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Abstract—We are developing electromyographic (EMG) and
electroencephalographic (EEG) methods that bypass muscle
activity and draw control signals for human-computer
interfaces directly from the human nervous system. We have
made progress in four areas: a) real-time pattern recognition
algorithms for decoding sequences of forearm muscle activity
associated with control gestures, b) signal-processing
strategies for computer interfaces using EEG signals, c) a
flexible computation framework for neuroelectric interface
research, d) non-contact sensors, which measure EMG or EEG
signals without resistive contact to the body.

Index Terms—Brain-computer interfaces, EEG, EMG,
neuroelectric interfaces, electric field sensors.

I. INTRODUCTION

E are exploring the potential for using neural signals
from the human body to control computers or

machines. We define a system that couples the human nervous
system electrically to a computer as a neuroelectric interface: a
sensing and processing system that can use signals from the
brain or from other parts of the nervous system, such as
peripheral nerves, to achieve device control. We regard brain-
computer interfaces or BCIs [1] as a subset of neuroelectric
interfaces. Our current focus is on using electroencephalograms
(EEG) and electromyograms (EMG) as control signals for
various tasks, such as aircraft or vehicle simulations and other
graphic displays.

The broad objectives of our project are to: a) develop new
methods of interaction that operate in parallel with existing
modes such as keyboards or voice, b) augment human-system
interaction in wearable, virtual, and immersive systems by
increasing bandwidth and quickening the interface, c) enhance
situational awareness by providing immediate and intimate
connections between the human nervous system and the
systems to be controlled. Our specific goals are also threefold:
a) a signal acquisition and processing system for real-time
control of data visualization and manipulation tasks, b)
automatic EMG-based recognition and tracking of continuous
human gestures, c) feasibility testing of EEG-based control
methods suitable for use in parallel with other modes of
communication and control.

In this paper we will survey selected results and
demonstrations of EMG- and EEG-based neuroelectric

interfaces. We will describe an EMG-based flight stick, an
EMG-based numeric keypad, an EEG-based interface for
smooth, continuous control of a one dimension of motion in a
graphic display, and comparison of algorithms for modeling
the EEG patterns associated with real and imagined mouse
motion or typing. Finally, we will present some new results
on the development of non-contact electric field sensors for
EMG and EEG recording. These sensors offer a less intrusive
alternative to current sensing technology, which will make
them more suitable for real-world applications.

Our approach is to describe a body of developmental
research, mostly still in progress, and to indicate methods that
have potential for engineering development. Given the BCI
focus of this special issue, descriptions of purely EMG-based
interfaces will be brief. We will describe the EEG results and
the new sensor developments in more detail.

II. EMG INTERFACES

A. EMG-based Flight Stick

In our first demonstration, a computer transformed EMG
signals recorded from four bipolar channels placed on the
forearm of a person into control signals for an aircraft
simulator. Thus, the processed EMG signals served as an
imaginary flight stick [2]. EMG samples were processed in
real time using a flexible signal-processing framework
developed in our laboratory. Specifically, we use overlapping
windows where the data within a window can be assumed
close to stationary. Our feature extraction procedures included
routines to filter out redundant and meaningless data with the
use of information metrics such as mutual information [3].
Our model for mapping EMG signals to gestures uses
mixtures of Gaussians within a Hidden Markov Model
context.
This system was tested and validated with high-fidelity
simulations of F-15 and Boeing 757 transport aircraft. Control
of both aircraft was adequate for normal maneuvers. For the
757 simulator, a complete real-time landing sequence under
neuroelectric control was demonstrated and recorded at NASA
Ames Research Center [4-5]

B. EMG-based Numeric Keypad

We have also found that EMG signals from the arm can
distinguish typing of one key from another on a "virtual
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keyboard." In this demonstration, a computer was
programmed to translate eight bipolar EMG channels recorded
from the forearm into commands for typing the digits 0-9 on a
virtual numeric keypad. The same flexible processing system
and model architecture used for the EMG flight stick was used
for the typing interface. However, the Hidden Markov model
was retrained using EMG data recorded during typing. Tests
were performed with random lists of data to be entered. Using
such lists, we found that the digits 0-9 could be detected with
100% accuracy from the processed EMG signals. A
demonstration of the system was recorded at NASA Ames
Research Center [6].

III. EEG INTERFACES

A. One-dimensional Graphic Device Control
Previous research has shown that control signals for graphic

devices, such as cursors can be drawn from EEG signals such
as µ and β rhythms [7]. Our approach is to develop a flexible
processing system that will adapt to different tasks and users.
To do this we explored two tasks and an array of pattern
recognition and machine learning algorithms. The tasks were
virtual pointer motion and virtual typing.  The algorithms
included narrow-band filters for signals such as µ-rhythm,
broadband filters developed with adaptive linear filters, on-line
measures of complexity, and support vector machines [8-9].

In the each task, 64 channels of EEG were recorded with a
QuickCap (Neuromedical Supplies, Inc.) using the extended
International 10-20 System [10] with digitally linked mastoid
references. We used singular value decomposition (SVD) to
reduce the 64 channel recordings to a small number of
orthogonal spatial filters. Then the spatial filters were
approximated with a small number of electrodes (4 to 12),
which were located near the extremes of the electric fields
corresponding to the spatial filters. For these recordings we
used either a commercially available EEG headset
(Sensorphone, Allied Products, NY) or disposable self-
adhesive Ag-Cl electrodes (Neuromedical Supplies, VA).
Generally, from four to eight SVD components were sufficient
to account for 95% or more of the variance in the 64-channel
EEG recordings. For closed-loop tests using a needle-gauge
task or a Mars Rover control task, EEG signals were sampled
at 1000 Hz using a Neuroscan system and broadcast via a
TCP/IP socket to our flexible processing system.

In Subject 1, a 45-year old male, open-loop recordings with
real or imaginary hand motion (moving a mouse) showed that
µ-rhythm bursts were visible in the raw EEG signals. A
spectral analysis indicated that µ-rhythm power was centered
at 8.7 Hz. We constructed a narrow-band digital FIR filter for
this pass band in our processing system and used this as the
control signal for a 1-D graphic display of a needle gauge. The
subject's task was to move the needle right or left using
increasing or decreasing µ-rhythm power. The subject was
trained with a random sequence of targets.

In Subject 2, a 32 year old male, no clear µ-rhythm signals
were present in raw EEG traces during the real or imagined
arm motion task. Even with high-density recordings of up to

64 electrodes, a clear µ-rhythm source was not detected in this
subject after various spatial and spectral analyses.

For the closed-loop control tests we used both the needle
gauge task and a Mars Rover simulation. For the Mars Rover,
EEG synchrony measures were mapped to left and right turns
of the Mars Rover as it moved forward at constant velocity
over a real-time rendition of a Mars terrain database.

For both subjects, we tested various on-line measures of
EEG synchrony. The narrow band µ-rhythm filter was
satisfactory for Subject 1 but not for Subject 2. So we also
explored other, more general measures of EEG synchrony or
complexity. The idea here is that regardless of the specific
peaks at which sensorimotor EEG rhythms oscillate, their
synchronization or lack thereof will contribute to signal
complexity.

In our context we define complexity as a measure reflecting
changes in regularity or predictability of EEG patterns.
Signals corresponding to periods of increased EEG source
synchronization will be more regular, predictable, and will
have low values of complexity. Stages of higher
desynchronization of EEG sources will possess high values of
complexity. We examined coarse-grained entropy rates (CER),
Gaussian process entropy rates (GPEn), spectral entropy (SE)
and wavelet entropy (WE). CER represents an empirical
complexity measure based on theoretical definition of entropy
rates of stochastic processes and Kolmogorv-Sinai entropy of
nonlinear dynamical systems [11-12]. CERs were successfully
used in several applications when complexity or regularity of
physiological signals were investigated [10, 13-14]. If we
consider the EEG to be a zero-mean stationary Gaussian
process we can estimate entropy rates directly from its
spectrum [15-16]. Thus we define GPEn to be a linear
measure, which can fully describe an underlying stationary
Gaussian process but cannot describe data generated by a
process involving nonlinearity. SE is a measure which
computes Shannon entropy over the normalized power spectral
density function; i.e., periodogram [17]. There is a clear
connection between GPEn and SE as both measures reflect
changes of the frequency spectra of the EEG over different
brain states. For WE, we extend the concept of SE by
replacing the Fourier transform with the wavelet transform
[18-19]. So for WE, we computed Shannon entropy over the
wavelets coefficients at individual resolution levels.

All of these methods detected periods of EEG synchrony or
asynchrony correlated with real or imagined motion.
Simulated real-time performance of the algorithms for Subject
1 performing real and imaginary mouse motions showed that
spectral entropy measures and coarse-grained entropy rates
appeared to be more sensitive to EEG desycnhronizations
correlated with real or imagined hand motions than a narrow-
band µ-rhythm filter or wavelet entropy measures (Figure 1).
Similar results were obtained for Subject 2. We completed
several real-time tests and demonstrations of EEG-based
control of the Mars Rover using complexity measures. For
Subject 2, we recorded a demonstration of one of the sessions
in which the CER served as the control signal [20].
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Insert Figure 1 about here.

Figure 1. Illustration of µ-rhythm filter performance as compared with
various estimates of EEG complexity for the open-loop pointer control task
in Subject 1.  The red and blue traces are the time series corresponding to
the filter output for a series of overlapping input windows through time.  The
vertical dashed lines indicate the times at which hand motions began or were
imagined. a. Real left hand movement. b. Imaginary left hand movement.

B. EEG-based Typing
For the EEG-based typing tasks our goals were modest. We

sought to detect the periods of physical keyboard typing
activity from EMG-free EEG recordings and to use linear
models or machine-learning algorithms to translate the EEG
signals into interface commands. We did not seek to identify
which keys were pressed. We sought to discriminate typing
from rest and also to discriminate left- from right-hand typing.

Our approach was the same as for the pointer control tasks,
in that multi-channel recordings of open-loop EEG were
reduced to a few SVD components. These components were
used as inputs to filters or algorithms that predicted typing
behavior from the EEG signals. The same two subjects who
performed the mouse motion task performed the typing tasks.

For both subjects, we collected six five-minute runs

consisting of typing the keys A or F with the left pinkie and
index fingers, or typing the keys J or; with the right index and
pinkie fingers, or alternating use of the left and right hands
within a single run. EEG data were sampled at 1000 Hz,
digitally band-passed from 1 to 30 Hz, and re-sampled at 100
Hz. EMG data from the left and right forearms were recorded
with four pairs of electrodes placed on the wrists and upper
forearms. EMG signals were sampled at 1000 Hz, rectified and
digitally band-passed from 30 to 150 Hz, then re-sampled at
300 Hz. To model typing behavior using EEG, we tested three
different types of algorithms:
• µ-Rhythm filter: a linear FIR filter with a pass band

centered on the peak of µ-rhythm signals observed near
electrodes C3 or C4 in the subject’s resting EEG.

• Adaptive linear combiner (ALC): the Widrow-Hoff LMS
algorithm [21] was used to train the combiner to model
periods of the EMG signal corresponding to rest using the
EEG time series.

• Support vector classifier (SVC): we used the LIBSVM
integrated software for support vector classification [22].
This implements a multi-class SVC based on ‘one-
against-one scheme [23].

Insert Figure 2 about here.

Figure 2.  Transfer functions of the 50-tap  (a) and 500-tap (b) ALCs trained
to predict rest or right-hand typing periods for the first four SVD EEG
components.

We found that the µ-rhythm filter was inadequate to model
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the relationship between EEG time series and periods of
typing or rest. We next explored modeling typing and rest
segments with an ALC. Here we found that for Subject 1 an
ALC using 50 taps was sufficient to track the motion and rest
periods associated with typing. For Subject 2, who had no
clear µ-rhythm, a 500-tap ALC converged to a filter that also
tracked the rest and typing periods. The results, which are
only qualitative at this time, show that EEG signals
associated with typing behavior can serve as an index of the
typing activity. A previous report using a different task drew a
similar conclusion [24].

With the ALC, it is possible to freeze adaptation after
training and plot the spectrum of the transfer function.
Figure 2a shows the transfer functions for first four SVD
components of the EEG for the 50-tap filter.  Figure 2b shows
the corresponding results for the 500-tap filter. For Subject 1,
both the 50-tap and 500-tap filters converged to a set of
simple, unimodal transfer functions that favored frequencies
below 10 Hz.

For subject 2, the transfer functions appeared to be
bimodal, with one broad peak in the 5 Hz to 10 Hz range and
another broad peak in the 10 Hz to 15 Hz range. In the 500-tap
filters for subject 2, a third broad peak is present in the 20 Hz
to 25 Hz range. These results suggest that components of the
EEG map differently to motion and rest periods across
subjects.

The ALCs were trained to use EEG inputs to model EMG
activity exclusively during rest periods. So the ALC output is
high during the periods of rest and low during typing activity.
Thus the filter output serves as a rest detector, or conversely,
the filter error serves as a motion detector. For Subject 1, the
50-tap filter produced consistently higher output during rest
periods in between periods of right-hand typing (Figure 3).
For Subject 2 (not shown), the 500-tap filter performed in a
similar fashion.

Figure 3. Performance of the ALC on test data in Subject 1 over time,
showing tracking of the motion and rest periods by the filter output.

For the conditions in which typing alternated between the
left and right hands, the ALC filters, and some variants we
explored using nonlinear transfer functions, did not serve well

for discriminating left- from right-hand typing. To solve this
problem we attempted to model the EMG using the EEG
signals as inputs to a SVC. A linear SVC was trained on three
separate runs, which were the even-numbered runs for the
session. Each run contained alternating periods of left- and
right-hand key presses with periods of rest of about five
seconds between the motion periods. The first eight SVD
components of the EEG signals served as inputs to the SVC.
The data were digitally low-pass filtered at 30 Hz and down
sampled to 60 Hz. Successive 1000-point segments (1 second
of data, with 75% overlap) were labeled as non-motion, left-
hand motion, or right-hand motion. Periods of motion were
classified as motion when the mean of the corresponding left-
or right-hand EMG signal was greater than a predefined
threshold. Data from the odd and even runs sets were
processed by the SVC, first by training on the even trials and
testing on the odd trials. Then the data sets were reversed,
training on the odd and testing on the even. In each case, the
SVCs successfully classify non-motion, left hand motion, and
right hand motion with accuracies between 92% and 100%.
For Subject 1 and training the SVC with even-numbered runs,
the accuracies for classifying EEG segments as rest, left-hand
typing, or right-hand typing were, 98%, 97%, and 97%,
respectively. For training with odd-numbered runs, the
corresponding values were 99%, 93%, and 97%. For Subject
2, the corresponding accuracies for these six tests were 100%,
92%, 98%, 99%, 98%, and 98%, respectively.

We also analyzed the weights derived using linear SVC as
we did for the ALCs. Unlike the ALCs, the SVC-derived
transfer functions had complex spectral structure, showing
multiple peaks (Figure 4). A pattern of peaks with frequencies
near 5, 9, 12-14, 16-18, 21, 25, and 291 Hz appeared in the
transfer functions across the EEG components. The spectral
peaks varied with the three one-against-one classifiers in the
multi-SVC as well as with the EEG spatial components.

Figure 4. Transfer functions of the SVC for the first four SVD components
of EEG. The SVC was trained to predict rest, left-hand typing, and right-
hand typing periods using the first eight SVD components of the EEG.

Insert Figure 3 about here. Insert Figure 4 about here.
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IV. NON-CONTACT SENSOR DEVELOPMENT

NASA Ames Research Center is collaborating with Quantum
Applied Science and Research, Inc. (QUASAR), under a Space
Act Agreement, for the development and testing of non-
contact sensors for neuroelectric recordings. These sensors can
measure the electric potential in free space and so do not
require resistive, or even good capacitive coupling to the
subject. The principal sensor innovation is providing a very
high input impedance for the electrode that senses the free
space potential, while accommodating the input bias current of
the amplifier. The input capacitance of present electrometer
grade amplifiers is of order 1 - 3 pF. This allows us to arrange
the coupling capacitances of the electrometer to yield a near
ideal measurement of the bioelectric potential.

Despite its small size, the new sensor is approximately 100
times better than prior state-of-the-art electric potential sensors
[25]. At 10 Hz it has comparable sensitivity to conventional
resistive contact (dry or paste) electrodes. In the off-body
mode the sensor can make an accurate measurement through
normal clothing. The sensor also has a broadband response
from 0.01 Hz to 10 kHz, proving sufficient bandwidth to
measure all EEG and EMG components, and essentially all
other bioelectric signals of interest.

In our initial tests, we have made direct comparisons
between surface recordings of EMG and EEG with non-contact
recordings of the same signals.

A. EMG Tests.

We recorded EMG from 2 surface Ag-AgCl electrodes
spaced 2 cm apart on the forearm over the flexor carpi radialis.
The subject was asked to make a fist and this signal was
recorded for multiple trials. Then these wet electrodes were
removed and replaced by a QUASAR non-contact E-field
sensor and the subject repeated the fist clenching exercise. The
non-contact sensor recordings tracked the conductive electrode
recordings well in the desired range of EMG from 500 Hz. to
2000 Hz.

B. EEG Tests.

We recorded EEG from 8 surface Ag-AgCl electrodes
spaced 4 cm apart and lying on lines 2 cm anterior or posterior
to Cz, running from left to right, all referred to average
mastoids with ground at Afz. A QUASAR non-contact E-field
sensor was tested at the points A, B, and C, between the EEG
electrodes. EEG was recorded with a Neuroscan Nuamp at gain
of 19, band pass 0.1 to 300 Hz, and sampling rate of 1000.
The Non-contact sensor tracked the main features of the EEG
spectrum seen in the Ag-AgCL electrode recordings
(Figure 5). For example both recordings show a clear peak in
the spectrum near 10 Hz, which reflects endogenous alpha
rhythm. The spectra also show a line at 60 Hz, which is mains
noise resulting from imperfect shielding.

V. DISCUSSION

The EMG-based joystick and typing tasks were chosen to
replicate something with which computer users are already
familiar. These traditional types of interfaces are certainly not

suitable for gesture-based systems as they force unnatural and
unintuitive movements. Signal processing and machine
learning are maturing to a point whereby methods such as
hidden Markov models are suitable for ordinary laptops
without special hardware, however the user interfaces are still
2-D mouse based systems. The ultimate trial of this EMG
methodology will be to have a system with a more natural
gesture command interface. This could then be used to test the
performance of EMG-based systems for everyday use by
regular users. Once multiple users have been run on multiple
tasks we will then be able to form a usability assessment.

Insert  Figure 5 about here.

Figure 5. Power spectrum of recordings from QUASAR and Ag-Cl
electrodes in a 21-y old male subject. The Quasar sensor tracks the main
features of EEG spectrum seen in the Ag-AgCL electrode recordings.
Including the peak near 10 Hz, which reflects endogenous alpha rhythm.
The line at 60 Hz is noise from the main power lines resulting from
imperfect shielding.

Our EEG-based developments show that 1-D control of a
graphic device is feasible as a human computer interface. For
different subjects different algorithms may be required, such as
µ-rhythm filters or complexity measures. Our system is
programmed to allow rapid switching among these algorithms
or parallel use of the algorithms. We have demonstrated
control of a needle gauge and a rendition of turning a Mars
Rover simulator left and right in real time.

We found that the type of task and the qualities of EEG in
a subject interact with the signal processing requirements of
the interface. In the simplest case, virtual pointer motion
could be tracked in one dimension with a band-pass filter. In
other cases, more elaborate filters, such as an ALC or the
SVC-derived filters were required. As the complexity of the
task increased from one-dimensional motion to typing with
different fingers on right and left hands, we found that
increasing amounts of data and algorithmic complexity were
required.  For the two-hand typing task, as many as 8000
coefficients (eight components by 1000 samples) were required
in a multi-class SVC to achieve good results.  The complex
set of spectral peaks in these SVC-derived filters call for
increased analysis and physiological interpretation.
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At least two serious limitations apply to our data. First, the
number of subjects is small. This was necessary to allow us
time to explore a wide range of algorithms. However, with
more subjects, our sense of the feasibility of 1-D control could
change. Second, our experiments are qualitative and lack
quantitative metrics, such as bit rate, as used in other BCI
studies. For the present, we must present these results as only
indicative of promising approaches, which will be followed
with quantitative metrics of performance.

Our initial findings with the QUASAR non-contact sensors
show that it is possible to record both EMG and EEG signals
of high fidelity without a conductive link to the body. The
bandwidth and gain of these sensors are appropriate for
practical applications.

Our approach allows for rapid inclusion and testing of a
wide range of models and machine learning methods for
mapping neuroelectric signals to control applications.
Although our current system is research-oriented, and uses
expensive hardware, there is no reason our system cannot
function with low-cost dedicated hardware. In other words, it
will be possible to replicate our system on a small portable
computer suitable for filed testing or space missions.

Our future directions include expanding our database to
include more subjects, validating our tests with quantitative
performance metrics, and considering the problem of
multimodal control. Of these directions, the problem of
multimodal and realistic application of neuroelectric interfaces
will be the main focus of our future work. For example, when
a subject is moving, will the EEG signals that we can
currently use to control a graphic display lose their
relationship to the task? If so, can user training allow for a
true multimodal interface, in which physical gestures tracked
with EMG signals and EEG-based control can link to separate
aspects of a task at the same time? Although the answers to
these questions are unknown, our initial results suggest that a
flexible and powerful signal processing approach will allow us
to isolate and apply neuroelectric signals to human-computer
interfaces.
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Figure 1a.
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Figure 1 b.
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Figure 2 a.
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Figure 2b.
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Figure 3.
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Figure 4.
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Figure 5.


