predefined mental tasks (see the section 2.3.1). However, feedback can improve

learning and performance, because the subject gets information on how the classifier clas-

sifies the mental tasks and can then try to perform the mental tasks in a way that they can

be classified better. In other words, the subject and BCI are adapted to each other. This

process can be called mutual learning processand it is explained in section 2.7.3.

2.7 Human training issues

To date, most of the BCI research has concentrated mainly on technical issues; how to

measure, process and classify the EEG signal better and better. However, the producer of
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this EEG signal, the human being, may be as important or even a more important factor

in a successful BCI than the technical developments. Therefore, the issues concerning the

human training are worth considering. What is the training protocol used? How much

time does the training require? How is the load divided between the user and the BCI

system? This section tries to provide some answers to these questions.

2.7.1 Training protocol

How is the user trained to use the BCI system, i.e., what kind of training protocol is used?

The protocols vary from one BCI to another. Typically, however, training is divided into

series of sessionsand each session is divided into a certain number of trials. One session

typically consists of tens of trials and lasts 5-30 minutes. Using a BCI requires so much

concentration that usually half an hour to one hour of training is enough for one day.

2.7.2 Training period

Some BCIs, which are based on the detection of the event-related potentials (namely the

P300 or the VEP, see 2.2.2) require basically no training. The user can start using the

BCI and its applications right away. Usually, however, more or less time for training is

required in order to build an online BCI with a good level of accuracy.

The training period differs greatly among different BCIs, from days to months. The re-

quired training period is greatly dependent on how the training load is divided between

the user and the system. As mentioned in the section 2.3, in BCIs based on the operant

conditioning approach, the user has to learn to self-regulate his or her EEG response. On

the other, in BCIs based on the pattern recognition approach, the emphasis on that the

system is trained with the EEG data obtained while the subject is performing the mental

tasks. The operant conditioning approach requires usually a much longer training period

than the pattern recognition approach. This is largely because the training load between

the user and the BCI is divided differently in these approaches.

In BCIs based on the operant conditioning approach all the training load is on the user

(e.g., [7, 65]). The drawback of this approach is that it may take months of training before

the user achieves the desirable level of performance. The users may be instructed what

kind of mental imagery they should or should not use. In order for the user to acquire self-

control of EEG response, some kind of feedback is essential at least in the beginning (see
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2.6). Although the training load is on the user, the electrode positions or the amplitude

thresholds can be adjusted individually for each user during the training.

The opposite approach would be a BCI based on the pattern recognition approach, in

which the whole training load is on the system. No feedback would be given. Usually,

however, some kind of feedback is given. In this kind of approach, both the user and

the BCI system are trained (see e.g. [58, 32, 16]). This can be called a mutual learning

processwhere both the system and the user learn from each other. The idea is that the

BCI system (classifier) learns the individual EEG patterns while the user learns to better

produce these patterns with the feedback training [16].

2.7.3 Mutual learning process

In BCIs based on the mutual learning process, both the user and the BCI system (classifier)

are trained. Since no fixed pattern is searched within the EEG data, the system must be

trained first. This is typically done by recording the EEG while the subject concentrates

on each mental task a few times. This first recording is done offline and no biofeedback

can be given. The first classifier is then trained with this EEG data.

After the first classifier is trained, feedback can be given in the next session. This makes it

possible for the user to see how the system classifies the mental tasks he or she performs.

The user may then be able to learn to produce these mental tasks in such a way that

the system recognizes them better. In addition, the user may improve in performing the

mental tasks, for example, by being able to concentrate on them better or by learning a

new mental strategy to perform them. Therefore, it is necessary that the system is re-

trained, i.e., a new classifier is trained. This procedure of re-training can be done over

and over again. However, ideally the user would be able to produce relatively stableEEG

patterns and there would be no need to train a new classifier over and over again. If it is

possible remains a question.

Pfurtscheller and Neuper [56] discuss man-machine learning dilemma(MMLD): “MMLD

implies that two systems (man and machine) are strongly interdependent but have to be

adapted independently. The starting point of this adaptation is the training of a “machine”

to recognize certain EEG patterns of a subject. During this phase, no feedback is given.

As soon as feedback is provided, each feedback results in an adaptation of man to ma-

chine: man tries to repeat success and avoid failure.” Feedback can then change the EEG

patterns (see section 2.6.4). The changed EEG patterns require “the adaptation of ma-
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chine to man”, or in other words, the re-training of the classifier with the data obtained

from the last session(s) with the feedback.

2.8 BCI performance

To this day, none of the BCIs have achieved the communication speedor the accuracyof

the other interfaces. In addition, there is a problem of evaluating BCI performance. The

results are reported differently from one BCI paper to another. This makes it difficult to

compare different BCIs.

2.8.1 Measurements of accuracy in BCIs

There have been many different measurements. One method of reporting accuracy is to

give a correct classification rate. This parameter tells the percentage of the classifications

the BCI system classifies correctly. It does not take into account that individual classes

usually have different classification rates and that some of the EEG data may be rejected

(see the section 2.5).

More comprehensive way to report accuracy is to present a confusion matrix. The confu-

sion matrix tells not only the correct classification rates of each class, but also in which

classes the false classifications were classified. If rejection was used, it shows the percent-

age of the classifications that were rejected. Examples of confusion matrices can be found

in Tables 2.3 (no rejection used) and 2.4 (rejection used). The correct classifications are

in the diagonals of the confusion matrices.

Unfortunately, confusion matrices are displayed only in a few BCI papers. The correct

classification rate is found in most papers, but sometimes only a hit rate is reported. The

hit rate tells how many times the user managed to hit the target with a cursor (see 2.6). The

hit rate is not a good way to report results because the number of the cursor steps required

to reach the target influences the hit rate. Therefore, two hit rates are only comparable if

the number of the steps is equal. Furthermore, the hit rate tells very little about what the

actual classification accuracy of the BCI is. It is possible, for example, that the hit rate is

close to 100 %, but the classification rate is below 60 %.

Rejectionis used in some BCIs. It is related to the classification method used. The idea
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is that uncertain classifications are rejected. If rejection is used and the mental task is still

classified to a wrong class, the wrong classification can be called false positive(FP). The

number of false positives should be kept minimal or nonexistent, if a robust functioning

of a BCI is wanted. Rejection can increase BCI performance.

2.8.2 Bit rate and channel capacity

An information transfer rate, a bit rate, can be used in order to take into account both

accuracy and speed of a BCI. The bit rate is a standard measure of any communication

system (which a BCI basically is). It tells the amount of information communicated per

time unit. The highest bit rate a noisy communication system can theoretically have, is

called a channel capacity[59]. The classification errors produce noise in the BCI system.

The channel capacity can be calculated in a closed form if the following conditions are

met: 1) Classes have equal classification rates; 2) Errors are distributed symmetrically; 3)

The rejection is not used. Table 2.3 displays an example of a confusion matrix, in which

all of these conditions are met. The equation for calculating the channel capacity in a

closed form is:

C = log
2
N � P log

2
P + (1� P ) log

2

�
(1� P )

(N � 1)

�
(2.1)

where N is the number of classes and P is the correct classification rate. The unit is bits/s

or bits/trial. Maximum information transfer rate for an errorless BCI with N commands

is log
2
N (all the classifications are correct, i.e., P=1).

The channel capacity as a function of accuracy for a different number of choices (i.e, 2,

4, 8, 16, 32) can be examined in Figure 2.9. The curves are based on the Equation 2.1. As

can be seen from the figure, accuracy (i.e., the correct classification rate) affects greatly on

the channel capacity. For example, when number of selections (N) is 2 (the most common

in today’s BCIs) and the accuracy increases from the 80% to 90%, the channel capacity

is almost doubled (0:5301=0:281 = 1:91) in bits/trial.

The correct classification rate is used in the Equation 2.1. Therefore, it is presumed

that the false classifications are distributed evenly. Furthermore, it is assumed that no

rejections are made. If this is not the case, as in confusion matrices presented in Table
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Figure 2.9: Bit rate in bits/trial (i.e., bits/selection) and in bits/min (assuming 12
trials/min), when the number of possible selections (N) is 2, 4, 8, 16 or 32 [66]

2.4, the channel capacity is calculated using Arimoto-Blahut algorithm [10]. The result of

this algorithm convergates to the channel capacity of the system. The channel capacities

for matrices presented in Table 2.4 are calculated in Table 2.5.
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CM (%) Class 1 Class 2 Class 3
Class 1 60 10 30
Class 2 30 60 10
Class 3 10 30 60

Table 2.3: An example of a confusion matrix, from which the channel capacity
can be calculated analytically using the Equation 2.1.

CM 1 (%) Class 1 Class 2 Class 3 Reject
Class 1 91 0 2 7
Class 2 1 74 12 13
Class 3 4 1 73 22

CM 2 (%) Class 1 Class 2 Class 3 Reject
Class 1 92 0 0 8
Class 2 0 51 5 46
Class 3 0 9 56 35

CM 3 (%) Class 1 Class 2 Class 3 Reject
Class 1 100 0 0 0
Class 2 0 42 0 58
Class 3 0 0 36 64

Table 2.4: Three different confusion matrices

Confusion Matrix 1 2 3
C 1.03 1.01 1.21

Table 2.5: Channel capacities of the confusion matrices in Table 2.4. The third
matrix has the biggest channel capacity, the two other are almost equal.
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2.9 Categorizing BCIs

Previously, in this chapter, BCIs were divided into those using the pattern recognition

approach and those using the operant conditioning approach. However, BCIs can be

categorized differently, which is done in this section.

Invasive and non-invasive BCIs Non-invasive BCIs are based on EEG measured with

the scalp electrodes. Almost all todays BCIs are based on this. In invasive BCIs, the

electrical activity of the brain is recorded from inside the head (e.g., from the cerebral

cortex). The recordings are made, for example, with one or more microelectrodes. In

addition, macroelectrodes are used in electrocorticogram (ECoG) recordings. The micro-

electrodes can record activity of a single neuron. Kennedy has successfully used this kind

of approach [30]. Levine et al. have studied the use of ECoG as a signal source for a

brain computer interface [35]. Wessberg et al. [64] recorded activity from multiple cor-

tical areas and large population of neurons from two owl monkeys during different arm

movements. They were able to make accurate real-time prediction of the arm movement

trajectories in real-time.

Synchronous and asynchronous BCIs Many BCIs work in a synchronous mode, i.e.,

in a externally paced mode. The user must produce specific mental states in a predefined

time window. In other words, the system initiates the period of control, i.e., the control

is system-initiated. In an asynchronous mode, the brain activity is analyzed continuously.

The user can freely initiate the specific mental task(s) used as the control signal(s), i.e., the

control is not system-initiated but user-initiated. This requires that BCI can detect when

the EEG control is intended and when it is not. Birch and Mason have tried to implement

this kind of an asynchronous BCI [37].

Universal and individual BCIs Universal BCI relies on assumption that by gathering

EEG data from few users it is possible to find a classification function that should be valid

for everybody. So the BCI is the same for all users. In individual BCI the fact that no

two people are the same, both physiologically and psychologically is taken into account.

Therefore, the BCI is different with different users, i.e., individual [14].
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Online and offline BCIs Online BCIs are the actual working BCIs. The signal process-

ing, features extraction, classification, and device control (see 2.5) are done in real-time

(or at least relatively close to it). This makes it possible to provide feedback for the user.

This is not possible in the offline BCIs. The EEG is typically recorded as in online BCI,

but using more electrodes. The recordings are then stored and the actual BCI research

is done later. This makes it possible to examine, for example, different electrode posi-

tions, preprocessing and feature extraction methods, classifiers etc. The performance of

the offline BCI can be evaluated using, for example, cross-validation test. The results are

comparable with the same kind of online BCI (without biofeedback), if all the recorded

EEG data are used. However, if some of the recorded data is removed (for example con-

taining EMG or EOG artifacts) the results are not comparable.

EEG features Usually BCIs are categorized according to what EEG feature or features

they try to detect. These features include: SCP, � or � rhythm amplitude, P300, RP, EEG

power spectrum features and action potential of single cortical neuron.

Imagery and mental tasks From the user’s point of view, BCIs can be categorized

according to what kind of imagery they require. Motor imagery has been used in many

BCIs (e.g. [52]). Other mental tasks (e.g., arithmetic and visual tasks) have been used in

e.g. [58]. Other BCIs may leave the choice of imagery up to the user [32, 7].
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Chapter 3

BCI systems

This chapter describes six different BCI systems. Five of them are included in the lit-

erature review. The sixth, used in the present study, Adaptive Brain Interface(ABI), is

described in more detail. After the BCIs are introduced they are compared to each other.

3.1 Different approaches to BCI

This section provides an overview of five BCI systems based on the scalp EEG. Three of

them (BCIs developed in the universities of Alberta and Oxford and the Graz BCI) are

based on the pattern recognition approach like ABI. The other two use the operant con-

ditioning approach. The BCI developed at the Wadsworth Center uses the self-regulation

of the � or � rhythms where as the Thought Translation Device is based on the self-

regulation of the slow cortical potentials (SCPs).

3.1.1 BCI research at the University of Alberta

Alexandar Kostov and Mark Polak started their BCI research at the University of Alberta,

Canada, in 1995. Their BCI system was based on the pattern recognition approach. In

the study reported in [32] EEG data was recorded with 28 electrodes arranged according

to the international 10-20 electrode system. Signal amplification and the initial filtering

were done by Brain Imager, a device manufactured by Neuroscience Inc. The EEG signals

were digitized at a sampling rate of 200 Hz. Features were extracted for electrodes C3, C4,
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P3 and P4 using the 4th order autoregressive (AR) feature extraction method. The EEG

patterns were classified with an adaptive neural network called Adaptive Logic Network

(ALN) [3] in on-line experiments.

Training was done in 30-min sessions. The subject was seated in front of the feedback

monitor while the EEG signals were recorded. Feedback was provided in the form of the

cursor control. The subject was instructed to move the cursor to the target located at top or

bottom (1-D setup), or at top, bottom, left or right (2-D setup) sides on the screen. When

the cursor reached the target or missed it by reaching the edge of the screen, a new target

position was chosen. The position of the cursor was updated every 50 ms. The speed of

the cursor was affected by the number of the steps required to hit the target, which was

set by the operator.

The first half of the training session was used to train the new ALN classifier as the subject

was attempting to move the cursor towards the target. When the subject achieved control

of the cursor, the training of the ALN was halted and the second half of the session was

used to evaluate the performance.

Every subject could choose the mental tasks he or she wanted to use to achieve the cursor

control. One of Kostov’s subjects, a multiple sclerosis patient (seen in Figure 3.1), imag-

ined the hydraulic lift installed in his home going up and down to move the cursor. Other

people have used relaxing thoughts to move the cursor up and stressful thoughts to move

it down. [60]

Kostov and Polak give the results in the form of the hit rate (see the section 2.8). They

report that once subjects are fully trained (giving no indication how long it will take to

“fully” train the subjects), they can hit the target close to 100 % when 32 cursor steps are

required to hit or miss the target (1-D setup). It is impossible to know what the actual

classification rate was, when the results are given in this way. Furthermore, Kostov and

Polak report that they have been able to train only two subjects to achieve 2-D cursor

control. They achieved the hit rates of 70 % and 85%, respectively. The number of the

steps required to hit the target was not reported.

The goal of this project was to develop a BCI capable of accurate two-dimensional (2-

D) cursor control. In addition, the intention was to develop range of applications for the

BCI. One application reported to date has been an environmental control device [28].

Unfortunately, the principal researcher, Alexandar Kostov, has died. It is not known if the

project has continued after his death.
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Figure 3.1: Alexandar Kostov (left) and Mark Polak (middle) with Jim Killick, a
multiple sclerosis patient sitting in the wheelchair and wearing the electrode cap
[60]

3.1.2 BCI research at the Oxford University

William Penny and Stephen Roberts started BCI research at the Oxford University, Eng-

land, in 1996. Online experiments were done with seven volunteer subjects in 2000 [58].

The EEG was recorded from one bipolar channel with two electrodes located 3 cm be-

hind C3 and C4 of the international 10-20 system. The ground electrode was placed on

the right mastoid. The signal was bandpass filtered with 3 dB points set at 0.1 Hz and 100

Hz and digitized at 384 Hz. The EEG data was analyzed using the 8th order autoregres-

sive (AR) model. This model was fitted to 1/3 second blocks of data (128 samples) which

slid 32 samples (1/12 second) from one processing time step to next.

In the study made in 1999 Penny and Roberts [50] had found out that motor imagery vs.

math task was more easily discriminated than motor imagery vs. baseline task. Therefore,

in the most recent study (2000) [58] they used only motor imagery vs. math task. The

classification was performed by using Bayes logistic classifiers. The first classification

system was trained via the initial 10 second recording of each of the tasks without feed-

back. After the first recording, feedback was provided in the form of the cursor control.

The upward movement of the cursor was associated with the math task and the downward

movement with the motor imagery. Each up or down movement task lasted for some

10-15 seconds. The classification system was re-trained after each experiment, using the

previous experimental data as a training data.

Penny and Roberts experimented with two methods in order to improve the performance
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of their BCI. The methods were a latent-space smoothing and a reject option. The latent-

space smoothing means that the low certainty decisions may be rejected or “over-ruled”

by the higher certainty decisions from the recent past. A two second window was used. In

the reject option a third class called “reject” was added. Using Bayesian decision theory

the certainty of the classification was calculated. If the certainty of the classification did

not exceed a particular threshold then the EEG was classified to “reject” class.

Penny and Roberts reported the classification results for three scenarios: hard rejection,

soft rejection and baseline (no rejection). The scenarios were explained as follows [58]:

� Hard rejection . The latent-space smoothing and reject option was used. If, how-

ever, more than 50 % of an experimental block was rejected then the entire block

was removed from the data set as a “corrupted” data epoch

� Soft rejection. The latent-space smoothing and the reject option was once more

applied but no removal of experimental blocks was performed.

� Baseline. No smoothing or rejection was performed and classification was made

on a sample-by-sample (each 1/12 second) basis.

The mean correct classification rates for the three scenarios for all seven subjects are

presented in Figure 3.2. They show that the hard and soft rejection scenarios improved

considerably the classification accuracy. Overall mean classification rates (fraction cor-

rect) were 0.8648 (hard rejection), 0.7595 (soft rejection) and 0.5318 (baseline). This

improvement of the accuracy came with a price. When the hard rejection scenario was

used, 21 % of the data blocks were entirely rejected and of the remaining data samples an

average of 28% were rejected. Using the soft rejection method, an average of 34 % of the

data samples were rejected.

3.1.3 BCI research at the Wadsworth Center

Jonathan Wolpaw and his colleagues have done BCI research at the Wadsworth Center,

the United States, since 1986. Their BCI is based on the self-regulation of the 8-12 Hz �

or the 13-28 Hz � rhythms. In the study made in 1998, 64 EEG channels were recorded

from the surface of the scalp from 4 subjects (one with ALS) [41]. Each channel was

referenced to the electrode in the right ear. 62 of 64 channels were digitized at 128 Hz

and stored for later evaluation. Two remaining channels located over each hemisphere of
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Figure 3.2: Mean classification results,� standard deviation for all seven subjects
in Oxford BCI. Performance for three scenarios is presented: hard rejection (o),
soft rejection (�) and baseline (�). Performance averaged over all subjects is
0.8648�0.0694(o), 0.7595�0.0667(�) and 0.5318�0.1153(�) [58]

the sensimotor cortex (e.g., C3 and C4) were digitized at 196 Hz. They were converted to

either a common average reference (CAR) derivation or a large Laplacian derivation [38].

The feature extraction and the classification were done as follows. The EEG data was

analyzed using the autoregressive (AR) algorithm and an amplitude (i.e., the square root of

power) was calculated in a 3-Hz wide frequency band. The frequency band corresponded

to 8-12 Hz � rhythm (2 subjects) or 18-24 Hz central � rhythm (2 subjects). The sum of

the amplitudes from the two channels was calculated every 100 ms using the preceding

200 ms segment of the EEG data. This sum was the independent variable in a linear

equation that determined a cursor movement.

The training was done in 30 min sessions divided into 8 runs lasting 3 minutes each and

separated by 1 minute rest periods. Each run consisted of several trials. In each trial the

user tried to move the cursor from the center of the screen to the target located at the top

or bottom of the screen. The distance to top or bottom was 94 cursor steps. The cursor

moved every 100 ms up or down according to the linear equation described above. The

target location (top or bottom of the screen) varied in pseudo-random order resulting in
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equal number of each targets. If the cursor hit the target, it flashed for 1.5 s as a reward.

After the initial training the targets were replaced with words YES and NO and the sub-

jects were asked simple questions like “is 2+2=4?” or “is a potato a mode of transporta-

tion?”. The subjects answered to the questions by moving the cursor to either YES or

NO target. The answers were confirmed with a response verification (RV) procedure, in

which the YES and NO targets were switched and the question was answered again.

Data was gathered from each subject from 5 consecutive sessions containing 333 to 401

questions. 4.0 to 4.6 question were asked per minute. 64 % to 87% of the answers were

confirmed with the RV procedure. 93% to 99% of these answers were correct. 78% to

93% of separate parts of all the answers were correct (these percentages correspond the

hit rates with 94 cursor steps). Miner et al. concluded that even though the subjects’

attention was not solely focused on moving the cursor in the question-answer protocol,

they achieved the same performance as they had previously achieved with the standard

target format.

3.1.4 The Thought Translation Device (TTD)

Niels Birbaumer research interest over the years have been the slow cortical potentials

(SCPs) (see the section 2.2.2). Birbaumer has used the self-regulation of the SCPs with

the epileptic patients (see e.g. [33] and the section 2.6.2). During 1990’s Birbaumer

and his colleagues developed a BCI called the Thought Translation Device (TTD) at the

University of Tűbingen in Germany. Over the years the TTD has been used by 12 ALS or

other patients with severe or total paralysis. They have used it as a communication tool at

their homes or in a nursing home [31].

Birbaumer and coworkers studied five patients using the TTD [7]. The EEG was recorded

from the electrode Cz referred to mastoids at a sampling rate of 256 Hz. The EEG signal

was filtered and corrected for the eye movement artifacts. SCPs were then extracted

from the EEG signal. The training day usually consisted of 6-12 sessions, each of them

consisting of 70-100 trials and lasting 5-10 minutes. The patients were trained several

times a week.

In the initial training phase (slow wave training) the subjects were trained to produce

either SCP negativity or positivity. The required SCP amplitude change was gradually

increased from 5 �V to 8 �V during the training. Feedback was provided in the form
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of a cursor control. The cursor was a ball-like light, which the subject tried to move to

the target located at the upper part of the monitor (when SCP negativity is required) or at

the lower part of the monitor (when SCP positivity is required). Each trial consisted of

2 s baseline period and 2-4 s feedback period when SCPs were fed back. The EEG was

averaged over a sliding window of 500 ms moving in steps of 63 ms. When the subject

achieved stable performance of 75 % correct trials, he or she can began to work with a

language support program.

In the language support program the alphabet was split into two halves (letter-banks).

These letter-banks were shown successively at the bottom of the screen. The subject

could choose the letter bank shown by producing a SCP shift (either SCP negativity or

positivity according to subject’s preference). If the subject produced the required SCP

shift the letter bank was split into two new halves. This continued until each of the letter-

banks contained only one letter. When the subject selected one of them, the selected letter

was displayed in the top text field of the screen and a new selection began from the start.

The program also included a “return function”. If the subjects rejected two successive

letter-banks the option to erase the last symbol in the textfield appeared.

The use of the language support program was divided to two or three phases. In the copy

spelling phase the subjects used their preferred SCP response (negativity or positivity)

to copy letters. In the free spelling phase subjects could select letters according to their

wishes.

Two of the five subjects progressed to the free spelling stage. It required over 140 training

sessions (including the slow wave training and the copy spelling) from the other patient

and over 210 training sessions from the other. The training time is long considering that

the TTD only detects (after initial training phase) either the SCP negativity or positivity.

The speed of writing was slow. Subjects needed an average about 2 min for the selection

of one letter (based on trial length of 4.5 s).

The results of the sessions are reported as percentages of “correct responses”. This means

that beside the slow wave training phase, the results are specific to the language support

program. The results of the slow wave training correspond to the hit rate, but the number

of the cursor steps is not reported. Each of the subjects achieved mean hit rates of about

70 %, but the variance between the sessions was high.

Beside the language support program the TTD has two other applications: The environ-

ment control unit and the Internet browser “Descartes” [22]. Birbaumer and his colleagues

have now taken part in a project called “BCI 2000” (http://www.bciresearch.org). It will
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try to combine the slow cortical capacity of the TTD with the � and � rhythm capacity of

the Wadsworth BCI (see the section 3.1.3).

3.1.5 Graz brain-computer interface

Pfurtscheller and his group in the Graz University of Technology, in Austria, started the

“Graz Brain-Computer Interface” project in 1991 [55]. The Graz BCI has moved through

various stages of prototypes during 1990’s. However, all this time it has been based on

the detection of the ERD and the ERS patterns during the motor imagery (see e.g. [20]

and the section 2.2.2).

In the study made in 2001, the Graz brain-computer interface (BCI) was based on the

classification of the EEG patterns during five different mental tasks [48]. One aim of

the research was to study how the number of mental tasks affected the channel capacity.

Classification was done offline (see the section 2.9. Three male subjects (S1, S2 and S3)

took part in the study. They were all familiar with the Graz BCI [55].

The timing of the trial in this new study was the same that had been used in Graz BCI

experiments before (see e.g. [55, 56]. A fixation cross was presented in the center of a

monitor at the start of each trial. Two seconds later the subject heard a warning “beep”.

A symbol representing one of the five different types of mental tasks was then shown

between 3 s and 4.25 s. These mental tasks were left-hand movement (L), right-hand

movement (R), foot movement (F), repeated subtraction of a constant number from a

randomly chosen number (A), and tongue movement (T). After the presentation of the

symbol, the subjects performed the mental tasks according to the symbol until the end of

the trial (8 s). The time to the next trial was randomized between 0.5 to 2.5 s to avoid

adaptation. Each session included 200 trials divided into four 50 trial runs (15-min break

between runs). Each mental task was performed 40 times in one session, but the sequence

of the mental tasks was randomized.

The EEG was recorded with 29 gold electrodes (see Figure 3.3). The ground electrode

was placed on the forehead. The EEG signals were filtered between 0.5 Hz and 30 Hz and

digitized at the sampling rate of 256 Hz. EMG and EOG artifacts were excluded from the

data sets. After the artifact removal, datasets included 545 trials for subject S1, 507 for

subject S2 and 449 for subject S3.

The logarithm of the band power for five bands (7-10 Hz, 10-13 Hz, 16-20 Hz, 20-24
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Hz, 24-30 Hz) was calculated for every channel using a fifth-order Butterworth filter in

a window from seconds 4 to 8 of each trial. This formed a feature vector consisting of

145 components describing all EEG signals from all electrodes. A subset of features was

calculated using step-by-step procedure. A hidden Markov model (HMM) was used as a

classification method. Classification accuracy was evaluated using 5-fold cross-validation

test.

The confusion matrices for the three subjects when a N = 5 classes classifier was used

can be seen in Table 3.1. Each subject’s confusion matrix was used to determine the

class combinations for N = 2; 3; 4 classifiers by selecting the most distinguishable men-

tal tasks. The performances of N = 2; 3; 4; 5 classifiers was then compared. It was found

out that the classification accuracy decreased steadily with an increasing N with all sub-

jects. However, the maximum channel capacities (calculated using Equation 2.1) for the

subjects were S1: 0.42 (N = 2), S2: 0.81 (N = 4), and S3: 0.56 (N = 3) bits/trial.

3.2 The Adaptive Brain Interface (ABI)

The BCI system used in the experimental part of this work is called Adaptive Brain In-

terface(ABI). The ABI has been developed under the project “Adaptive Brain Interfaces”

financed by European Commission. The project started in 1998 and ended in 2001. The

project had 4 partners: 1) ISIS at the Joint Research Centre of European Commission,

in Ispra Italy; 2) IRCCS Ospedale di Riabilitazione S. Lucia; 3) Fase Sistemi Srl; and 4)

Laboratory of the Computational Engineering at the Helsinki University of Technology.

In this section the older version of the ABI is described, whereas a new ABI version was

used in the experiments of this thesis (see the chapter 4). The ABI is based on the mutual

learning process(see the section 2.7.3) where the system and the user adapt to each

other. The system learns to classify each user’s individual EEG patterns generated during

the mental tasks. This is made possible by neural network classifierwhich learns these

user-specific patterns. The other part of the learning process, the user, learns to undertake

the mental tasks in a way that the system recognizes them better. The user may choose

the mental tasks (see the section 3.2.2) he or she uses and the strategies to undertake those

mental tasks (e.g., thinking of moving a finger, the hand or the whole arm). The learning

process can be enhanced with feedback.

The ABI has been able to classify threemental tasks from online spontaneous EEG signals
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Figure 3.3: Positions of the 29 electrodes used in the Graz BCI. The 17 electrode
positions with bold circles belong to the international 10-20 system. The rest
twelve electrodes were inserted in between, in order to increase spatial resolution
[48].

Subject/Task L R F A T
S1/L 45.4 17.2 12.2 16.2 8.9
S1/R 22.2 26.8 21.0 18.5 11.5
S1/F 16.7 8.5 58.0 5.7 11.1
S1/A 6.5 7.1 6.3 61.0 19.0
S1/T 9.6 7.7 12.7 26.9 42.9

S2/L 68.1 15.6 7.1 6.1 3.0
S2/R 18.4 73.9 2.4 2.9 2.4
S2/F 9.8 4.7 58.4 11.7 15.4
S2/A 8.9 5.2 12.1 57.7 16.1
S2/T 0.8 2.4 15.0 10.4 71.4

S3/L 22.2 26.9 20.1 18.6 12.1
S3/R 24.1 29.0 20.1 18.6 12.1
S3/F 16.4 10.4 55.4 9.3 8.5
S3/A 16.5 23.1 10.0 40.1 10.3
S3/T 6.9 6.3 5.5 1.3 80.0

Table 3.1: Confusion matrices for subjects S1, S2 and S3 in the Graz BCI [48].
See text for details.
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Figure 3.4: The key components of the ABI system [13]

with around 70 % accuracy [16]. The false classifications were kept below 5%, because

uncertain classifications were rejected. Classification decision is made every 0.5 s. Also

the training time required to achieve this level of performance has been short; only few

days of moderate training (1 hour per day).

The performance of the ABI outside the laboratory environment was demonstrated in

IST’2000 (the European conference of the information society community organized by

the European Commission) in Nice, France. The ABI was used by the members of the

project and by three visitors in an exhibition area containing electromagnetic fields, noise

and people moving around. Particularly, one of the visitors managed to write something

without errors and play the Pacman (see the section 3.2.5 after less than one hour training

[13].

3.2.1 Overview of the system

The ABI system can be divided to components according to Figure 3.4. Each component

is described below in more detail according to [16].

Acquisition system The portable EEG system has 8 scalp electrodes. They are placed

on F3, F4, C3, Cz, C4, P3, Pz and P4 according to the international 10-20 system (see

Figure 3.5). The sampling rate of the system is 128 Hz. A surface Laplacian(SL) [4]

is estimated locally over the six electrodes (C3, Cz, C4, P3, Pz and P4) by using a finite
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Figure 3.5: The electrodes used in the ABI are painted gray in this picture [16].

difference method in which the mean activity of the neighboring electrodes is subtracted

for each position of interest. Then the signal is bandpass filtered with a second order 4-

45 Hz Butterworth filter. In addition, the signals are referred to a baseline, which is the

average of initial resting period. This period lasts 1 minute and the users are instructed to

remain in resting state (eyes open). This baselining is done, because the brain activity is

not stable over time.

Feature extraction The extracted features are power spectrum density components in

the frequency band of 8-30 Hz within 1/2 second EEG segments averaged from 1 second

sequences. The overlapping between the segments is 50%. As a result each EEG sample

is represented by 72 features (6 channels times 12 components each). Thus, an EEG

sample is computed every 1/2 second.

Feature classification Classification is done using a classifier called local neural clas-

sifier. In this classifier, every mental task (class) is presented by a prototypein a high-

dimensional input space. The aim is to find the appropriate position of the prototypes in

this space to differentiate the classes. Therefore, during training, the prototypes are pulled
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Figure 3.6: Biofeedback in the ABI system [15]

toward the EEG samples of the mental task they present and pushed away from the EEG

samples of other tasks.

Biofeedback Biofeedback is provided in the form of colored buttons. If, for example,

three mental tasks are used, three colored buttons are displayed each representing one

particular mental task. The subject performs the mental tasks spontaneously and a button

lights up if the arriving EEG data is classified to a corresponding mental task (see Figure

3.6).

3.2.2 Mental tasks

Mental tasks used in the ABI are chosen in a way that they activate cortical areas at

different extents (see the section 2.1). The mental tasks used in ABI are:

� Relax. The subjects stays his or her eyes closed and tries to relax.

� Subtractions. The subject performs subtractions by a fixed number (e.g., 60-3=57.

57-3=54, 54-3=51,...).

� Cube rotation. The subject imagines a three dimensional cube rotating around one

of its axis.

� Right hand movement. The subject imagines repetitive movements of the right

arm or its fingers.
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� Left hand movement. The subject imagines repetitive movements of the left arm

or its fingers.

� Word association. The subject forms successive words in his or her mind in such

a way that the next word starts with the last letter of the previous word.

Note that the eyes remain open in all the other mental tasks expect in the relax task.

3.2.3 Training

The first training session with the new subject is done offline. The EEG data recorded

in this session is used to train the first individual neural classifier. Recording is done as

follows.

The subject is instructed to remain in a resting state the first 60 seconds of the recording.

In the resting state the subject keeps his or her eyes opened but does not undertake any

particular task. The average resting patternis computed over this initial period and used

as a baselinefor all the other tasks.

During the recording the subject performs the chosen mental tasks. The operator instructs

the subject which mental task to perform next by saying it aloud (e.g., “right” or “re-

lax”). The operator enters the label of the task manually. The subject concentrates on one

mental task for 10 to 15 seconds before the operator chooses the next task. To remove

artifacts caused by the communication between the subject and the operator and to avoid

mislabeling of the mental tasks, data recorded 2 seconds before and 2 seconds after each

transitions is removed. The neural classifier trained at the first session is embedded in the

BCI and used in the second session. From this session onwards training can be done on-

line and biofeedback can be used to enhance the learning process. Otherwise the training

protocol is the same with or without biofeedback. The neural classifier can be tuned with

the EEG data recorded in the second session. This classifier can then be used in the third

session and so on. After the subject reaches the desirable level of performance, training

is halted and the subject can start using the applications (see the section 3.2.5).
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Last day of Confusion matrix (%)
training Subject Relax Left Right

Relax 100 0 0
3 MJ Left 0 57 2

Right 0 9 52
Relax 93 0 0

5 CGS Left 0 61 6
Right 0 4 85
Relax 76 0 1

4 MC Left 0 24 6
Right 0 9 21

Table 3.2: The online classification performances for subjects MJ, CGS and MC
after 3-5 days of consecutive training with biofeedback [16].

3.2.4 Performance

In the study [16] the recognition of three mental tasks was studied. Table 3.2 reports the

onlineperformances of the local neural classifiers at the last day of the training for three

subjects. The subjects (MJ, CGS and MC) were trained in the presence of biofeedback

for 3 to 5 consecutive days (sessions). Subject MJ was familiar with the ABI before,

whereas subjects CGS and MC had no previous experience. Subject CGS achieved the

most impressive results: 93 %, 61 % and 85 % for relax, left and right, respectively,

whereas the false classifications were only 0 %, 6% and 4 %. The channel capacities can

be calculated from the confusion matrices using the Arimoto-Blahut algorithm [10]. They

are 1.19 (MJ), 1.20 (CGS), and 0.64 (MC) bits/trial.

The evolution of the online performance for subject CGS can be seen in Figure 3.7 and for

subject MJ in Figure 3.8. As can be seen from the graphs, the evolution of the performance

for subject CGS is not linear while with subject MJ it is. This can be due the fact, that

subject MJ was familiar with the ABI before, while for subject CGS this was the first time

he used the ABI [16].

3.2.5 Applications

Today, there exist two applications: the Virtual keyboardand the Pacman game. ABI has

also been used to control a robot [13]. The user controls Pacman with two commands to

make it turn left or right. Pacman stops when it reaches the wall. The goal of the game is
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Figure 3.7: The evolution of online performance for subject CGS during five
consecutive days. The solid lines represent correct classifications and dashed
lines wrong classifications for corresponding tasks [16].

Figure 3.8: The evolution of online performance for subject MJ during three
consecutive days. The solid lines represent correct classifications and dashed
lines wrong classifications for corresponding tasks [16].
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Figure 3.9: ABI’s Virtual keyboard

to collect all the dots (euro coins in this case) from the maze. There are no ghosts in this

version of the Pacman game.

The Virtual keyboard works as follows. The keyboard is first split into three areas each

containing 9 letters (see Figure 3.9). The areas are indicated by colored frames. Each

color is configured to one of the three mental tasks used. Classifications are made every

half a second, as usual, and the flashing of the colored area gives the feedback for the user.

In order to select the letter of his or her choice, the user must concentrate on the task

which corresponds to the color of the area where the letter is. After a successful selection,

the selected area is split into three further parts each containing three letters. If the user is

able to select one of these three areas, the actual letter to be written can then be selected

from three remaining letters.

The program can be configured in a way that three consecutive classifications belonging

to the same mental task must be made before the area is selected. This reduces the error

rate. It is possible to go back one step. The program can be configured to wait for few

seconds for a particular mental task to performed a certain number of times. With these

settings one letter can be selected in 14 seconds if no false classification occur. In practice,

speed of 20 seconds per letter has been achieved.
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3.3 Comparing BCI systems

In this section the six BCIs described before in this chapter are compared. The compar-

ison is made for training duration, EEG measurement, preprocessing, feature extraction

and classification methods. In addition, mental tasks, imagery and applications used in

BCIs are compared. Finally, the performances of the six BCIs are reviewed, but that com-

parison proved to be difficult, because the results are reported in differently in different

BCI papers. Summary and discussion is provided in the end of this chapter.

3.3.1 Training duration

In order to compare the training duration of the six BCIs explained in this chapter, an-

swering the following questions would be helpful: What is the training duration needed

to reach the stage after which no considerable improvement can be achieved? How long

does it take to reach a certain level of performance (for example, classification rate of

80 %)? How does the performance vary between trials, sessions or days? What are the

individual differences in the training duration, i.e., do some people learn to use a BCI

significantly faster than others?

However, at present, it is not possible to answer properly to these questions. There simply

is not enough research and results reported. Answering the first question would require

the same subject to use the same BCI for a long time (over a month). However, in the

majority of the published papers there are reports only from short experiments lasting

only a few days. Some BCI researches may have used the same subject(s) in two or more

experiments, but the BCI itself (classifier, signal processing methods etc.) has changed

between the experiments.

The six BCIs described before can be divided into two categories. Two of the BCIs (the

TTD and the Wadsworth BCI) are based on the operant conditioning approach, i.e., the

self-regulation of the EEG response. The system itself does not learn, so all the training

load is on the user. These BCIs require alwaysthat the subject is trained with biofeedback.

The training duration can be very long as is the case with the TTD. It required from several

weeks to over a year of training for the subjects to reach the “free spelling phase” (see the

section 3.1.4) [31]. Wolpaw et al. report in a paper published in 2000 [65] that the users of

the Wadsworth BCI “develop substantial control (of the cursor movements) within 5-10

half-hour practice sessions and continue to improve with further practice”. However, there
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is no information about what “the substantial control” means and how long the users will

continue to improve after that. In a paper published in 1998 [39] McFarland et al report

that “high accuracy (i.e., >90%) usually takes several months to develop and the subjects

vary greatly in their learning rates.

The BCIs in the other category (Alberta, Oxford, Graz BCI and ABI) rely on the pattern

recognition approach. It means that the BCI system (or the classifier in particular) learns

to classify individual EEG patterns during the different mental tasks. The training load is

more on the BCI system than on the subject. The subject does not even have to be trained,

which is not possible with the BCIs based on the operant conditioning approach. This was

the case with the most recent Graz BCI [48] experiment. However, the experiment was

done offline and it is therefore not known how well the classifier would have performed in

an online situation. Kostov et al. [32] (the Alberta BCI) report only that “Acquiring con-

trol with our BCI takes some training, but most of our subjects were able to demonstrate

some control even after only two 30 min sessions”. This does not tell much about the

actual training duration. Roberts et al. [58] (the Oxford BCI) gave the results as a mean

classification accuracy over all experiments. Therefore, there is no information whether

the performance improved from one session to another. With the ABI the online results of

one week training period with two subjects are reported in [16]. The evolution of online

performance for subject CGS can be seen in Figure 3.7 and for subject MJ in Figure 3.8.

Even though the newest experiment with the Graz BCI was done offline, online experi-

ments have been done before, see e.g. [52, 19]. A study lasting as long as four months

has been reported in [53, 56]. In that study a tetraplegic patient was trained to control

hand orthosis by mental imagination of specific motor commands. The subject of the

experiment was able to move only his biceps in upper limbs. The initial classification

accuracy was about 65%. In the first 30 sessions the mental tasks were left and right hand

movement and no substantial improvement could be seen. Only after the other mental

task was replaced from left hand to movement of both feet, accuracy improved sharply to

about 95%. In the last session all 160 trials were correctly classified.

3.3.2 EEG measurement

The BCI researchers have to decide the number and the placements of the electrodes.

The number of the electrodes is always a compromise. Increasing the number of the

electrodes makes more precise localization of the EEG activity possible. On the downside,

computing time increases as the number of the electrodes increases. In addition, from the
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Figure 3.10: Tetraplegic patient used the Graz BCI to control the electrical driven
hand orthosis in his left hand [54].

user’s point of view, more electrodes means more cumbersome electrode cap, and more

time goes to the preparation of the measurement. For this reason many BCI researches

aspire to use as few electrodes as possible.

The positions of the electrodes depend on the BCI itself and the EEG responses which it

tries to detect and classify. If, for example, motor imagery is used, electrodes above the

motor cortex (C3 and C4) are typically used to measure EEG. Sometimes BCI researches

do offline research with large number of electrodes in order to solve which electrode

positions would be most effective in the online BCI.

In the Alberta BCI 24 electrodes were used in the measurements, but only the electrodes

at positions C3, C4, P3 and P4 were used in the actual online BCI. Linked ears reference

was used. In the Oxford BCI, the EEG was measured from only single bipolar channel.

Difference between two electrodes located 3 cm behind C3 and C4 was measured. In the

Wadsworth BCI, two electrodes were also used, located in C3 and C4 while the reference

electrode was on the right ear. In the TTD, only one electrode was used, located in Cz.

In the latest offline experiment with the Graz BCI , 29 electrodes were used [48]. The

reference electrode was on the right ear (see Figure 3.3). In the online Graz BCI, the

EEG was measured from two bipolar channels 2.5 cm anterior and 2.5 cm posterior to

the electrode positions C4, C3 and Cz, respectively [53]. In the ABI, 8 electrodes were

used in positions F3, F4, C3, Cz, C4, P3, Pz, and P4. Reference electrodes in both ears

were linked together. Electrodes used in each of the six BCIs are presented in Table 3.3.
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BCI Electrodes Sampling rate Freq. range Feature extr. Window Step Classifier

Alberta C3, C4, P3 and P4 200 Hz 2-30 Hz 4th-order AR 0.50 s 0.05 s ALN
Oxford C3’ & C4’ (bipolar) 384 Hz 0.1-100 Hz 8th-order AR 0.33 s 0.08 s Bayes

Wadsworth C3 and C4 196 Hz 8-12 or 18-24 Hz AR+amplitude 0.20 s 0.10 s threshold
TTD Cz 256 Hz No infor. amplitude 0.50 s 0.06 s threshold
Graz 29 (see Figure 3.3) 256 Hz 0.5-30 Hz Band power1 4.00 s 5.75 s HMM
ABI 8 (see Figure 3.5) 128 Hz 8-30 Hz Power spectrum 1.00 s 0.50 s Local

Table 3.3: Preprocessing and feature extraction methods in the six BCIs. 1) The
logarithm of the band power for frequency bands of 7-10 Hz, 10-13 Hz, 16-20
Hz, 20-24 Hz and 24-30 Hz was calculated for every channel. Then a subset of a
feature vector was calculated

3.3.3 Preprocessing, feature extraction and classification

Different preprocessing, feature extraction and classification methods are applied to the

raw EEG signal in the six BCIs. They can be seen in Table 3.3 as well as electrodes used

in each BCI. In the table the frequency range means the range from which the features are

calculated. Window means the length (in seconds) of the time window which is used to

calculate the features. Step is the movement of the window in time. For classifiers, see

sections 3.1 and 3.2.

3.3.4 Subjects

Today’s BCIs could provide a communication tool for severely disabled people who can-

not use any other interface. In the future BCI could be used, for example, to control hand

orthosis. Therefore, any BCI should be tested with disabled subjects to see how they can

use the interface and if there are differences compared to healthy subjects. A disabled

person may be better motivated than a healthy subject. However, BCI researches must

be careful not to rise too high expectations within the disabled subjects. Furthermore,

acquiring disabled subjects can be a problem if one does not work in a hospital or other

such environment. All the six BCIs, expect the Oxford BCI, have been tested with people

with different disabilities (for example spinal cord injuries and ALS). Perhaps the BCI

most used by disabled people is the TTD, which have been used by 12 patients with se-

vere or total paralysis. The Wadsworth BCI has also been used by several patients with

disabilities. [31].
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3.3.5 Mental tasks and imagery

The six BCIs can be divided into two groups concerning the kinds of mental tasks or

imagery they require. Four of the BCIs (Alberta, Oxford, ABI and Graz BCI) are based

on pattern recognition approach and use mental tasks. Two other BCIs (the TTD and the

Wadsworth BCI) are based on the operant conditioning approach and require the self-

regulation of the EEG response. There are no predefined mental tasks.

Although the Alberta BCI was based on the pattern recognition approach, it had no prede-

fined mental tasks. The subjects could choose what tasks they wanted to use in controlling

the cursor movements. This was possible, because in the pattern recognition approach the

BCI system can be trained to classify the EEG patterns related to the tasks the subject has

chosen. However, in other BCIs based on the pattern recognition approach, the subject is

provided with predefined mental tasks.

In the Graz and Oxford BCI experiments, the mental tasks were the same for all of the

subjects (motor imagery and math task in the Oxford BCI and left-hand movement, right-

hand movement, foot movement, subtraction and tongue movement in the Graz BCI). In

the ABI there are six predefined mental task (relax, subtraction, cube rotation, right and

left hand movement and word association), but the subject is able to choose which three

of those he or she wants to use. These three BCIs (ABI, Graz and Oxford) have two

mental tasks in common, namely the imagination of the movement of the left or the right

hand and the math (subtraction) task. Although the mental tasks are defined in these three

BCIs, the definitions are not very strict and subjects can use different mental strategies

while performing them.

With the TTD subjects are not instructed which kind of mental strategies they should use

in order to change their SCP amplitude. Therefore, the subjects can use different mental

strategies in order to acquire control of their SCP amplitude. Examples of these strategies

can be found in [31] (see also the section 2.3.2). However, it is possible that the user loses

the control of his or her SCP amplitude. One of the subjects in the study reported in [7]

achieved a 65% control of his SCP amplitude, but lost it after several months of training

when he changed his cognitive strategy. He never regained it despite of several days of a

new training.

With the Wadsworth BCI new users are advised that various kinds of motor imagery are

usually helpful in beginning to acquire control. The control of the Wadsworth BCI may

become almost automatic [65]: “As training continues, users often report that they use
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imagery less and less.”

3.3.6 Applications

Use of different kinds of applications have been reported with all six BCIs expect the

Oxford BCI. The TTD has been used by ALS-patients as a communication tool with the

language support program. More recent applications include the environment control unit

and the Internet browser “Descartes” [22]. The Graz BCI has been used to control a

prosthetic arm [53]. The Alberta BCI has been used as the environmental control device

[28]. The Wadsworth BCI has been used to answer simple YES and NO questions [41].

The ABI has the Virtual keyboard and Pacman applications [13].

3.3.7 Biofeedback

Some kind of biofeedback is provided for the user in all the six BCIs, expect in the Graz

BCI. However, during the years, different kinds of feedback has been used in the Graz

BCI (see the section 2.6.3). The most popular form of biofeedback has been the cursor

control. In a typical experiment user tries to move the cursor to the goal, which is located

on one side of the screen by using two commands (i.e., up&down or left&right). Cursor

control was used in Alberta, Oxford, TTD and Wadsworth BCIs. In the ABI colored balls

are used as feedback (see Figure 3.6. TTD’s feedback display can be seen in Figure 2.8.

Positive reinforcement is provided by a smiley face after the cursor successfully hits the

target. In the Wadsworth BCI the target flashes for 1.5 s as a reward.

3.3.8 Performance

It is difficult to compare the performances of the BCI systems, because the researches

present the results in different ways. However, in this section the comparison is made in

accuracy, application specific performance and selection speed. In addition, asynchronous

use is discussed.
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Accuracy

As described in the section 2.8 there are basically three ways to report accuracy of a BCI:

Hit rate, correct classification rate and confusion matrix. In addition to that, some of the

results reported with the TTD and the Wadsworth BCI are application specificand are not

in any way comparable with the results of other BCIs.

The hit rate is reported with three of the six BCIs (Alberta, Wadsworth and TTD). In the

Alberta BCI it was reported that the subjects achieved hit rate close to 100 % with two

classes and 70-85 % with four classes [32]. 32 cursor steps were used. Four subjects

achieved hit rates of 78-93 % with the Wadsworth BCI [41]. 3 patients achieved approx-

imately hit rates of 70 % with the TTD [7]. The hit rate does not tell much about the

classification accuracy and it is dependent on the number of the cursor steps. Better way

to report the results is the correct classification rate or accuracy.

The correct classification rate was reported with the Oxford BCI. Overall mean classi-

fication rates (fraction correct) were 0.8648 (hard rejection), 0.7595 (soft rejection) and

0.5318 (baseline) [58]. However, the correct classification rate does not tell how the errors

are distributed between the classes. Therefore, the results should be presented using con-

fusion matrices. That was done with the ABI and the Graz BCI. The channel capacities

can then be calculated from the confusion matrices. In the ABI the maximum channel

capacities with three subjects were 1.20, 1.19 and 0.64 [16], while in the Graz BCI they

were 0.42, 0.81, and 0.56 [48]. Furthermore, the results from the Graz BCI were offline

results, while in the ABI they were online results.

Application specific performance

Kűbler et al. [31] compared BCIs on the basis of text input speed. That is not a good way

to compare the performances of the BCIs, because

a) Not every BCI has a writing application.

b) Even if a BCI has a writing application, the text input speed is affected by the appli-

cation used.

Of course, this kind of comparison can give some indication of the performances of the

BCIs, but only the ABI and the TTD have the writing applications. In the TTD it took
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subjects about 2 minutes to write one letter whereas in the ABI the same can be done

in about 20 seconds. Other BCIs have had other applications. In the environment con-

trol application used with the Alberta BCI [28], it took 6.8, 7.6 or 8.3 seconds for three

subjects, respectively, to select one button. In the Wadsworth BCI’s question-answer pro-

tocol, subjects were able to answer questions at a rate of 4.0 to 4.6 question per minute

(13-15 seconds for one question).

Selection speed

When considering using a BCI as a communication or a control tool, it is important to

know how long does it take to make one selection. Although the classification can be

made in short time intervals (for example, in 63 ms in the TTD, see Table 3.3) it does

not mean that one selection can be made in that same time. For example, in the TTD,

the actual time for one selection in the language support program (see the section 3.1.4)

was much longer, 4-6 seconds. That time is the trial length, including the initial baseline

period (2 seconds) and the time when the subject tries to move the cursor to the target (2-4

seconds). In the Graz BCI the trial length was fixed at 8 seconds. It included the initial 2

second reference interval at the beginning of each trial. These two BCIs (the TTD and the

Graz BCI) require the initial baseline or the reference interval. This means that they must

be operated in a predefined time window. In other words, they are operated in externally

paced, synchronousmode (see the section 2.9)

Wadsworth, Alberta and Oxford BCIs had trials in which the subject tried to move the

cursor to the target. The length of one trial was dependent on the subject’s performance

as well as on the speed of the cursor (i.e., step in Table 3.3). In addition, the number of

the steps required to hit the target affects the length of one trial. No baseline or reference

interval were needed in the trials of these BCIs. The ABI differs from all of the five other

BCIs in the fact, that no trials were used. Therefore, the subject could theoretically make

one selection in the same time as one classification is made (i.e., in half a second). The

ABI has 60 seconds baseline period before each recording session.

Asynchronous use

The four BCIs (Wadsworth, Alberta, Oxford BCIs and ABI) could theoretically be used

continuously, i.e., no predefined time window is needed. However, this does not automat-

ically mean that these BCIs could be used in asynchronous mode. At least the Wadsworth
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BCI Approach Classes Training duration Biofeedback Electrodes
Alberta PR 2 or 4 not reported cursor 4
Oxford PR 2 not reported cursor 2

Wadsworth OC 2 weeks or months cursor 2
TTD OC 1 months cursor 1
Graz PR 5 No training No FB 29
ABI PR (offline) 3 > 1h Balls 8

Table 3.4: Summary of the six BCIs. PR=pattern recognition and OC=operant
conditioning

BCI cannot detect when the EEG control is intended or not, because the EEG sample is

always classified to either of the two classes. In addition, the application (the question-

answer protocol, see the section 3.1.3) of the Wadsworth BCI used the same kind of

trials as the training period. The Alberta BCI, although based on the pattern recognition

approach, did not have a reject option. However, in the environmental control unit ap-

plication [28], a kind of asynchronous mode was tried to be initiated through software.

The user of the application could “lock” the system. In the lock-mode, the control of

the system was blocked until a certain sequence of four buttons was selected. However,

the lock-mode did not work perfectly, because the subject who could not see the screen,

accidentally unlocked and then re-locked the system in about five minutes. Also in the

TTD the use of lock-mode has been studied in [27].

The ABI and the Oxford BCI are both based on the pattern recognition approach and

use the rejection of uncertain classifications. Therefore, they could theoretically detect

when the subject is not concentrating on the mental tasks by rejecting them, i.e., work in

true asynchronous mode. However, it remains unclear how efficiently the rejection works

when the subject is not performing any of the mental tasks.

3.3.9 Summary and discussion

Table 3.4 displays the summary of all six BCIs described in this chapter.

All the six BCI systems described in this chapter have much room for improvements.

Some problems are specific for the pattern recognition approach and some for the operant

conditioning approach. However, all the six BCIs have several problems in common:

1) Accuracy Accuracy is maybe the most important aspect in any BCI. As described

in the section 2.8, the accuracy affects greatly the channel capacity, and thus, the
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performance of a BCI. If a BCI is used for communication, the false classifications

hinder the communication by slowing it up or by producing errors. This can make

the user frustated and further hinder the performance. If a BCI is to be used in the

control applications (environmental control, hand prosthesis, wheel-chair, etc.), the

accuracy is crucial. Imagine the wheel-chair going to the wrong directions at the

junction of the street.

Today’s BCIs have not achieved 100 % accuracies even with only two classes. Hit

rates of close to 100 % have been reported in [32, 41]. However, what the actual

sample-by-sample accuracy has been is not known. In addition, the differences

between the performances of the individual users are great. The number of the false

classification can be reduced by rejecting uncertain classifications. The rejection of

uncertain classifications decreases the number of the false classifications and, thus,

increases the performance. However, the rejection was used only with the ABI and

the Oxford BCI.

2) SpeedBeside accuracy, speed is also very important when considering using a BCI

for communication. As described 3.3.8, the speed of a particular BCI is affected

by the trial length, i.e., the time needed for one selection. Typically, one trial lasts

many seconds. This time should be shortened in order to make a BCI effective

in communication. In the ABI, no trials are used and the time for one selection

is theoretically 0.5 s. However, in the practical applications it is longer (see the

section 3.2.5.

3) Usability The preparation for the use of a BCI takes time, because of the EEG mea-

surement. Ideally, the user, even a disabled one, could use a BCI independently

after the EEG cap or electrodes have been put on. However, an operator is normally

needed and one cannot use a BCI independently (see also asynchronous use).

4) Feedback The most common type of feedback has been the cursor control. However,

compared to those feedback methods (different kind of games) used in the EEG

biofeedback (see the section 2.6.2), they seem unimaginative and boring. The goal

of many BCI researches may be a mouse-like interface, but this goal is still far away

(see “BCIs as cursor control device” later this section).

5) Asynchronous useAt least four of the six BCIs (Alberta, Graz, Wadsworth and TTD)

cannot currently be used in asynchronous mode. In addition, further experiments

are needed to find out if the rejection methods used in the ABI and the Oxford

BCI can prevent unintended commands. However, if true asynchronous use is not

possible, a lock-mode or on-off switch can be implemented through software. This

has been tried with the Alberta BCI and the TTD.
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6) Training duration This problem is more specific to BCIs based on the operant con-

ditioning approach (the Wadsworth BCI and the TTD), which may require months

of training. It means that the user must have patience and motivation to take part in

such a long training.

7) Changing EEG patterns This problem is more specific to BCIs based on the pattern

recognition approach. The EEG patterns related to the mental tasks can change

between the days or even during the use of a BCI [31]. The changed patterns mean

that for the optimal use of a BCI, the re-training of the classifier is needed from

time to time.

Pattern recognition vs. operant conditioning approaches

Which one of the two approaches is better? There is no definite answer. It is clear that

the training period is much longer in BCIs based on the operant conditioning approach.

It means that the user must have patience and motivation. However, the long training

duration might pay for itself, if in the end the performance is better than in BCIs using the

pattern recognition approach. In todays BCIs this does not seem to be the case. However,

as discussed in the sections 3.3.1 and 3.3.8, the experiments have been too short and

inadequately reported with many BCIs, that no definite conclusions can be made.

The pattern recognition approach has its problems too. The EEG patterns related to the

mental task change in time. This means that the classifier should be re-trained after some

time. In addition, at least some of the mental tasks (for example, math tasks) are not

at all related to the task user tries to accomplish (moving the cursor or selecting menus

or letter). Could then the operant conditioning approach offer more stableand natural

interface?

To end this section, the use of BCI for controlling cursor is considered.

Using a BCI for controlling cursor

Considering that many BCIs have used the cursor control as feedback, those interfaces

are still far a way from an ordinary mouse. A mouse ables us to do several things which

seem not possible with today’s BCI technology. First, using the ordinary mouse, one can

move the cursor to anydirection in 2-dimensional space. Today’s BCIs can provide only

2 directions with reasonable accuracy. Experiments with 4 directions have been made
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(see [32, 67]), but the hit rates were around 65 %. Second, one can easily change the

direction of the cursor with the mouse. Is this possible with the BCI control? In all the

experiments reported today the goal has been to hit the target located on one side of the

screen. Therefore, it is not clear how well the subjects would have been able to change the

direction of the cursor in the course of the trial. Third, a mouse ables us to use a graded

control, i.e., we can move the cursor faster or slower. Today’s BCIs cannot provide this

kind of control. Fourth, we can stop the cursor easily by stopping the mouse and do

other things such as watch the screen for any length of time before moving the mouse

again. With the current BCIs this kind of asynchronouscontrol does not work. Finally,

the mouse has one to three buttons. To implement this in a BCI would require even more

classes.
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Chapter 4

Experiments with ABI

The experiments with a new ABI system were performed with three subjects in the Lab-

oratory of Computational Engineering in February 2002. In the beginning of this chapter

the hardware and software of the new ABI system are reviewed. The experimental meth-

ods and the online results are then presented along with the discussion. In addition, the

subject reports about the mental task strategies and the feedback experiences are also

presented in this chapter.

4.1 The ABI system

The ABI system consists of the hardware, which is used to measure the EEG and four Mi-

crosoft Windows based programs: EEP H11 Server, ABI Learning and online programs

and ABI Visualization.

4.1.1 Hardware

The hardware used in these experiments was different from the hardware previously used

with the ABI (see the section 3.2). The EEG system here was Electro Encephalo Processor

model H11 (EEP H11) manufactured by Fase Sistemi, one of the partners of the ABI

project. The whole system consists of EEG device, battery, battery charger and electrode

cap. The EEG device is small, its dimensions are only 160� 110� 55 mm and it weights

700 g.
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Figure 4.1: EEP H11 EEG device, its battery and the electrode cap used in the
experiments. The pen is in the picture to give a reference in size.

The system has 38 analogical single ended channels and 2 electrical references. The ana-

logical signal from each electrode is converted to digital signal with 16 bit resolution

and sampling rate of 6800 Hz. The EEG device is battery powered. The data is trans-

mitted to the computer via fiber-optic cable. This makes the EEG device isolated from

the surrounding electrical fields. The electrode cap of medium size (54-58 cm) is ECI

Electro-Cap Electrode System manufactured by Electro-Cap International, Inc. The cap

has 32 electrodes for scalp EEG and 6 additional electrodes, which can be used as ref-

erence electrodes and measuring the EOG. Cap, EEG device and battery can be seen in

Figure 4.1.

4.1.2 Software

Three Microsoft Windows based programs are needed in order to operate the ABI system:

EEP H11 Server, ABI Learning program, and ABI online program. The EEG signal can

be visually inspected with the ABI Visualization program.
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EEP H11 Server and ABI Visualization

This program acts as a server (application programming interface (API)) for the ABI

applications. In other words, it sends the EEG signal coming from the EEP H11 system

to the ABI online and the ABI Visualization programs. The electrodes used with the ABI

are selected with this program. The EEG signals can be seen in the main program window.

It is possible to filter the EEG signals, for example, if they contain the 50-Hz component

(see the section 2.4.4).

Beside the EEP H11 Server program, the EEG signals can be visually inspected with the

ABI Visualization program, which displays the signals coming from the electrodes used

in the ABI system (F3, F4, C3, Cz, C4, P3, Pz and P4).

ABI Learning

This program is used to train a set of prototypes from the recorded data. Each prototype

corresponds to one particular mental task as described in the section 3.2.1. The classifier

will then use these prototypes in the online classification of the EEG signals. In order

to train a new set of prototypes, the processed data of one recording is loaded up into

the program. Usually, the data without transitions is used. The data does not contain the

initial resting period. The mental tasks are labeled in the data. The data is then divided

into training and validation sets in such a way that three consecutive samples go to the

training set and every fourth one goes to the validation set.

A new set of prototypes can be trained using the training and validation sets. It is also pos-

sible to load old prototypes or use a clustering method, the Self-Organizing Map (SOM),

to create a set of prototypes from the training set. The old prototypes or those created by

the SOM can then be used as a starting point for training of new prototypes.

The learning window (see Figure 4.2) can then be opened to train the new prototypes or to

evaluate the prototypes already present. If no initial prototypes are present, the program

will compute 1 prototype, averaging the samples of that class. Before starting the training,

the number of iterations can be adjusted, i.e., how many times a new set of prototypes is

trained. probabilityand distancethresholds can also be adjusted.

The thresholds affect on how easily the samples are classified to belonging to one of

the mental tasks and how easily they are rejected. The classifier computes probability
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values for a sample belonging to each of the mental task included in the dataset. Then the

highest probability value is chosen and this value is compared to the probability threshold.

If the value exceeds the threshold, the sample is classified to the corresponding task,

otherwise it is rejected. A sample is classified to a class based on the Mahalanobis distance

[9]. If the distance is relatively long, the probability that the sample belongs to a class

becomes uncertain. If the Mahalanobis distance exceeds the value defined by the distance

threshold, then the sample is rejected.

After the number of the iterations and the thresholds are adjusted, the training of the

new prototypes can be started. During the training, a new set of prototypes are trained

in every iteration. After the training has finished, the confusion matrices corresponding

to each iteration can be reviewed. The operator can then choose the best iteration (best

prototypes) either manually or automatically. In automatic selection the operator can put

all emphasis on validation set. The best prototypes can be then saved to be used later in

the ABI online program.

ABI online program

The ABI online program was used to gather data for the Learning program and to give

the feedback for the subject. A part of the main program window can be seen in Figure

4.3. This program acts as a client for the EEP H11 Server, i.e., the program gets the EEG

data from the server. This data can be be saved in two formats: Raw data and processed

data. The raw data is the data coming from the EEP H11 Server. The processed data goes

through the feature extraction methods explained in the section 3.2.1 expect that in these

experiments a spline Laplacian method [4] was used instead of the surface Laplacian. The

classifier uses the processed data. The raw data is saved for later evaluation.

The program can also be used to give feedback for the subject. In order to do this, the

prototypes trained in the Learning program must be loaded for each of the mental tasks.

The probability and the distance thresholds of the classifier can be adjusted. It is also

possible to choose either positiveor total feedback. Positive feedback means that only

the correct classifications are shown for the subject. If total feedback is used, all the

classifications are shown for the subject.

The actual acquisition starts with the resting period in which the baselining is made (see

the section 3.2.1). After the resting period, the classifying period starts. The mental tasks

are labeled by the operator, who pronounces the name of the task and at the same time
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Figure 4.2: ABI Learning program.
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Figure 4.3: ABI online program.

presses the corresponding button in the program. These labels are saved in the raw and

processed data.

4.2 Experimental methods

This section describes the methods used in the experiments. The experiments were done in

the Laboratory of Computational Engineering, in the Helsinki University of Technology,

during five consecutive days starting from 4th of February and ending 8th of February

2002. The experiments were made in 2�4 meters room (see Figure 4.4).

4.2.1 Subjects

Two healthy male subjects (subjects TN and JL) and one healthy female subject (subject

LL) in their mid-twenties were the test subjects. Both male subjects were familiar with

the ABI system (subjects TN and JL). They had used it a couple of times before these

tests, but no actual training were done with them. The ABI was new to subject LL.
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Figure 4.4: Test environment

4.2.2 Mental tasks

For the subject unfamiliar with the ABI (subject LL), the first step was to introduce the

system to her. She was able to try the mental tasks (form the list presented in the section

3.2.2) by herself and decide which three were the most suitable for her. Before the actual

first measurement a test run was made with these tasks in order to introduce the whole

procedure to the subject.

Two of the subjects (TN and JL) used the mental tasks they were familiar with. Subject

JL used relax, subtraction and right hand. Subject TN used relax, cube and left hand. The

third subject, LL used three different combination: Relax, subtraction and right (days 1

and 2), relax, left and right (days 2 and 3) and relax, right and words (days 3, 4, and 5).

Three different combinations were used because the first two did not work.

4.2.3 Data acquisition

The same electrodes were used in these tests as with the ABI before (F3, F4, C3, Cz, C4,

P3, Pz and P4). The signals were referenced to the right ear. The ground electrode was
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in the left ear. The signals were checked with the ABI Visualization program and if they

were noisy, a bandstop filter of order 24 and the frequency band from 45 Hz to 55 Hz

was selected in the EEP H11 Server. Instead of the local surface Laplacian method used

previously with the ABI, the spline Laplacian method [4] was applied to the raw data.

In addition, before each recording the EEG signals were visually checked with the ABI

Visualization program to ensure that all electrodes were giving good signals.

Each recording lasted about 300 seconds, including the initial resting period (60 s). After

the resting period, the operator instructed the subject which mental task to perform first.

The operator then changed the mental tasks so that each mental task lasted between 10-25

seconds. The order and length of the mental tasks were random. Three to five record-

ings were done in one session (day). There was about 5-10 minutes break between each

recording.

4.2.4 Feedback

The feedback was provided the same way as described in the section 3.2.1. In addition,

to the lighting up of the ball, the color or the “darkness” of the ball displayed the classifi-

cation probability. Auditory feedback in the form of “beeps” was provided with the relax

task (remember that relax task is performed eyes closed). Matrox G550 Dualhead display

adapter was used in order to display the feedback on the separate screen. The operator

sat about two meters away from the subject. The operator’s display was situated sideways

from the subject, so the subject couldn’t see the operator’s display (see Figure 4.4)

Subject LL received no feedback during the first session (day). This session consisted of

four recordings, which included two combinations of mental tasks. The other combination

was relax, left and right (first and third recording) and the other relax, subtraction and

right (second and fourth recording). Feedback was not given in the first day, because

the idea was to find out which mental tasks suited best for subject LL by trying these

two combinations offline. It is better not to train a set of prototypes from the very first

recordings and give feedback according to them. The mental tasks and the whole situation

are so new for a subject unfamiliar with the ABI, that he or she improves in performing the

mental taks very rapidly during the first recordings. Therefore, prototypes would become

outdated between two recordings. Contrary to subject LL, only the first recordings were

done without feedback with subjects TN and JL. This was because they were already

familiar with the ABI system and the mental tasks used.
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Positive feedback was given to all three subjects. Total feedback was given only for

subject JL in some recordings (for complete list, see Appendix A.1) because he was the

only one who achieved such a good level of performance at the first day that total feedback

was thought to be more suitable than positive feedback.

4.2.5 Training

A new set of prototypes were trained after each recording using the data from the previous

recording or the combined data from 2 or 3 recordings. Sometimes prototypes used in the

previous recording were used as the initial prototypes. After the training, the confusion

matrix of the new prototypes was compared to the confusion matrix of the old prototypes.

If the new confusion matrix was better than the old one, the new prototypes were used in

the next recording. The idea behind this approach was to find the best set of prototypes

for each recording. If a good set of prototypes was found, then it was used in several

recordings. This was the case with the prototypes created from the recording 3, day 1 for

subject JL. He used them in all the recordings of day 2 and in the first recording of day 3.

However, the results got considerably worse in days 2 and 3. Therefore, new prototypes

were trained and used in days 3, 4, and 5. However, in the first recordings of days 4 and

5 the prototypes from day 1 were still tried, but with no success.

In the approach used previously with the ABI (see the section 3.2.3), same prototypes

were used in every recording of one day. We adopted a different approach, because we

felt that the prototypes should be more “up to date”, keeping up with the changes in

the EEG between the days and even recordings during one day. However, changing the

prototypes almost after every recording means that the subject does not have a chance to

adapt to the particular set of prototypes. However, it was thought that it is first necessary to

find prototypes which perform reasonable good (for example, giving correct classification

rates over 50 % and false positive rates below 10 %) before the subject can really adapt to

them.

4.3 Online results

In this section the online results of the experiments are presented. The results are from

the real online situation, i.e., the subject has received feedback according to the results

presented in this section. The only difference is that two seconds before and after each

70



transition are removed. This removes the communication between the operator and the

subject and avoids mislabeling of the mental tasks.

The results are presented in two different formats. In the other, the correct and false

classifications of three mental tasks are presented for every recording. In the other, the

channel capacities (in bits/trial) for all recordings are presented. Finally, the best and

mean online results for each subject are presented. Notice that the probability and the

distance tresholds varied between the recordings (see Appendix A).

4.3.1 Correct and false classifications

Correct and false classifications of each mental task for each subject are presented in

the Figures 4.5, 4.7 and 4.6. Solid lines represent the percentage of the classifications

(including the rejections) classified to the corresponding task. Dashed lines show the

percentage of the classifications (including the rejections) classified to the wrong class. In

the graphs, each of the mental tasks is color coded. Green is for relax, cyan for subtraction,

red for cube, blue for left hand, black for right hand and magenta for words.

4.3.2 Channel capacities

The channel capacities for each three subjects of all online recordings are presented in

Figure 4.8. The channel capacities were calculated using the Arimoto-Blahut algorithm

[10].
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Figure 4.5: The online performance for subject JL over five consecutive days of
all online recordings. For thresholds and feedback used, see Apendix A.1.
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Figure 4.6: The online performance off all recordings for subject LL over four
consecutive days. Notice that the combination of the three mental tasks changed
three times during the training. For thresholds used, see Apendix A.2.
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Figure 4.7: The online performance for subject TN over five consecutive days of
all online recordings. For thresholds used, see Apendix A.3.
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Figure 4.8: Channel capacities for all subjects of all online recordings. Subject
LL was unfamiliar with the ABI at the start of the training were as subjects JL
and TN had some experience.
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4.3.3 The best and mean results

Here the best and mean (according to highest channel capacity) online results for each

subject are presented. All online results can be seen in Appendix A. The best online re-

sults are presented in Tables 4.1, 4.2, and 4.3. The results are presented in two tables. The

left table presents the confusion matrix of the online results. The right table displays three

values: TP, FP and CC. TP displays the percentage of all the samples (including classified

and rejected samples), which were correctly classified. FP displays the percentage of all

samples, which were falsely classified. CC is the channel capacity in bits/trial. The mean

results and standard deviations are presented in Table 4.4.

CM (%) Relax Subtr. Right Reject
Relax 79.8 1.0 1.0 18.2
Subtraction 2.3 33.8 18.0 45.9
Right 0.8 4.6 52.3 42.3

TP (%) FP (%) CC (bits/trial)
51.4 9.8 0.70

Table 4.1: The best online results for subject JL. Obtained at day 4, recording
5. Probability threshold was set at 0.9 and distance threshold at 100. Prototypes
used were from day 4, recording 5.

CM (%) Relax Right Words Reject
Relax 72.2 2.6 3.5 21.7
Right 12.6 25.9 14.8 46.7
Words 6.2 27.6 26.9 39.3

TP (%) FP (%) CC (bits/trial)
36.7 24.7 0.41

Table 4.2: The best online results for subject LL. Obtained at day 4, recording
4. Probability threshold was set at 0.8 and distance threshold at 110. Prototypes
used were from day 4, recording 2.

CM (%) Relax Cube Left Reject
Relax 84.7 0.0 0.0 15.3
Cube 1.4 45.3 18.0 35.3
Left 0.8 18.0 36.7 44.5

TP (%) FP (%) CC (bits/trial)
50.9 13.8 0.76

Table 4.3: The best online results for subject TN. Obtained at day 3, recording 3.
The probability threshold was set at 0.8 and distance threshold at 100. Prototypes
used were from day 3, recording 1.
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Subject JL LL TN
Recordings 18 12 13
Mean CC 0.43 0.26 0.44
std 0.14 0.10 0.14

Table 4.4: The number of recordings, mean channel capacities, and standard de-
viations (in bits/trial) over all recordings for each three subjects

4.4 Subject reports

What do the subjects think when performing the different mental tasks? Although some

instructions are given for performing each of the mental task in the ABI, the subjects can

use different and individual strategies. There can be many strategies with each of the

mental tasks and they can change during the training. The only way to find out what

these strategies are, is to ask it from the subjects. The subjects were presented with the

question form displayed in Appendix B. In addition to the mental task strategies, the

feedback experiences were questioned. The mental strategies and feedback experiences

are presented in this section based on the answers of subjects JL, TN and LL.

4.4.1 Mental task strategies

Every subject had relax as one of the mental tasks. Everyone found it easy and did not

use any specific strategy.

Every subject used the hand movement task, either the right hand movement(subject JL

and LL) or the left hand movement(subject TN). Subject JL used mainly two strategies

with the right hand movement. In the first he tried to imagine his thumb touching other

fingers. In the other strategy, he imagined tapping his fingers against a chair arm-rest.

Subject LL imagined moving her fingers up and down with about one movement occurring

every second. In other strategy, she left the finger up and tried to some circles in the air, but

it did not seem to work well. At the beginning of training subject TN imagined running

his fingers along guitar strings as he was playing a solo. At the end of the training he just

felt that his left hand was “active”.

Subject JL used the subtractiontask for the whole training week. He reported that it took

first a little time, second or two, to pick up the two numbers. He usually first picked
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the “base” number (to subtract from) between 80-250 and the fixed number (to subtract

with) between 5-9. He found out that it was more difficult to concentrate on subtraction

in the experimental situation than normally. He made calculation errors quite a lot, espe-

cially if he hesitated (which he usually did). He mentally pronounced the numbers when

calculating.

Subject TN used the cubetask. He used three different strategies. In the first, he imagined

a yellow framed cube which started to rotate at slowly accelerating speed around one of

its axis. In the second strategy, he imagined a rotating box moving at the inner edge of

a thin ring. In the third strategy, he imagined a rotating cube going through a square and

drawing a number eight. He found out that it was efficient to switch between the strategies

during the time the mental task was performed (approximately 15 seconds).

Subject LL used the word associationtask from the day 3 to the end of the training (day

5). She found it difficult at first. She decided beforehand what word she started with.

She, for example, took a name of a friend or, alternatively, a word of some thing see

could see in the room. At the beginning she used a lot of Finnish words and especially

names. Towards the end of the week, she started using more English and Swedish words.

She found out that Swedish words worked well, because they end with so many different

letters (the problem with Finnish words when used with the word association task is that

most of the Finnish words end in vowels like ’a’ and ’o’). Subject LL is bilingual (she

can speak Finnish and Swedish).

4.4.2 Feedback experiences

Subject JL felt that feedback helped him to concentrate on the current task, because he had

to try his best in order to get a lot of feedback. On the other hand, he felt that feedback

interfered a bit the concentration on the mental tasks. He did not usually look straight

to the feedback balls. He noticed that feedback seemed to be related to breathing with

the relax task. Especially, during start of inhaling he noticed that feedback stopped and

started again soon after that. The right hand seemed to give feedback best when he got

in good “rhythm”, i.e., could imagine tapping his fingers rapidly. With the subtraction he

did not notice any particular point when feedback was given or not given.

Subject JL was the only one of the subjects who used both positive and total feedback. In

the first day of the training he was getting positive feedback. The last two recordings of

day 1 and the first recording of day 2 went so well, that feedback was switched to total.
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With total feedback he noticed that feedback worked in both ways. Especially, if during

the subtraction feedback for right hand was given, he began sometimes to think his right

hand even if he was supposed to think the subtraction. It was then little difficult for him

to get back to the subtraction.

Subject LL reported that the auditory feedback (the “beeps”) used in the relax task were

annoying at the beginning. However, she found out soon that the beeps helped her to

concentrate on the relax task as they took away her thoughts. The more she heard the

beeps the more she got relaxed. With other tasks, she found it difficult at first to keep

eyes on the screen and at the same time concentrate on the current mental task. With the

hand movement tasks she felt that the feedback worked best. She felt that the feedback

ball blinked when she imagined moving her finger up and sometimes when she imagined

moving them down. The feedback made her to speed up the movements and not to spend

so much time either up or down position. With the words task, she noticed that she got

feedback at the moment when she ended with a difficult letter and was really trying to

find a new word. Subject LL also highlighted one important thing: Beside the feedback

balls, the operator also gives feedback to the subject. Subject LL reported that during the

recording small, unconscious sneers from the operator gave a lot of negative feedback.

The little body movements and the hand movements when operator was using the mouse

also disturbed subject LL.

Subject TN felt that he benefited from feedback, but only in the cube and the left tasks.

Especially in the cube task, he saw clear differences in feedback when he rotated the cube

at different speeds or switched between the different strategies.

All subjects reported the color changes in the feedback balls (due to classification prob-

ability, see section 4.2.4) did not help them. Subject TN reported that it distracted him,

because there was no constancy in the color changes.

4.5 Discussion

4.5.1 On the results

The results show up several things. They are discussed in this section.
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There were great individual differences between the subjects

As can be seen from the online results, the results were significantly worse for subject

LL than for subjects JL and TN. Only in one recording (day 5, recording 1), the correct

classifications exceed the false classifications in every three classes. The fact that subject

LL had no previous experience with the ABI while subjects JL and TN had, may partly

explain the differences. In addition, the subjects used different combinations of mental

tasks and different kinds of mental task strategies (see the section 4.4.1). It also seems that

people have individual differences on which mental tasks (or rather which combination

of three mental tasks) suit them best. It would require more time to find out the best

combination of the tasks for each of the subjects.

The original idea with subject LL was to find out the best combination in the first day of

the training and then use it for the next four remaining days. However, the first combina-

tion (relax, subtraction, right) did not seem to work (there were more false classifications

than the correct ones with one or two classes). In addition, the subject wanted to change

subtraction to left hand. This combination was then used in three online recordings, but

the results did not improve, rather the opposite. Therefore, the third combination (relax,

right and words) was tried out. This combination gave then the best results of the week,

but still not very good.

There was high variability between the recordings with each of the subjects

This can be a result of the variability in the EEG (as discussed in [31] and the section

3.3.9). The prototypes are trained with the data obtained from the previous recording.

The idea of training and updating the prototypes frequently did not seem to help. One

can see that almost without exception there was performance drop between the days (see

Figure 4.8). The exceptions were days 3 and 4 with subject JL. However, as can be

seen from the figure, the recording 1 is not displayed for the day 4. This recording was

done online, but the operator made an error and the results are not comparable with other

results.

There was no performance development during the training with any of the subjects

This may also be related to variability in the EEG between the days. During one day some

development can be seen with each of the subjects (days 1 and 4 with subject JL, day 4
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with subject LL and days 3 and 5 with subject TN). The idea in the ABI is the mutual

learning process. The BCI learns the subject specific patterns of each mental task and

the subject learns to produce this tasks so that the ABI detects them better. This requires

that first the BCI (classifier) adapts to the user sufficiently and good prototypes can be

trained from the recorded data. Then these prototypes could be used in several recordings

in which the subject tries to learn from the feedback. However, we were not able to really

use this approach, because we were not able to train sufficiently good prototypes for any

of the subjects. The most promising looking prototypes were those trained for subject

JL on day 1, recording 3 and they were used in several recordings. However, the results

declined.

The results were generally worse than with the previous ABI version

This can be due the fact that different EEG equipment was used than with the previous

version of the ABI. The EEG equipment (EEP H11) used in these experiments seemed to

work well and give good EEG signals. Sometimes the signal contained clear 50 Hz com-

ponent, but that was filtered out. However, an in-depth study of the EEP H11 equipment

should be carried out to find out if it works as it should. In addition, only an electrode on

the right ear was used as reference in these experiments were as linked-ear reference was

previously used with the ABI. The linked-ear reference may give better signal and could

improve the detection of the left-right difference (especially important when using the left

and right hand movement tasks).

The results presented in this chapter are the real online performance. It was found out, that

the previous results (see the section 3.2.4) were obtained from the ABI Learning program

using the online data as a training data. This procedure does not give the actual online

performance of the system, which we is the most important performance meter.

The relax task was classified best with all subjects

This is quite reasonable. The power level of the alpha rhythm (8-13 Hz) during the relax

task is the most distinct from all other tasks. This makes the relax task the easiest task to

classify.
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4.5.2 On the mental tasks

The relax task is different from all other tasks, because it does not need any cognitive

effort. It can be argued if it is a proper mental task to be used in a BCI. The closing and

opening of eyes produces a large change in the EEG signal. During the training period,

they are removed from the EEG data, because the transitions between mental tasks are

removed. However, in the applications the situation is different. In addition, the closing

of eyes means that it is not very practical in applications like the Virtual keyboard. It

also can be questioned how well people suffering from the locked-in syndrome can use it,

because they cannot freely close their eyes.

Other tasks have their downsides too. The subtraction requires first that the user picks up

the two numbers. This takes time, at least about one second. It does not matter so much

in training period, but the use of an application can suffer. The same criticism goes to

word association task too, in which the subject has to make up a word to start with. The

cube rotation task can be difficult or even impossible for some people. In addition, it is

not very good task in applications, which require constant visual attention.

The most “natural” mental tasks are the left and the right hand movement. They also are

most closely related to what happens in the applications than the other tasks. For example,

if one wants to select something from the right, it is more natural to think moving the right

hand than, for example, visually rotating a cube or mentally subtracting numbers from

each other.

4.5.3 On the feedback

It may be that total feedback sessions should be used only to train a subject, not a classifier.

At least in the beginning, total feedback itself affects the subject’s concentration on the

mental tasks. The only subject who received total feedback was subject JL. In his case, the

total feedback sessions were used to train new prototypes. However, he reported that total

feedback affected his concentration (see the section 4.4.2). The more successful strategy

might have been to use the positive feedback sessions to re-train the classifier and the

total feedback session to train the subject. The subject could freely try different mental

tasks strategies during positive feedback sessions without the fear that it affects the future

prototypes.

The feedback used with the ABI tells in which class the classifier thinks the EEG sample
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belongs. In addition, the color of the ball tells the classification probability. However,

the color changes did not provide any additional feedback to the subjects (see the sec-

tion 4.4.2. Maybe size of the ball would be more concrete and better way to show the

classification probability.
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Chapter 5

Conclusions

In this work six EEG-based brain computer interface systems were reviewed and com-

pared. Experiments lasting five days with three subjects were done with the new Adaptive

Brain Interface system.

The comparison of the BCI systems, especially their training duration and performance,

proved to be difficult. This was because the results were reported inadequately and differ-

ently in most of the papers. Reporting the experiments and results should be standardized.

The results from each recording or training day should be presented in order to see the

evolution of the performance. Instead of hit rates and correct classification rates, the re-

sults should be presented using confusion matrices and channel capacities. This would

make the comparison of the performances possible.

In this work the BCI systems were divided into the pattern recognition and the operant

conditioning approaches. From the two approaches, the pattern recognition approach

seems more plausible. Compared to the operant conditioning approach, the training du-

ration is much shorter. However, the high variability in the EEG between the days and

and changing EEG patterns during the actual use cause problems with this approach. This

means that the classifier needs to re-trained often. In the future, online learningcould be

used, in which the classifier is updated after every recorded EEG sample.

Accuracy, speed, usability and feedback methods should be improved in the current BCI

systems. Accuracy is the most important and affects greatly on the performance of the

BCI. Many of the BCI systems are operated in a synchronous way, using trials lasting

many seconds each. This means that time required for making one selection is long. This

time should be kept short (below one second). Feedback methods could be improved,
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maybe using games like in the EEG biofeedback. Some of the mental tasks used in the

ABI and the experiments in this work are not good. The relax task is the easiest to classify,

but it includes eye opening and closing, which is not permitted in a BCI by the definition

presented in the beginning of the second chapter. It can be argued if people suffering from

locked-in-syndrome can use the relax task. In addition, it is not good in applications,

because eyes are closed. Subtraction, word association and cube rotation tasks are not

very natural and practical in applications. The left and the right hand movement are the

most natural of the current tasks.

In the future, an exhaustive research about the mental tasks should be done. A study of the

left and right hand movements using high-resolution EEG and MEG is planned. Research

topics would include the localization of the brain activity during the mental tasks and how

the EEG changes in process of time. Other research areas would be feedback methods and

online learning.

There are many challenges in the future of the BCI field. Currently none of the BCIs are

capable of proper cursor control, which could be used to control ordinary computer appli-

cations. In the near future it is not possible and special applications must be developed for

BCIs. Today, special writing applications or Internet browser can provide communication

tools for severely disabled people. These applications could be improved. In the future,

BCIs could be used to control a hand prosthesis. How well that can be achieved with

EEG-based BCIs is not yet known. Non-invasive BCIs recording activity directly from

the motor cortex may be used for this kind of purpose in the future.
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Appendix A

Online results

A.1 Subject JL

Day 1

Recording 2

� Prototypes from day 1, recording 1

� Probability threshold: 0.8

� Distance threshold: 100

� Feedback: Positive

CM (%) Relax Subtraction Right Reject
Relax 52.8 6.3 2.4 38.6
Subtraction 1.3 21.5 8.1 69.1
Right 3.8 0.0 19.2 76.9

TP (%) FP (%) CC
27.3 8.6 0.36

Recording 3

� Prototypes from day 1, recording 2

� Probability threshold: 0.8

� Distance threshold: 120

� Feedback: Positive
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CM (%) Relax Subtraction Right Reject
Relax 49.5 0.0 5.5 45.1
Subtraction 1.1 39.7 16.2 43.0
Right 0.0 1.7 60.0 38.3

TP (%) FP (%) CC
44.2 11.7 0.58

Recording 4

� Prototypes from day 1, recording 3

� Probability threshold: 0.8

� Distance threshold: 120

� Feedback: Positive

CM (%) Relax Subtraction Right Reject
Relax 68.0 17.5 2.1 12.4
Subtraction 1.9 79.2 11.7 7.1
Right 3.7 15.9 54.9 25.6

TP (%) FP (%) CC
66.1 17.9 0.63

Day 2

Recording 1

� Prototypes from day 1, recording 3

� Probability threshold: 0.8

� Distance threshold: 120

� Feedback: Positive

CM (%) Relax Subtraction Right Reject
Relax 58.6 6.1 7.1 28.3
Subtraction 0.7 58.1 20.9 20.3
Right 2.6 13.0 60.0 24.3

TP (%) FP (%) CC
56.6 18.8 0.54

Recording 2

� Prototypes from day 1, recording 3

� Probability threshold: 0.8

� Distance threshold: 110

� Feedback: Total
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CM (%) Relax Subtraction Right Reject
Relax 45.8 18.3 6.1 29.8
Subtraction 0.0 50.0 21.3 28.7
Right 0.0 15.6 56.9 27.5

TP (%) FP (%) CC
49.9 21.3 0.43

Recording 3

� Prototypes from day 1, recording 3

� Probability threshold: 0.8

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 52.0 7.3 2.4 38.2
Subtraction 0.8 45.4 15.1 38.7
Right 0.9 8.1 37.8 53.2

TP (%) FP (%) CC
42.0 10.6 0.45

Day 3

Recording 1

� Prototypes from day 1, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 25.5 7.5 2.8 64.2
Subtraction 0.0 20.4 13.1 66.4
Right 0.0 2.0 40.6 57.4

TP (%) FP (%) CC
28.6 8.2 0.29

Recording 2

� Prototypes from day 1, recording 4

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total
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CM (%) Relax Subtraction Right Reject
Relax 36.7 0.7 1.4 61.2
Subtraction 0.0 6.3 16.4 77.3
Right 1.8 0.0 30.0 68.2

TP (%) FP (%) CC
22.7 7.5 0.28

Recording 3

� Prototypes from day 3, recording 2

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 17.4 0.0 0.0 82.6
Subtraction 0.0 20.4 0.7 78.9
Right 0.0 11.9 25.4 62.7

TP (%) FP (%) CC
22.1 4.0 0.30

Day 4

Recording 2

� Prototypes from day 1, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 19.9 6.8 0.7 72.6
Subtraction 0.0 50.0 5.0 45.0
Right 0.0 6.1 23.5 70.4

TP (%) FP (%) CC
27.7 7.1 0.34

Recording 3

� Prototypes from day 4, recording 2

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total
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CM (%) Relax Subtraction Right Reject
Relax 45.0 2.3 0.0 52.7
Subtraction 2.5 21.3 4.9 71.3
Right 0.0 3.7 21.3 75.0

TP (%) FP (%) CC
25.7 5.4 0.36

Recording 4

� Prototypes from day 4, recording 2

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 50.0 5.1 0.0 44.9
Subtraction 0.0 29.1 17.9 53.0
Right 0.8 5.4 20.8 73.1

TP (%) FP (%) CC
28.8 11.9 0.42

Recording 5

� Prototypes from day 4, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 79.8 1.0 1.0 18.2
Subtraction 2.3 33.8 18.0 45.9
Right 0.8 4.6 52.3 42.3

TP (%) FP (%) CC
51.4 9.8 0.70

Day 5

Recording 1

� Prototypes from day 1, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Positive
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CM (%) Relax Subtraction Right Reject
Relax 25.2 7.1 1.6 66.1
Subtraction 0.0 32.6 11.4 56.1
Right 0.0 8.7 29.1 62.1

TP (%) FP (%) CC
28.2 10.6 0.27

Recording 2

� Prototypes from day 4, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 79.0 1.0 0.0 20.0
Subtraction 2.1 19.3 15.2 63.4
Right 2.4 0.8 31.5 65.3

TP (%) FP (%) CC
39.4 8.5 0.62

Recording 3

� Prototypes from day 4, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Positive

CM (%) Relax Subtraction Right Reject
Relax 38.0 0.0 5.6 56.5
Subtraction 1.3 25.9 22.8 50.0
Right 0.0 1.0 61.9 37.1

TP (%) FP (%) CC
38.8 12.5 0.47

Recording 4

� Prototypes from day 5, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total
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CM (%) Relax Subtraction Right Reject
Relax 49.1 3.6 1.8 45.5
Subtraction 0.0 44.4 0.0 55.6
Right 0.0 14.3 9.2 76.5

TP (%) FP (%) CC
25.7 11.4 0.43

Recording 5

� Prototypes from day 1, recording 3

� Probability threshold: 0.9

� Distance threshold: 100

� Feedback: Total

CM (%) Relax Subtraction Right Reject
Relax 8.7 1.6 1.6 88.2
Subtraction 0.0 17.6 9.6 72.8
Right 0.0 4.7 32.8 62.5

TP (%) FP (%) CC
19.6 7.3 0.20

90



A.2 Subject LL

Day 2

Recording 1

� Prototypes from day 1, recording 4

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Subtraction Right Reject
Relax 28.5 7.7 8.5 55.4
Subtraction 9.6 19.3 19.3 51.8
Right 2.6 24.0 22.7 50.6

TP (%) FP (%) CC
22.3 24.6 0.15

Recording 2

� Prototypes from day 2, recording 1

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Subtraction Right Reject
Relax 51.8 8.2 11.8 28.2
Subtraction 15.2 16.0 44.8 24.0
Right 19.9 10.3 42.6 27.2

TP (%) FP (%) CC
33.8 39.7 0.16

Recording 4

� Prototypes from day 2, recording 3

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Left Right Reject
Relax 62.2 7.1 7.1 23.5
Left 3.3 36.4 31.1 29.1
Right 9.2 39.0 22.0 29.8

TP (%) FP (%) CC
37.5 34.2 0.37
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Day 3

Recording 1

� Prototypes from day 2, recording 4

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Left Right Reject
Relax 53.4 6.1 14.5 26.0
Left 5.9 24.6 36.4 33.1
Right 8.3 21.1 41.4 29.3

TP (%) FP (%) CC
38.5 31.0 0.24

Recording 2

� Prototypes from day 3, recording 1

� Probability threshold: 0.8

� Distance threshold: 120

CM (%) Relax Left Right Reject
Relax 34.1 8.1 3.0 54.8
Left 8.0 25.5 13.9 52.6
Right 5.8 20.4 10.2 63.5

TP (%) FP (%) CC
22.5 19.8 0.12

Day 4

Recording 1

� Prototypes from day 3, recording 3

� Probability threshold: 0.7

� Distance threshold: 100

CM (%) Relax Right Words Reject
Relax 54.3 3.1 4.7 37.8
Right 11.5 11.5 33.1 43.8
Words 14.4 6.1 40.2 39.4

TP (%) FP (%) CC
32.8 24.8 0.22
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Recording 2

� Prototypes from day 4, recording 1

� Probability threshold: 0.6

� Distance threshold: 120

CM (%) Relax Right Words Reject
Relax 60.3 3.8 6.1 29.8
Right 9.7 32.3 29.0 29.0
Words 13.4 26.0 19.7 40.9

TP (%) FP (%) CC
34.7 29.3 0.30

Recording 3

� Prototypes from day 4, recording 2

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Right Words Reject
Relax 72.1 13.6 4.3 10.0
Right 6.2 58.5 15.4 20.0
Words 8.4 34.5 32.8 24.4

TP (%) FP (%) CC
53.0 28.8 0.39

Recording 4

� Prototypes from day 4, recording 2

� Probability threshold: 0.8

� Distance threshold: 110

CM (%) Relax Right Words Reject
Relax 72.2 2.6 3.5 21.7
Right 12.6 25.9 14.8 46.7
Words 6.2 27.6 26.9 39.3

TP (%) FP (%) CC
36.7 24.7 0.41

Day 5

Recording 1

� Prototypes from day 4, recording 4

� Probability threshold: 0.7

� Distance threshold: 110
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CM (%) Relax Right Words Reject
Relax 38.1 5.6 15.9 40.5
Right 4.4 25.2 20.7 49.6
Words 0.0 26.4 32.2 41.3

TP (%) FP (%) CC
31.2 23.3 0.27

Recording 2

� Prototypes from day 5, recording 1

� Probability threshold: 0.8

� Distance threshold: 105

CM (%) Relax Right Words Reject
Relax 71.0 2.8 6.5 19.6
Right 13.4 7.6 36.3 42.7
Words 22.4 8.2 30.6 38.8

TP (%) FP (%) CC
32.6 32.2 0.28

Recording 3

� Prototypes from day 5, recording 2

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Right Words Reject
Relax 33.6 0.8 3.9 61.7
Right 7.9 11.3 11.9 68.9
Words 5.0 13.2 14.0 67.8

TP (%) FP (%) CC
18.8 13.9 0.16
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A.3 Subject TN

Day 1

Recording 2

� Prototypes from day 1, recording 1

� Probability threshold: 0.7

� Distance threshold: 120

CM (%) Relax Cube Left Reject
Relax 60.0 0.9 4.5 34.5
Cube 0.7 31.9 17.4 50.0
Left 0.0 25.8 28.2 46.0

TP (%) FP (%) CC
37.1 17.9 0.48

Recording 3

� Prototypes from day 1, recording 1

� Probability threshold: 0.8

� Distance threshold: 120

CM (%) Relax Cube Left Reject
Relax 58.7 7.3 2.8 31.2
Cube 1.4 35.5 17.4 45.7
Left 0.7 29.6 32.4 37.3

TP (%) FP (%) CC
39.9 20.9 0.43

Day 2

Recording 3

� Prototypes from day 2, recording 1

� Probability threshold: 0.8

� Distance threshold: 120

CM (%) Relax Cube Left Reject
Relax 57.8 0.0 2.3 39.8
Cube 1.7 5.9 2.5 89.8
Left 0.0 8.0 8.7 83.3

TP (%) FP (%) CC
25.9 6.3 0.41
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Recording 4

� Prototypes from day 2, recording 3

� Probability threshold: 0.8

� Distance threshold: 120

CM (%) Relax Cube Left Reject
Relax 72.9 5.2 5.2 16.7
Cube 2.4 38.9 21.4 37.3
Left 4.2 26.1 37.3 32.4

TP (%) FP (%) CC
47.8 23.3 0.48

Day 3

Recording 1

� Prototypes from day 2, recording 4

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 37.4 0.0 0.0 62.6
Cube 0.8 12.8 3.2 83.2
Left 0.0 2.7 20.3 77.0

TP (%) FP (%) CC
22.0 3.9 0.33

Recording 2

� Prototypes from day 2, recording 4

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 39.4 0.0 0.7 59.9
Cube 0.0 13.8 12.9 73.3
Left 0.0 6.0 23.1 70.9

TP (%) FP (%) CC
24.7 8.4 0.34

Recording 3

� Prototypes from day 3, recording 1

� Probability threshold: 0.8

� Distance threshold: 100
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CM (%) Relax Cube Left Reject
Relax 84.7 0.0 0.0 15.3
Cube 1.4 45.3 18.0 35.3
Left 0.8 18.0 36.7 44.5

TP (%) FP (%) CC
50.9 13.8 0.76

Day 4

Recording 1

� Prototypes from day 3, recording 3

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 39.3 1.9 0.9 57.9
Cube 0.0 39.9 16.2 43.9
Left 0.0 20.0 24.4 55.6

TP (%) FP (%) CC
34.2 14.4 0.42

Recording 2

� Prototypes from day 3, recording 3

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 63.0 4.7 9.4 22.8
Cube 0.0 30.0 42.1 27.9
Left 0.0 21.0 57.2 21.7

TP (%) FP (%) CC
49.2 27.0 0.50

Recording 3

� Prototypes from day 4, recording 2

� Probability threshold: 0.8

� Distance threshold: 100
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CM (%) Relax Cube Left Reject
Relax 54.4 1.6 3.2 40.8
Cube 0.0 17.5 17.5 65.0
Left 1.3 11.3 42.0 45.3

TP (%) FP (%) CC
38.7 10.9 0.43

Day 5

Recording 1

� Prototypes from day 4, recording 4

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 46.0 0.0 0.0 54.0
Cube 4.3 1.7 3.4 90.6
Left 5.2 0.0 18.7 76.1

TP (%) FP (%) CC
20.6 4.0 0.25

Recording 2

� Prototypes from day 5, recording 1

� Probability threshold: 0.8

� Distance threshold: 100

CM (%) Relax Cube Left Reject
Relax 12.3 0.0 0.8 86.9
Cube 0.0 23.3 16.7 60.0
Left 0.0 5.6 26.6 67.8

TP (%) FP (%) CC
18.9 7.5 0.27

Recording 3

� Prototypes from day 5, recording 2

� Probability threshold: 0.8

� Distance threshold: 100
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CM (%) Relax Cube Left Reject
Relax 69.6 1.6 0.8 28.0
Cube 3.0 56.1 8.3 32.6
Left 6.3 7.1 30.2 56.3

TP (%) FP (%) CC
50.2 9.5 0.59
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Appendix B

The question form

1. How did it feel?

2. What was easy, what was hard in each task?

3. Did you use different strategies in performing the mental tasks? What kind of?

4. Did you feel improving in performing the mental tasks during the week? How?

5. How did feedback feel?

6. Did feedback help or disturb concentration?

7. Did you notice when you got feedback, for example in certain "point" in mental

task?

8. What is good and what is bad in the learning? Were there some things which dis-

turbed or which could have done differently in your opinion?

9. How would you develop the learning?

10. Comment freely on subjects, which didn’t come up above
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