
 Abstract- We have designed and tested a comprehensive 
wireless neural recording system.  The system amplifies, digitally 
encodes, transmits, archives, hosts, and displays multiple 
channels of neural recordings from any number of un-tethered 
test subjects.  The neural transmitter and receiver are modified 
TinyOS-based MICAz wireless sensor nodes that can sample, 
transmit, and receive neural data real-time at a rate of 44.8 kbps 
while consuming less than 100 mW of power.  This data rate can 
be divided for recording on up to eight channels, with a 
resolution of up to 10 bits per sample.  An archive server records 
the neural signals received by the Ethernet-based gateway 
receivers, and hosts them to browser-based clients over the 
Internet.  This work demonstrates the viability of the TinyOS-
based sensor technology as a foundation for chronic remote 
biological monitoring applications, and demonstrated a system 
architecture that can actively leverage advancements in 
distributed sensing, networking, and communications 
technologies. 
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I. INTRODUCTION 
 
 Electrophysiological recording is a powerful tool used by 
neuroscientists to investigate the mechanisms by which the 
brain creates and interprets signals.  These studies help create 
an understanding of the brain function that accompanies 
emotions, as well as that which accompanies disease.  
Rhythmically varying electrical impulses (i.e., field potentials) 
of large neural populations vary at rates in the 1 to 100 Hz 
range [1].  This brain-wave activity has been correlated to 
specific physiological outcomes, such as sleep, excitation, and 
epilepsy.  Field events composed of hypersynchronous action 
potentials result in oscillations in the 250 to 500 Hz range 
(otherwise known as fast ripples [2]), which have been 
observed in the epileptic zones of patients with temporal-lobe 
epilepsy [3].  Identifying the cells that synchronously deliver 
the action potentials that result in epileptic seizures requires 
extra-cellular signal acquisition in the 0.5 to 10 kHz range.  In 
order to quantify neural activity, electroencephalograms 
(EEGs) and single-unit recordings are taken by measuring the 
potential difference between a pair of electrodes placed in or 
on the brain region of interest and at the frequency of interest. 
 Although neural recordings are frequently performed as 
acute experiments (e.g., < 6 hrs), some studies require chronic 
or longer-term measurements.  For example, the study of 
epilepsy requires continuous recordings to be made over a 

period of several days.  Conventional neural recording 
techniques use a direct-wired connection between the subject 
and the measurement tool.  Typically, this connection consists 
of a bundle of fine wires that can frequently limit animal 
behavior.  In addition, the wired connection prevents the 
environment from containing natural elements such as tubes 
and tunnels.  The constraints of such direct-wired connections 
have the potential for skewing the obtained results.  A wireless 
recording system could be used to remove the aforementioned 
constraints.  Such a wireless neural recording system must be 
capable of sensing, amplifying, and transmitting neural signals 
with a sampling frequency of at least double the maximum 
frequency of interest (i.e., approximately 250 Hz for EEG, 1.2 
kHz for fast ripples, and 10 kHz for single units) per channel 
while being small, low cost, lightweight, and low power.  The 
system also requires a receiver to receive, demodulate, and 
display the transmitted neural signals.   
 Existing approaches to develop a wireless neural 
measurement tool have ranged from designing a custom 
microfabricated recording and telemetry system [4] to the use 
of commercial-off-the-shelf (COTS) PC technology [5].  A 
performance comparison between existing methods of wireless 
neural recording system design has been described in [6].  
This work builds upon the TinyOS-based 2-channel EEG 
recording system described in [6]. 
   

II. TINYOS AND THE MICA-BASED SENSOR NETWORK 
 

 Until recently, wireless devices consisted of complex, 
expensive, and high-power systems, such as cell phones, 
PDAs, and wireless-enabled laptop computers that target 
specific and highly-standardized applications that rely heavily 
on a powerful infrastructure (e.g., such as satellites, star-
network base stations, etc...).  Researchers at the University of 
California, Berkeley opted of a new approach in wireless-
system design: one that involves low-cost embedded devices 
that can be implemented for a variety of applications [7].  This 
effort resulted in the development of the MICA platform: a 
self-configuring multi-hop (mesh) network platform for 
remotely monitoring distributed low-frequency phenomena 
[8]. 
 The wireless sensor nodes, which are commonly referred 
to as “motes”, have been designed to operate using TinyOS 
and are currently being used in wildfire-instrumentation, 
habitat-monitoring, and global-positioning applications to 
mention just a few [9,10,11].  Prior work has successfully 
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demonstrated a 2-channel wireless neural recording system 
based on the MICA2 sensor network [6] through modifications 
of standard data-acquisition and communication protocols.   
 

 
  

Fig. 1.  System-level schematic of MICAz mote. 
 
 Both motes used in this work are of the MICAz type, 
which is produced by Crossbow Technology, Inc. [12].  One 
MICAz mote is used as a transmitter, and is thus attached to 
the subject via a neural preamplifier circuit.  The other mote is 
used as a receiver, and is interfaced to an MIB600CA Ethernet 
gateway (also produced by Crossbow Technology, Inc.).  A 
basic system schematic of the MICAz mote is displayed in 
Figure 1.  The MICAz has six input channels, each with its 
own 10-bit analog-to-digital converter (ADC).  Data is 
processed by an Atmel Atmega128 microprocessor with 512 
kB of flash memory.  Data transmission and reception is 
handled by a Chipcon CC2420 radio chip, which is IEEE 
802.15.4 compliant.  When the two 1.5-V dry-cell batteries are 
installed, the MICAz is approximately the size of a matchbox 
(58 × 32 × 15 mm).  The Ethernet Gateway is used to send the 
neural recordings over the Internet (or LAN) to the archive 
server. 
 The work in this paper has been directed toward 
implementing specific timing and communications protocols 
for maximum data-acquisition and transmission rates.  Such 
high data rates can enable one or more motes to perform wide-
band multi-channel wireless neural recordings from several 
freely moving subjects simultaneously.  
 

III. SYSTEM DESIGN 
 

 The overall system design can be divided into two major 
components: hardware and software.  A neural preamplifier 
circuit is required to properly amplify and level-shift the 
differential neural signals.  TinyOS software components 
implement data-acquisition, signal-transmission, signal-
reception, and wireless media-access protocols optimized for 
achieving maximum data throughput. An archive server is 
used as a repository of neural recordings and a host for the 

browser-based client.  The browser-based client interprets and 
displays the previously-recorded data in a graphical format. 
 

 
 

Fig. 2.  Top-level diagram of the neural interface system. 
 
A.  Hardware 
 
 Each channel is sensed differentially by a pair of 
electrodes.  A neural preamplifier circuit is used to take the 
differential signals and amplify, level-shift, and convert them 
into to a single-ended waveform ranging from 0 V to the 
MICAz-battery voltage (nominally 3 V) in order to be 
properly digitized by the MICAz ADCs.  A preamplifier 
circuit for recording EEGs has been designed to interface 
directly with the MICAz mote.  The heart of the neural 
preamplifier is an Analog Devices AD627 Instrumentation 
Amplifier.  The gain of the AD627 can be set by an external 
resistor.  The output has been referenced to half the supply 
voltage by a simple resistive divider followed by a voltage-
follower circuit. To avoid high-frequency noise from being 
aliased into the sampled signal, the AD627 output is followed 
by an RC-filter with a cutoff frequency that should be set to 
half the sampling frequency of the channel.  
  
B.  Software 
 
 TinyOS-software components have been written to 
implement data-acquisition and wireless media-access control 
protocols for the transmitting MICAz.  The receiving MICAz 
will operate on a standard TinyOS component to receive 
packets and broadcast them over an Ethernet connection via 
the mote’s UART serial connection to the MIB600CA.  The 
UART is set to 115200 bits per second on both the MICAz 
and MIB600CA. 
 The data-acquisition component initializes an independent 
hardware-based timer (Timer3) to trigger ADC sampling 
events.  The analog input signals are digitized as 8-bit integers 
ranging from 0 (ground) to 255 (battery voltage) and 
subsequently stored in the microprocessor’s RAM.  Once 110 
readings are taken, a header indicating the source mote ID, 
packet size, final reading ID number (for time referencing), 
and CRC (cyclic redundancy check) bytes are copied to the 
radio buffer for subsequent transmission.   



 Due to the hardware constraints of the MICAz processor, 
TinyOS does not support the prioritization (or preemption) of 
tasks, but rather processes tasks on a FIFO basis.  Tasks must 
run to completion before the next task in the queue is handled, 
which can cause delays in sensitive time-synchronized events 
(such as ADC sampling).  By profiling the TinyOS kernel, 
tasks that require substantial CPU time can be identified and 
split into smaller tasks.  For example, copying data from RAM 
to the radio buffer causes ADC sampling to briefly halt 
because the associated task duration is longer than that of a 
single sample period.  The intermittent stopping of the ADCs 
results in varying sampling intervals (or sampling jitter).  
Sampling jitter results in unwanted distortion in the 
reconstructed output signal.  To alleviate this problem, the 
copy instruction is split into multiple tasks.  Execution of each 
task requires CPU time that is less than a single sample period, 
thus minimizing the interruption of ADC sampling.  Even with 
the aforementioned protocol in place, sampling jitter is still 
present, as depicted in Figure 3.  Sampling jitter can be further 
improved by 1) scheduling data batches to be transferred once 
every integer number of sampling periods, and 2) identifying 
other tasks that could cause delayed sampling events.  These 
approaches will be investigated in future work. 
  

 
 

Fig. 3.  Timing diagram illustrating sampling events with respect to data 
transmission. 

  
 The archive server is a database that polls the 
Internet/LAN for subscribed MIB600CA gateways.  Tables 
are generated on the database on a per-session basis.  The 
client is a Java-based program has been designed for use on 
any networked PC with a Java-enabled browser to search and 
retrieve archived data.  This program acquires data from the 
archive server, and displays them either as raw data points, or 
a reconstructed waveform.  Signal reconstruction is performed 
by upsampling the original signal and passing it through an 
8th-order Chebyshev filter.  
 
 
 

IV. EXPERIMENTAL TESTING 
 
 Experimental testing was performed in two categories: 
bench testing and in-situ testing.  Bench testing was performed 
to assess the specific performance metrics of the system, such 
as data rate, range, power consumption, and signal resolution.  
In-situ testing was used to evaluate the overall performance of 
the system in its respective application environment. 

 
A.  Bench Testing 
  
 To assess the performance of the client-side signal-
reconstruction program, as well as the total bandwidth of the 
data-acquisition and transmission system, an extracellular 
neural recording dataset was used.  The data was originally 
acquired in vivo from freely moving rats using five four-
channel MOSFET input operational amplifiers mounted in the 
cable connector to remove movement artifacts.  Data were 
recorded wide band (0.1 Hz to 5 kHz) and sampled at 10 
kHz/channel (16 channels) with 12-bit precision.  The 
resulting signal is highpass filtered at 100 Hz with a 36-dB 
rolloff.  The dataset was programmed into an HP 33120A 
arbitrary waveform generator whose output was connected 
directly to the ADC of the transmitting MICAz.  The input and 
received/reconstructed action potentials are shown in Figure 4. 
 

 
 

Fig. 4.  Input and received/reconstructed simulated action potential. 
  
 The range of the neural transmitter was tested in a noisy 
laboratory environment equipped with monitors, 
oscilloscopes, microwaves, cordless telephones, WiFi, and a 
refrigerator.  The system data-loss rate was assessed by 
measuring the total number of packets lost per ten thousand 
transmitted (which corresponds to approximately 1 million 
data points).  As shown in Figure 5, the rate of packet loss is 
relatively constant over a 7-meter range, and subsequently 
begins to increase as the base station is separated from the 
mote by 8 meters or more.  It is theoretically possible to re-
transmit a lost packet once without sacrificing data 
throughput, since the radio spends half its time in an idle state 
(see timing diagram).  This approach will be investigated in 
future work. 
 



 
 

Fig. 5.  Data loss as a function of distance between the transmitter and the 
base station in a noisy laboratory environment. 

 
B.  In-Situ Testing 
 
 The system was tested with a living mouse in a typical 
laboratory environment (Fig 6).  Normal brain activity has 
been captured, followed by seizures induced by injecting 
kainic acid at 15 mg/kg to model temporal-lobe epilepsy [1].  
The system parameters are summarized in Table 1. 
 

 
 

Fig. 6.  Recorded normal and induced seizure activity. 
 
 

TABLE 1 
SYSTEM PERFORMANCE SUMMARY 

 

Max. # of Channels 8 

Max.Total Data Throughput 44.8 kbps 

Transmission Frequency 2.4 GHz 

Communications Scheme O-QPSK 

Power Supply 3 V 

Max. Power Dissipation 96.9 mW 

Transmission Range 8 m 

System Clock Frequency 7.37 MHz 

Dimensions (cm) 5.8 x 3.2 x 0.5 

Total Weight (w/o battery) 18 gr 

V. CONCLUSIONS 
 
 In this paper, we have demonstrated a TinyOS-based 
wireless neural sensing, archiving, and hosting system.  The 
data-acquisition and transmission throughput of the system 
was sufficient to record one channel of single-unit activity 
from any number of freely moving and behaving rodents, 
while the data archiving and hosting capabilities of the system 
allow users to conduct experiments and browse data from 
anywhere on the Internet.  The system exhibited considerable 
sampling jitter, an issue which we hope to address by further 
investigating the MICAz task queue and synchronizing task 
processing with respect to sampling events.  In addition, we 
hope to reduce packet loss by enabling the receiving mote to 
request re-transmission of a lost packet via the transmitting 
mote.      

 
VI. ACKNOWLEDGEMENT 

  
 The authors would like to thank Dr. Jamie L. Maguire for 
preparing the test animal and setting up the live-animal 
experiment for EEG recording.  We would also like to thank 
Dr. Anatol Bragin for providing us with the single-unit 
recordings.  We would also like to acknowledge input from 
the members of the UCLA Center for Embedded Networked 
Sensing and the TinyOS community. 
 

REFERENCES 
 
[1] A. Bragin, I. Mody, C. L. Wilson, J. Engel Jr., “Local Generation of Fast 

Ripples in Epileptic Brain,” Journal of Neuroscience March 1, 2002, 
22(5):2012-2021 

[2] A. Bragin, J. Engel, C. L. Wilson, I. Fried, G. W. Mathern, 
“Hippocampal and Entorhinal Cortex High-Frequency Oscillations (100-
500 Hz) in Human Epileptic Brain and Kainia Acid-Treated Rates with 
Chronic Seizures.” Epilepsia 40:127-137. 

[3] A. Bragin, J. Engel, C.L. Wilson, I. Fried, G. Buzsaki, “High-Frequency 
Oscillations in Human Brain,” Hippocampus 9:137-142 

[4] P. I. Pastor., I. Mody, and J. W. Judy,  “Transcutaneous RF-powered 
neural recording device” Proc. of the 24th Annual Conference and the 
Annual Fall Meeting of the Biomedical Engineering 
SocietyEMBS/BMES Conference Vol. 3, pp.2105-2106.  October 23-26, 
2002. 

[5] I. Obeid, M. A. L. Nicolelis, and P. D. Wolf, “A multichannel telemetry 
system for single unit neural recordings” Journal of Neuroscience 
Methods, 133, pp. 123–135, 2004. 

[6] S. Farshchi, I. Mody, J. W. Judy, “A TinyOS-Based Wireless Neural 
Interface,” Proceedings of th 26th Annual Conference of the IEEE 
Engineering in Medicine and Biology Society, September 1-5 2004, San 
Francisco, CA. 

[7] J. L. Hill, D. E. Culler, “Mica: a wireless platform for deeply embedded 
networks,” IEEE Micro, pp.12-24, Vol. 22, Iss. 6, Nov/Dec 2002. 

[8] J. L. Hill, “System architecture for wireless sensor netowrks,” Ph.D. 
Dissertation, Computer Science Program, University of California, 
Berkeley, California, United States.  2003. 

[9] M. M. Chen, C. Majidi, D. M. Doolin, S. Glaser, and N. Sitar, “Design 
and construction of a wildfire instrumentation system using networked 
sensors (poster)” Network Embedded Systems Technology (NEST) 
Retreat, June 17-18, 2003, Oakland, CA. 

[10] J. J. Polastre, “Design and implementation of wireless sensor networks 
for habitat monitoring,” M.S. dissertation.  Computer Science Program, 
University of California Berkeley, Berkeley, CA, USA, 2003. 

[11] D. Niculescu and B. Nath, “DV based positioning in ad hoc networks” 
Kluwer Journal of Telecommunications Systems, 2003. 

[12] Crossbow Technology, Inc. http://www.xbow.com  


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 671
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE
	header: Proceedings of the 2   International IEEE EMBS Conference on Neural Engineering                      Arlington, Virginia · March 16 - 19, 2005
	nd: nd
	02: 672
	03: 673
	04: 674


