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Abstract	

High-density	electroencephalography	(hdEEG)	is	an	emerging	brain	imaging	technique	that	can	

permit	investigating	fast	dynamics	of	cortical	electrical	activity	in	the	healthy	and	the	diseased	

human	 brain.	 Its	 applications	 are	 however	 currently	 limited	 by	 a	 number	 of	methodological	

issues,	 among	 which	 the	 difficulty	 in	 obtaining	 accurate	 source	 localizations.	 In	 particular,	

these	issues	have	so	far	prevented	EEG	studies	from	showing	brain	networks	similar	to	those	

previously	detected	by	functional	magnetic	resonance	imaging	(fMRI).	Here,	we	report	for	the	

first	 time	 a	 robust	 detection	 of	 brain	 networks	 from	 resting	 state	 (256-channel)	 hdEEG	

recordings,	with	a	spatial	accuracy	comparable	to	fMRI	networks.	This	result	was	achieved	by	

setting	 up	 a	 tailored	 analysis	 pipeline	 including	 state-of-the-art	 tools	 for	 data	 preprocessing,	

realistic	 head	 model	 generation,	 source	 localization	 and	 functional	 connectivity	 analysis.	

Specifically,	we	obtained	the	highest	similarity	between	hdEEG	and	fMRI	networks	by	means	of	

realistic	12-layer	head	models	and	eLORETA	source	localization,	together	with	spatial	ICA	for	

functional	 connectivity	 analysis.	 Spatial	 ICA	 overcomes	 the	 spatial	 leakage	 problem	 by	

identifying	patterns	of	 coherent	power	 fluctuations	 that	 are	 spatially	 independent	over	 time.	

Our	analyses	showed	that	the	number	of	electrodes	in	particular,	but	also	the	accuracy	of	the	

head	model	and	the	source	localization	method	used	have	impact	on	network	reconstruction.	

We	believe	that	our	methodological	work	can	contribute	to	rise	of	hdEEG	as	a	powerful	tool	for	

brain	research.	
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1.	Introduction		

Physiological,	neuropsychological	and	neuroimaging	studies	have	clearly	revealed	that	

functional	 specialization	and	 integration	are	 two	distinct,	yet	coexisting	principles	of	human	

brain	 organization	 (Friston,	 2002).	 Specifically,	 although	 the	 function	 of	 an	 area	 at	 a	 given	

cortical	location	is	highly	specialized,	the	information	it	processes	is	dependent	on	its	precise	

connections	with	other	areas	 in	different	parts	of	 the	brain	(Varela	et	al.,	2001).	Large-scale	

functional	 interactions	between	spatially	distinct	neuronal	assemblies	can	be	assessed	using	

functional	connectivity	methods,	which	estimate	statistical	dependence	between	the	dynamic	

activities	 of	 distinct	 brain	 areas	 (Friston,	 2011).	 Functional	 connectivity	 is	 most	 often	

measured	 using	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 data,	 which	 have	 a	 spatial	

resolution	of	a	few	millimeters	and	permit	to	construct	accurate	maps	of	large-scale	functional	

networks	 across	 the	brain	 (Fox	 and	Raichle,	 2007;	Ganzetti	 and	Mantini,	 2013).	However,	 a	

significant	 drawback	 in	 the	 context	 of	 functional	 connectivity	 is	 that	 fMRI	 provides	 only	 an	

indirect	measure	of	brain	activity	mediated	by	a	slow	hemodynamic	response.	Alternatively,	

electroencephalography	(EEG)	or	magnetoencephalography	(MEG)	can	be	utilized	to	estimate	

large-scale	 functional	 interactions	 within	 large-scale	 brain	 networks.	 Despite	 a	 number	 of	

technical	 limitations,	 they	 are	 potentially	more	 suited	 to	 investigating	mechanisms	 of	 long-

range	 neuronal	 communication,	 insofar	 as	 they	 yield	 high	 temporal	 resolution	 and	 directly	

measure	electrophysiological	activity	(Ganzetti	and	Mantini,	2013;	Pfurtscheller	and	Lopes	da	

Silva,	1999).		

In	 recent	 years,	 technological	 advances	 have	 enabled	 the	 reliable	 reconstruction	 of	

ongoing	activity	in	the	brain	(typically	called	‘source	space’)	using	MEG	(Mantini	et	al.,	2011).	

These	 developments	 have	 permitted	 to	 confirm	 the	 electrophysiological	 basis	 of	 fMRI-based	

connectivity	 (Brookes	 et	 al.,	 2011;	Hipp	 et	 al.,	 2012).	 For	 instance,	 band-limited	MEG	power	

across	 distant	 brain	 regions	was	 found	 to	 be	 temporally	 coherent	 during	 rest,	 and	 spatially	

organized	similarly	to	resting	state	networks	(RSNs)	previously	identified	using	fMRI	(Brookes	

et	al.,	2011;	de	Pasquale	et	al.,	2010).	Moreover,	MEG	studies	have	begun	to	disclose	important	

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/077107doi: bioRxiv preprint first posted online Sep. 23, 2016; 

http://dx.doi.org/10.1101/077107
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

information	about	brain	network	dynamics	also	during	 task	performance	 (de	Pasquale	et	 al.,	

2012;	Hipp	et	al.,	2011),	suggesting	that	 long-range	neuronal	communication	is	characterized	

by	rapid	changes	of	synchronized	oscillatory	activity	within	specific	brain	circuits	(de	Pasquale	

et	 al.,	 2010).	 However,	 applications	 of	 MEG	 for	 large-scale	 studies	 remain	 limited,	 mainly	

because	MEG	is	not	portable	and	has	high	maintenance	costs.		

There	 may	 be	 several	 reasons	 why	 no	 research	 group	 has	 been	 able	 to	 map	 brain	

networks	 using	 EEG,	 as	 previously	 done	 using	 fMRI	 (Fox	 and	 Raichle,	 2007;	 Ganzetti	 and	

Mantini,	2013;	Gillebert	and	Mantini,	2013)	and	MEG	(Brookes	et	al.,	2011;	de	Pasquale	et	al.,	

2010;	Hipp	et	al.,	2012).	One	of	the	main	technical	difficulties	to	obtain	RSNs	from	EEG	signals	

is	 that	 the	 high	 requirement	 of	 accurate	 and	 precise	 source	 activity	 reconstructions.	 Unlike	

MEG,	 source	 analysis	 of	 EEG	 potentials	 requires	 indeed	 precise,	 realistic	 biophysical	models	

that	incorporate	the	exact	positions	of	the	sensors	as	well	as	the	properties	of	head	and	brain	

anatomy,	 such	 that	appropriate	source	 localization	 techniques	can	be	applied	 to	map	surface	

potentials	 to	 cortical	 sources	 (Michel	 et	 al.,	 2004).	 To	 build	 a	 realistic	 head	model,	 accurate	

representation	of	 the	volume	conductor	of	 the	head	and	precise	volume	conductivity	of	 each	

tissue	are	essential	(Cho	et	al.,	2015;	Fiederer	et	al.,	2015;	Haueisen	et	al.,	1997;	Ramon	et	al.,	

2006).	Moreover,	 spatial	 sampling	density	and	coverage	of	EEG	electrodes	also	play	a	crucial	

role	 for	neuronal	source	estimation	(Slutzky	et	al.,	2010;	Song	et	al.,	2015).	High-density	EEG	

(hdEEG)	provides	both	high	spatial	sampling	density	and	large	head	coverage,	which	facilitates	

the	 reconstruction	of	 brain	 activity	 in	 the	 source	 space.	Many	 research	 groups	working	with	

EEG	still	make	use	of	low-density	systems	with	32	or	64	channels,	whereas	hdEEG	systems	are	

not	 widespread	 yet.	 Also,	 dedicated	 processing	 tools	 that	 permit	 to	 use	 hdEEG	 for	 brain	

imaging	in	a	manner	that	is	analogous	to	MEG	are	currently	lacking.	Another	concern	to	study	

RSNs	with	EEG	(also	with	MEG)	is	the	so-called	‘signal	leakage’	across	brain	voxels	(Brookes	et	

al.,	2012;	Hillebrand	et	al.,	2012;	Hipp	et	al.,	2012).	In	EEG	studies,	the	leakage	problem	can	be	

caused	by	volume	conduction	as	well	as	the	ill-posed	nature	of	the	inverse	solutions.	While	the	

former	occurs	inevitably	during	the	signal	recording	and	at	a	sensor	level,	the	latter	is	due	to	
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the	fact	that	EEG/MEG	source	estimation	consists	of	estimating	a	few	thousand	voxel	activities	

from	maximally	a	few	hundred	recordings.	Therefore,	the	source	estimation	is	underspecified	

in	 nature	 and	 yields	 a	 blurred	 image	 of	 the	 true	 activity	 in	 the	 brain	 voxels	 where	 activity	

estimated	 in	 one	 voxel	 is	 in	 fact	 a	weighted	 sum	 of	 the	 activities	 in	 the	 neighboring	 voxels.	

Thus,	we	suggest	that	a	combination	of	three	approaches	could	be	used	to	alleviate	the	leakage	

problem	 for	 the	 EEG	 source	 estimation	 in	 order	 to	 extract	 the	 long-range	 connectivity	 and	

networks:	 1)	 increasing	 the	 degrees	 of	 freedom	 of	 the	 sensor	 recordings;	 2)	 an	 appropriate	

choice	 of	 source	 estimation	method	 and	 3)	 using	 a	 connectivity	method	 that	 minimizes	 the	

effects	of	signal	leakage.		

Here	 we	 propose	 that	 higher	 degrees	 of	 freedom	 needed	 to	 correctly	 resolve	 the	

dynamics	 of	 brain	 activity	 can	 be	 achieved	 through	 increasing	 the	 number	 of	 sensors	 by	

utilizing	hdEEG.	Furthermore,	since	there	are	no	restrictions	on	the	locations	of	active	sources	

in	resting	state	networks,	we	have	used	distributed	source	models	that	aim	at	minimizing	the	

leakage	 among	 the	 brain	 voxels	 and	 have	 tested	 for	 different	 methods	 within	 two	 major	

families	of	minimum	norm	source	estimators	and	beamformers.	Finally,	 in	order	to	obtain	an	

estimate	 of	 connectivity	 that	 is	 least	 affected	 by	 the	 leakage	 problem,	 we	 have	 employed	

independent	 component	 analysis	 (ICA).	 Notably,	 MEG	 studies	 documented	 that	 the	 signal	

leakage	 problem	 is	 less	 critical	 when	 detecting	 RSNs	with	 ICA	 than	 seed-based	 connectivity	

analysis	 (Brookes	 et	 al.,	 2011).	 	 ICA	 performs	 a	 blind	 decomposition	 of	 a	 given	 number	 of	

spatio-temporal	patterns	that	are	mixed	in	the	data,	assuming	that	these	patterns	are	mutually	

and	statistically	independent	in	space	(sICA)	or	time	(tICA).	For	fMRI	analyses,	the	use	of	sICA	

is	warranted	because	 the	number	of	 time	points	 is	 typically	much	 smaller	 than	 that	of	 brain	

voxels,	 and	 this	 possibly	 leads	 to	 unreliable	 data	 decomposition	 by	 tICA	 (McKeown	 et	 al.,	

1998).	 However,	 tICA	 has	 been	 preferred	 in	 EEG/MEG	 connectivity	 studies	 (Brookes	 et	 al.,	

2011;	Yuan	et	al.,	2016).	 In	 the	case	of	EEG/MEG,	 the	use	of	 tICA	 is	possibly	not	problematic	

due	to	the	higher	temporal	resolution	of	these	techniques	as	compared	to	fMRI.	No	study	has	
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ever	 tested	whether	 and	 to	what	 extent	 sICA	 can	 successfully	 retrieve	 brain	 networks	 from	

EEG/MEG	data.	

	 In	 this	 study,	 we	 describe	 a	 complete	 pipeline	 for	 the	 detection	 of	 EEG	 RSNs,	 which	

exploits	the	advantages	of	high-density	as	compared	to	low-density	EEG	systems	and	includes	

state-of-the-art	 tools	 for	 data	 preprocessing,	 realistic	 head	 model	 generation,	 source	

localization	 and	 ICA-based	 connectivity	 analysis.	 We	 show	 for	 the	 first	 time	 that	 EEG	 RSNs	

obtained	 using	 sICA	 are	 substantially	 more	 robust	 as	 compared	 to	 those	 produced	 by	 tICA.	

Most	 importantly,	 such	 EEG	 RSNs	 have	 minimal	 or	 no	 signal	 leakage	 as	 well	 as	 a	 spatial	

accuracy	comparable	to	that	of	fMRI	RSNs.	Notably,	hdEEG	data	can	be	collected	simultaneously	

with	 fMRI	 and	 also	 in	 combination	 with	 non-invasive	 brain	 perturbation	 by	 transcranial	

magnetic	stimulation	(TMS)	or	transcranial	direct/alternating	current	stimulation	(tDCS/tACS).	

Furthermore,	hdEEG	experiments	can	be	easily	performed	not	only	 in	healthy	volunteers	but	

also	in	neurological	and	psychiatric	patients.	Our	methodological	work	may	therefore	open	up	

new	exciting	research	avenues	in	neuroscience,	and	contribute	to	rise	of	hdEEG	as	a	powerful	

tool	for	both	basic	and	translational	investigations	on	human	brain	networks.	

	

2.	Materials	and	Methods	

2.1	Description	of	the	analysis	workflow	

We	developed	 a	 complete	 analysis	workflow	 to	 obtain	multiple	 subject-specific	 RSNs	

from	hdEEG	recordings	(Fig.1).	Four	main	analysis	steps	are	involved:	1)	Data	preprocessing,	to	

attenuate	noise	and	artifacts	that	are	mixed	in	the	data;	2)	Volume	conduction	model	creation,	to	

establish	how	brain	sources	(i.e.	ionic	currents	in	the	cortex)	can	generate	specific	distributions	

of	potentials	over	the	hdEEG	sensors;	3)	Brain	activity	reconstruction,	to	estimate	-based	on	the	

EEG	recordings	and	 the	head	model-	 the	distribution	of	 active	brain	 sources	 that	most	 likely	

generates	the	potentials	measured	over	the	hdEEG	sensors;	4)	Connectivity	analysis,	 to	obtain	

RSN	maps	showing	brain	regions	that	have	similar	modulations	of	band-limited	power,	and	are	
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therefore	 thought	 to	 preferentially	 interact	with	 each	 other.	 The	 software	 implementing	 the	

analysis	 workflow	 described	 above	 is	 freely	 available,	 and	 can	 be	 found	 at	

http://www.bindgroup.eu/index.php/software.	

	

Fig.1	–	Pipeline	for	obtaining	single-subject	RSNs	from	hdEEG	recordings.	The	main	analysis	steps	

include:	 1)	 Data	 preprocessing,	 involving	 bad-channel	 detection,	 filtering,	 ICA-denoising	 and	 re-

referencing;	 2)	 Volume	 conduction	 model	 creation,	 involving	 electrodes	 co-registration,	 MRI	

segmentation	 and	 forward	 modeling	 solution;	 3)	 Brain	 activity	 reconstruction,	 to	 estimate	 the	

distribution	of	active	brain	sources	that	most	 likely	generates	the	potentials	measured	over	the	hdEEG	

sensors;	 4)	 Connectivity	 analysis,	 extracting	 independent	 components	 from	 the	 power	 time	 series	 of	

voxels	and	selecting	the	components	associated	with	large-scale	brain	network	activity.	

	

2.1.1	Data	preprocessing	

First	 of	 all,	 we	 detected	 channels	 with	 low	 signal	 quality	 and	 labeled	 them	 as	 ‘bad	

channels’.	To	this	end,	we	used	an	automated	procedure	that	combines	information	from	two	

different	parameters.	The	first	parameter	was	the	minimum	Pearson	correlation	of	the	signal	in	

a	frequency	band	of	interest	(here	we	selected	the	band	1-80Hz)	against	all	the	signals	from	the	

other	channels.	The	second	parameter	was	the	noise	variance,	estimated	in	band	in	which	the	

contribution	of	 the	EEG	 signal	 can	be	 considered	negligible	 (here	we	 selected	 the	band	200-
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250Hz).	 We	 define	 bad	 channels	 those	 for	 which	 at	 least	 one	 of	 the	 two	 channel-specific	

parameters	were	outliers	as	compared	to	the	total	distribution	of	values.	To	ensure	robustness	

of	 the	detection,	 the	 threshold	 to	define	 an	outlier	was	 set	 at	 equal	 to	m+4s,	where	m	 is	 the	

average	value	and	s	is	the	standard	deviation.	The	detected	bad	channels	were	interpolated	by	

using	 information	 from	 the	 neighboring	 channels,	 as	 implemented	 in	 the	 FieldTrip	 toolbox	

(http://www.fieldtriptoolbox.org).	Later,	we	band-pass	filtered	the	data	in	the	frequency	range	

1-80Hz	 and	we	 applied	 independent	 component	 analysis	 (ICA)	 in	 order	 to	 remove	 of	 ocular	

and	 muscular	 artifacts	 (Mantini	 et	 al.,	 2008).	 A	 fast	 fixed-point	 ICA	 (FastICA)	 algorithm	

(http://research.ics.aalto.fi/ica/fastica)	 using	 a	 deflation	 approach	 and	hyperbolic	 tangent	 as	

contrast	function	was	used	to	extract	independent	components	(ICs).	After	ICA	decomposition,	

the	 artifactual	 ICs	 were	 automatically	 classified	 by	 extracting	 and	 assessing	 the	 following	

parameters:	 1)	 correlation	 cp	 between	 the	 power	 of	 the	 IC	 with	 vertical	 electrooculogram	

(vEOG),	horizontal	electrooculogram	(hEOG)	and	electromyogram	(EMG)	(see	Supplementary	

Fig.	1);	2)	the	coefficient	of	determination	r2	obtained	by	fitting	the	IC	power	spectrum	with	a	

1/f	function;	3)	the	kurtosis	k	of	the	IC.	An	IC	was	classified	as	artifactual	if	at	least	one	of	the	

above	 parameters	 was	 above	 a	 given	 threshold	 (Supplementary	 Table	 1),	 which	 was	 set	 in	

accordance	 with	 previous	 studies	 (de	 Pasquale	 et	 al.,	 2010;	 Mantini	 et	 al.,	 2009).	 Finally,	

following	 artifact	 rejection	 we	 re-referenced	 the	 EEG	 signals	 using	 the	 average	 reference	

approach,	which	 showed	 to	 be	 both	 robust	 and	 accurate	when	 using	 hdEEG	 data	 (Liu	 et	 al.,	

2015).		

	

2.1.2	Volume	conduction	model	creation		

Precision	 and	 accuracy	 are	 essential	 to	 retrieve	 the	 electrical	 activity	 origins	 in	 the	

brain.	 Specifically,	 obtaining	 an	 accurate	 EEG	 forward	 solution	 requires	 the	 generation	 of	

realistic	 volume	 conductor	model	 from	an	 individual	MR	 image	 and	 the	 definition	 of	 correct	

electrodes	locations	with	respect	to	it.		
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Since	 electrode	 positions	 and	 MR	 anatomy	 are	 not	 in	 the	 same	 space,	 we	 spatially	

coregistered	the	EEG	electrodes	to	MR	space	(Supplementary	Fig.2).	This	procedure	consisted	

of	 three	 distinct	 steps.	 In	 the	 first	 step,	 we	 estimated	 the	 positions	 of	 three	 anatomical	

landmarks	 (nasion,	 left	 and	 right	 preauricolar)	 in	 the	 MR	 image	 by	 projecting	 the	

corresponding	predefined	MNI	 coordinates	 ([0,	85,	 -30],	 [-86,	 -16,	 -40]	 and	 [86,	 -16,	 -40])	 to	

individual	 space.	 Then,	 we	 calculated	 a	 rigid-body	 transformation	 to	 match	 the	 three	

landmarks	 in	electrode	 space	 to	 the	 corresponding	 landmarks	 in	MR	space,	 and	applied	 it	 to	

the	electrode	positions	(Supplementary	Fig.	2A).	 In	 the	second	step,	we	aligned	the	electrode	

positions	 to	 the	surface	of	 the	head	extracted	 from	 individual	MR	 image	(Supplementary	Fig.	

2B)	using	the	Iterative	Closest	Point	(ICP)	registration	algorithm	(Besl	and	Mckay,	1992).	In	the	

third	and	last	step,	we	ensured	that	each	electrode	was	perfectly	lying	over	the	head	surface	by	

projecting	 it	onto	 the	surface	point	with	 the	smallest	Euclidean	distance	 (Supplementary	Fig.	

2C).		

A	 realistic	 head	model	 requires	 the	 definition	 of	 multiple	 tissue	 classes	 of	 the	 head,	

each	characterized	by	a	specific	conductivity	value.	We	opted	for	a	solution	involving	12	tissue	

classes	(skin,	eyes,	muscle,	fat,	spongy	bone,	compact	bone,	cortical	gray	matter,	cerebellar	gray	

matter,	 cortical	 white	 matter,	 cerebellar	 white	 matter,	 cerebrospinal	 fluid	 and	 brain	 stem),	

which	 represents	 the	 current	 state-of-the-art	 for	 studies	 modeling	 the	 effect	 of	 electrical	

stimulation	on	 the	brain	 (Holdefer	 et	 al.,	 2006;	Wagner	 et	 al.,	 2014).	This	 is	 putatively	more	

accurate	 than	other	 solutions	 typically	used	 in	EEG	analysis,	 and	 involving	 five	or	 less	 tissue	

classes	(Fuchs	et	al.,	2002;	Wolters	et	al.,	2006).	Given	the	intrinsic	difficulty	in	defining	all	12-

tissue	classes	directly	from	the	MR	image	(Supplementary	Fig.	3),	we	warped	a	high-resolution	

head	 template	 to	 subject	 space	 using	 the	 normalization	 tool	 in	 SPM12	

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12).	 This	 head	 template	 was	 obtained	 from	

the	 ITIS	 foundation	 of	 ETH	 Zurich	 (http://www.itis.ethz.ch/virtual-population/regional-

human-models/mida-model/mida-v1-0)	 (Iacono	 et	 al.,	 2015).	 The	 conductivity	 value	

associated	 with	 each	 tissue	 class	 was	 defined	 based	 on	 relevant	 literature	 (Haueisen	 et	 al.,	
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1997),	 and	 is	 in	 line	 with	 recent	 brain	 stimulation	 studies	 (Holdefer	 et	 al.,	 2006)	

(Supplementary	Table	2).		

For	the	numerical	approximation	of	the	volume	conduction	model,	we	used	the	whole-

head	 finite	element	method	 (FEM)	 technique.	FEM	have	been	proven	 to	be	very	effective	 for	

solving	 partial	 differential	 equations	 with	 complicated	 solution	 domain	 and	 boundary	

conditions	 (Wolters	 et	 al.,	 2004).	 A	 prerequisite	 for	 FEM	 is	 the	 generation	 of	 a	 mesh	 that	

represents	the	geometric	and	electric	properties	of	 the	head	volume	conductor.	A	hexahedral	

mesh	(i.e.	the	points	of	the	mesh	are	connected	to	create	hexahedrons)	of	the	12	compartments	

was	generated	directly	 from	the	warped	 template	 image.	The	dipoles	corresponding	 to	brain	

sources	were	placed	on	a	regular	6-mm	grid	spanning	the	cortical	grey	matter	and	cerebellar	

grey	 matter.	 In	 this	 study,	 the	 leadfield	 matrix	 L,	 which	 contains	 the	 measured	 potentials	

corresponding	 to	 each	 configuration	 of	 dipole	 position	 and	 orientation,	was	 calculated	 using	

the	Simbio	FEM	method	 integrated	 in	FieldTrip.	Based	on	 the	 reciprocity	principle,	 the	 scalp	

electric	potentials	can	be	expressed	in	the	following	equation	with	leadfield	matrix.	

	 	 (Eq.1)	

where	 	is	 the	 leadfield	 matrix;	 	is	 the	 scalp	 electric	 potential;	

is	 the	 current	 density	 at	 the	 source;	 	is	 the	 number	 of	 electrodes,	 and	 the	

number	of	dipole	sources	in	the	cortical	grey	matter	and	cerebellar	grey	matter.	

	

2.1.3	Brain	activity	reconstruction	

We	performed	reconstruction	of	brain	activity	in	the	source	space	based	on	the	hdEEG	

artifact-free	recordings	and	the	volume	conduction	model.	To	this	end,	we	used	the	exact	low-

resolution	 brain	 electromagnetic	 tomography	 (eLORETA)	 to	 perform	 source	 reconstruction	

(Pascual-Marqui	et	al.,	2011).	The	primary	feature	of	the	eLORETA	algorithm	is	that	of	yielding	

zero	localization	error	to	point	sources	under	ideal	(noise-free)	conditions.	eLORETA	estimates	

the	matrix	of	source	activity	in	the	brain	J	based	on	the	following	formula:		

Φ = L ⋅ J

 L ∈NE× 3NV( )
 Φ∈NE×1

 J ∈ 3NV( )×1 NE NV
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			(Eq.2)	

where	 the	 superscript	 +	 denotes	 the	 Moore-Penrose	 pseudoinverse,	 >0	 is	 the	 Tikhonov	

regularization	 parameter,	 	is	 a	 symmetric	 positive	 definite	 weight	 matrix	 and	

	is	a	matrix	that	depends	on	the	EEG	reference.	Since	the	EEG	data	are	in	average	

reference,	 ,	 where	 	is	 the	 identity	 matrix;	 	where	 all	

elements	are	equal	to	1.	

The	 regularization	 parameter	α	was	 estimated	 by	 covariance	 matrix	 of	 the	 noise	 in	

measurements,	 ,	 with	 .	 The	 weight	 matrix	 W	 was	 iterated	 until	 the	

convergence	with	 ,	where	 	(i=1,	2,	…,	 )	 is	the	element	

of	the	diagonal	weight	matrix	W.	

By	 estimating	 the	 matrix	 J	 (see	 Eq.	 2),	 we	 obtained	 the	 oscillation	 strength	 in	 each	

dipole	with	x,	y	and	z	orientations	at	each	temporal	moment,	indicated	with	jx(t),	jy(t)	and	jz(t)	

respectively,	we	obtained	the	power	time	series	p(t)	by	means	of	the	following	formula:	

	(Eq.3)
	

One	 important	 issue	 to	 measure	 large-scale	 connectivity	 is	 the	 effects	 of	 signal	

transmission	delays	between	the	distant	brain	regions	(Deco	et	al.,	2011).	To	avoid	the	impacts	

of	 time	 delay	 between	 long-range	 sources,	we	 downsampled	 the	 power	 time	 series	 to	 1	 Hz,	

following	an	established	approach	that	was	proposed	in	MEG	connectivity	studies	(Brookes	et	

al.,	 2011).	 This	 downsampling	 can	 enhance	 the	 temporal	 correlations	 between	brain	 regions	

which	 permits	 a	 more	 accurate	 detection	 of	 slow	 fluctuation	 of	 band-limited	 power	

(Supplementary	Fig.	4),	and	is	also	well	matched	with	the	infra	slow	fluctuations	of	the	blood	

oxygen	level	dependent	(BOLD)	signal	(Palva	and	Palva,	2012).		

	

J =W −1 ⋅L ⋅(L ⋅W −1 ⋅LT +αH )+ ⋅Φ

α

 W ∈NV ×NV

H ∈ NE×NE

H = I − 1
NE

1  I ∈NE×NE  1∈NE×NE

Φ
noise∑ Φ

noise∑ =αH

wi = Li
T ⋅(L ⋅W −1 ⋅LT +αH )+ ⋅Li wi NV

p(t) = jx
2 (t)+ jy

2 (t)+ jz
2 (t)
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2.1.4	Connectivity	analysis	

Connectivity	analysis	based	on	the	reconstructed	power	timecourses	across	voxels	was	

performed	using	ICA,	in	either	its	spatial	or	temporal	version	(Supplementary	Fig.5).	ICA	yields	

a	 number	 of	 independent	 components	 (ICs),	 each	 of	which	 consists	 of	 a	 spatial	map	 and	 an	

associated	time-course.	The	IC	spatial	map	reveals	brain	regions	that	have	a	similar	response	

pattern,	 and	 are	 therefore	 functional	 connected	 (Brookes	 et	 al.,	 2011;	Mantini	 et	 al.,	 2007b).	

The	number	of	ICs	was	estimated	by	using	the	minimum	description	length	(MDL)	criterion	(Li	

et	 al.,	 2007).	 The	 FastICA	 algorithm	 was	 run	 10	 times	 using	 a	 deflation	 approach	 and	

hyperbolic	 tangent	 as	 contrast	 function	 to	 extract	 reliable	 ICs,	 as	 estimated	 by	 the	 ICASSO	

software	 package	 (Himberg	 and	 Hyvarinen,	 2003)	 (http://research.ics.aalto.fi/ica/icasso).	

EEG-RSNs	 of	 interest	 were	 selected	 by	 using	 a	 template-matching	 procedure.	 First,	 the	

templates	 were	 warped	 to	 individual	 MR	 space,	 in	 which	 the	 EEG-RSNs	 were	 defined.	 The	

Pearson	correlation	was	used	to	estimate	the	similarity	in	the	spatial	distribution	of	the	EEG-

ICs	 and	 the	 template	 RSN	 maps	 (Supplementary	 Fig.6).	 The	 best	 EEG-IC	 match	 for	 each	

template	map	was	extracted	iteratively,	 labeled	as	a	specific	EEG-RSN,	and	removed	from	the	

pool	of	EEG-ICs.	This	 impedes	 that	 the	same	 IC	were	erroneously	associated	 to	 two	different	

templates.	

	

2.2	Application	to	real	hdEEG	data	and	testing	

2.2.1	Data	acquisition	

Data	used	 in	 this	 study	comprise	 resting-state	hdEEG	signals,	 electrode	positions	and	

individual	whole-head	anatomy	MRI	from	nineteen	healthy	right-handed	subjects	(age	28 5.9	

years,	5	males	and	14	females).	All	participants	reported	normal	or	corrected-to-normal	vision,	

had	no	psychiatric	or	neurological	history,	were	free	of	psychotropic	or	vasoactive	medication.	

Before	 undergoing	 the	 examination,	 they	 gave	 their	 written	 informed	 consent	 to	 the	

±
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experimental	procedures,	which	were	approved	by	the	local	Institutional	Ethics	Committee	of	

ETH	Zurich.		

The	EEG	experiment	was	performed	 in	accordance	with	 the	approved	guidelines,	 in	a	

quiet,	air-conditioned	laboratory	with	soft	natural	light.	Continuous	5-minute	resting	EEG	data	

with	eyes	open	were	collected.	To	reduce	eye	movements	and	blinks,	subjects	were	instructed	

to	keep	fixation	on	the	center	of	screen	during	the	experiment.	High-density	EEG	signals	were	

recorded	 at	 1000	 Hz	 by	 the	 256-channel	 HydroCel	 Geodesic	 Sensor	 Net	 (GSN)	 using	 silver	

chloride–plated	 carbon-fiber	 electrode	pellets	 provided	by	Electrical	Geodesics	 (EGI,	 Eugene,	

Oregon,	USA).	During	recording,	the	EGI	system	used	the	electrode	at	vertex	(labeled	as	Cz	in	

the	10/20	 international	 system)	as	physical	 reference.	 In	 addition,	 to	better	 characterize	 the	

scalp	distribution	of	 EEG	 signals,	 all	 256	 sensors	 and	 three	 landmarks	positions	 (nasion,	 left	

and	 right	 preauricolar)	 were	 localized	 prior	 to	 the	 EEG	 acquisition	 by	 using	 a	 Geodesic	

Photogrammetry	System	(GPS).	In	detail,	GPS	derives	the	position	of	each	EEG	electrode	from	

multiple	 pictures,	 simultaneously	 captured,	 of	 all	 the	 sensors	 on	 the	 subject’s	 scalp.	 After	

defining	 the	 2D	 electrode	 positions	 on	 at	 least	 2	 pictures,	 3D	 coordinates	 are	 computed	 by	

using	 a	 triangulation	 algorithm	 (Russell	 et	 al.,	 2005).	In	 addition	 to	 EEG	 data	 and	 electrode	

position	 information,	a	T1-weighted	whole-head	MR	 image	of	each	subject	was	acquired	 in	a	

separate	 experimental	 session	 using	 a	 Philips	 3T	 Ingenia	 scanner	 with	 a	 turbo	 field	 echo	

sequence.	The	scanning	parameters	were:	TR=8.25ms,	TE=3.8ms,	8°	 flip	angle,	240×240×160	

field	of	view,	1	mm	isotropic	resolution.		

	

2.2.2	Analyses	on	the	obtained	RSNs	

First,	we	applied	our	hdEEG	processing	pipeline	and	reconstructed	power	envelopes	of	

oscillatory	cortical	activity	from	each	hdEEG	dataset.	For	sICA	analysis,	based	on	the	results	of	

the	MDL	analysis	(Li	et	al.,	2007),	we	run	sICA	requiring	34	to	58	ICs,	depending	on	the	specific	

hdEEG	dataset.	We	attempted	the	detection	of	EEG-RSNs	also	with	tICA,	following	the	network	

detection	approach	suggested	in	previous	EEG/MEG	connectivity	studies	(Brookes	et	al.,	2011).	
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In	the	case	of	both	sICA	and	tICA,	we	used	as	templates	for	RSN	detection	the	maps	obtained	

using	 from	 fMRI	 data	 used	 in	 one	 of	 our	 previous	 studies	 (Mantini	 et	 al.,	 2013).	 These	 data,	

which	were	 collected	 in	 24	 healthy	 young	 subjects	 at	 rest	 for	 20	minutes,	were	 split	 in	 two	

equal	parts	of	10	minutes.	Brain	networks	were	detected	using	sICA	from	each	dataset.	As	for	

the	methods	used,	 please	 refer	 to	 our	previous	work	 (Mantini	 et	 al.,	 2013).	The	 first	 dataset	

was	 used	 to	 generate	 fMRI	 template	 maps	 to	 be	 used	 for	 comparison	 with	 EEG	 networks,	

whereas	 the	 second	 dataset	 was	 employed	 for	 a	 test-retest	 fMRI-RSN	 analysis.	 The	 RSN	

template	maps	obtained	from	fMRI	data	corresponded	to:	default	mode	network	(DMN),	dorsal	

attention	 network	 (DAN),	 ventral	 attention	 network	 (VAN),	 right	 frontoparietal	 network	

(rFPN),	left	frontoparietal	network	(lFPN),	language	network	(LN),	cingulo-opercular	network	

(CON),	 auditory	 network	 (AN),	 ventral	 somatomotor	 network	 (VSN),	 dorsal	 somatomotor	

network	 (DSN),	 visual	 foveal	 network	 (VFN),	 visual	 peripheral	 network	 (VPN),	 medial	

prefrontal	 network	 (MPN)	 and	 lateral	 prefrontal	 network	 (LPN)	 (see	 Supplementary	 Fig.	 2).	

For	 each	 EEG-RSN,	 we	 transformed	 the	 individual	 maps	 to	 common	 space	 using	 SPM	 and	

derived	a	group-level	RSN	map	by	using	performing	a	voxel-wise	non-parametric	permutation	

test	by	FSL	(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki).	We	used	5000	permutations	for	this	across-

subject	 analysis,	 and	 we	 set	 the	 significance	 threshold	 to	 p<0.01	 corrected	 for	 multiple	

comparisons	 by	 using	 the	 threshold-free	 cluster	 enhancement	 (TFCE)	 method	 (Smith	 and	

Nichols,	2009).	To	verify	that	the	detected	EEG-RSNs	were	selectively	associated	with	a	specific	

fMRI-RSN,	we	calculated	a	matrix	of	cross-correlations	between	EEG-RSN	and	fMRI-RSN	maps.	

Also	we	checked	the	spatial	correlation	of	the	matching	ICs	and	mismatching	ICs.	Moreover,	we	

tested	 the	 robustness	RSN	 spatial	 patterns	 obtained	by	 sICA/tICA,	 by	performing	 a	 split-half	

analysis.	Specifically,	we	split	the	5-minute	recording	into	two	segments	of	equal	duration.	We	

independently	 obtained	 EEG-RSNs	 from	 each	 of	 these	 two	 data	 segments	 using	 our	 analysis	

pipeline.	Finally,	we	examined	the	correspondence	between	the	two	sets	of	maps	by	using	the	

Pearson	 correlation	 between	 RSN	 maps.	 For	 both	 tICA	 and	 sICA,	 we	 also	 examined	 the	

correlations	between	maps	for	matching	ICs	and	mismatching	ICs,	respectively.	
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As	a	 further	analysis	step,	we	 investigated	the	 impact	of	 the	number	of	EEG	channels,	

the	 accuracy	 of	 the	 head	 model	 and	 the	 kind	 of	 source	 localization	 for	 an	 accurate	 RSN	

detection.	Also	in	this	case,	performance	was	measured	in	terms	of	spatial	correlation	between	

EEG-RSNs	to	the	fMRI-RSNs.	To	investigate	the	RSNs	with	lower	montage	density,	we	spatially	

subsampled	each	set	of	256-channel	recordings	and	derived	32-channel,	64-channel	and	128-

channel	recordings	with	electrodes	positioned	according	to	standard	EEG	montages.	The	effect	

of	 using	 a	 less	 accurate	 head	 model	 was	 tested	 by	 running	 RSN	 detection	 on	 source	 data	

reconstructed	 using	 a	 5-layer	 realistic	 FEM,	 and	 a	 3-layer	 boundary	 element	method	 (BEM)	

based	either	on	an	individual	or	a	template	MR	image.	In	line	with	previous	literature	(Cho	et	

al.,	 2015;	 Ramon	 et	 al.,	 2006;	Wolters	 et	 al.,	 2006),	 the	 5-layer	 FEM	model	 comprised	 grey	

matter	 (cortical	 and	 cerebellar),	 white	 matter	 (cortical	 and	 cerebellar)	 plus	 brainstem,	

cerebrospinal	 fluid,	 skull	 (compact	 and	 spongy)	 and	 all	 remaining	 soft	 tissues	 (skin,	 eyes,	

muscles	and	fat).	In	turn,	the	3-layer	BEM	models	included	brain	plus	cerebellum,	skull	and	all	

other	 tissues.	 We	 obtained	 the	 conductivity	 values	 for	 5-	 and	 3-layer	 models	 by	 pooling	

together	 different	 tissues	 and	 averaging	 the	 conductivity	 values	 used	 for	 the	 12-layer	 head	

model.	Finally,	we	examined	whether	 it	 is	possible	 to	detect	EEG-RSNs	using	different	source	

localization	methods	for	the	reconstruction	of	brain	activity	in	the	source	space.	To	this	end,	we	

tested	the	RSN	results	obtained	using	eLORETA	against	those	provided	by	sLORETA	(Pascual-

Marqui,	 2002)	 and	MNE	 (Wang	 et	 al.,	 1992),	 two	 other	minimum	norm	methods,	 and	 LCMV	

(VanVeen	et	al.,	1997),	a	beamforming	method.	

	

3.	Results	

We	applied	this	processing	pipeline	to	256-channel	hdEEG	data	collected	 in	19	young	

healthy	participants,	who	were	 instructed	 to	 fixate	a	centrally	presented	cross	 for	5	minutes.	

After	reconstructing	power	envelopes	of	oscillatory	cortical	activity	for	each	voxel	in	the	grey	

matter,	 we	 applied	 ICA	 for	 the	 detection	 of	 multiple	 RSNs	 from	 each	 hdEEG	 dataset.	
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Connectivity	 analyses	 were	 conducted	 in	 individual	 space	 by	 applying	 either	 temporal	 ICA	

(tICA)	or	spatial	ICA	(sICA)	(Supplementary	Fig.	1)	on	power	envelopes	of	oscillatory	activity,	

and	the	resulting	maps	were	transformed	to	common	space	to	enable	across-subject	statistical	

analyses.		

First,	 we	 attempted	 to	 obtain	 brain	 networks	 by	 applying	 tICA	 to	 the	 source-space	

power	envelopes	(Fig.	2A).	We	defined	14	EEG-RSNs	in	each	of	the	19	subjects:	default	mode	

network	 (DMN),	 dorsal	 attention	 network	 (DAN),	 ventral	 attention	 network	 (VAN),	 right	

frontoparietal	 network	 (rFPN),	 left	 frontoparietal	 network	 (lFPN),	 language	 network	 (LN),	

cingulo-opercular	 network	 (CON),	 auditory	 network	 (AN),	 ventral	 somatomotor	 network	

(VSN),	 dorsal	 somatomotor	 network	 (DSN),	 visual	 foveal	 network	 (VFN),	 visual	 peripheral	

network	(VPN),	medial	prefrontal	network	(MPN)	and	lateral	prefrontal	network	(LPN).	After	

retrieving	 the	 14	RSNs	 using	 tICA,	we	 also	 performed	 network	 detection	 using	 sICA	 and	we	

compared	the	resulting	maps	(Fig.	2B).		
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Fig.2	–	Group-level	maps	for	large-scale	brain	networks	extracted	from	hdEEG	data.	EEG	networks	

were	 obtained	 using	 (A)	 tICA	 or	 (B)	 sICA,	 and	 were	 selected	 and	 labeled	 on	 the	 basis	 of	 the	 spatial	

overlap	 with	 fMRI	 networks:	 default	 mode	 network	 (DMN),	 dorsal	 attention	 network	 (DAN),	 ventral	

attention	 network	 (VAN),	 right	 frontoparietal	 network	 (rFPN),	 left	 frontoparietal	 network	 (lFPN),	

language	network	(LN),	cingulo-opercular	network	(CON),	auditory	network	(AN),	ventral	somatomotor	

network	 (VSN),	 dorsal	 somatomotor	 network	 (DSN),	 visual	 foveal	 network	 (VFN),	 visual	 peripheral	

network	 (VPN),	 medial	 prefrontal	 network	 (MPN)	 and	 lateral	 prefrontal	 network	 (LPN).	 The	 hdEEG	

networks	were	first	identified	in	each	subject,	and	then	subjected	to	non-parametric	group-level	testing	

(threshold:	p<0.01,	TFCE	corrected).	Spatial	maps	are	shown	in	coronal,	sagittal	and	axial	sections.	
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We	 observed	 that	 the	 EEG-RSN	 maps	 obtained	 with	 sICA,	 as	 compared	 to	 those	

obtained	by	tICA,	had	larger	spatial	correlations	with	corresponding	fMRI-RSNs	(paired	t-test,	

p=0.0129)	 (Fig.	 3A-C).	 Notably,	 the	 difference	 between	 correlation	 values	 obtained	 for	

matching	and	non-matching	RSNs	was	significantly	higher	for	sICA	(unpaired	t-test,	p=0.0218).	

Overall,	 the	correlation	values	between	group-level	EEG-	and	fMRI-RSNs	extracted	using	sICA	

(r=0.53±0.08)	were	in	a	range	comparable	with	those	obtained	between	the	fMRI-RSNs	used	as	

template	and	the	networks	obtained	by	sICA	using	a	replication	fMRI	dataset	(r=	0.60±0.12).	To	

further	 test	 the	 robustness	 of	 our	 results	 in	 individual	 subjects,	 we	 conducted	 a	 split-half	

analysis.	We	found	that	ICA	on	hdEEG	signals	was	able	to	reconstruct	EEG-RSNs	even	on	data	

segments	 of	 only	 2.5	 minutes	 (Supplementary	 Fig.	 7	 and	 Supplementary	 Fig.	 8),	 with	 high	

values	of	spatial	correlation	between	network	maps	from	the	two	segments	(Fig.	3D-F).		
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Fig.3	–	Analysis	of	robustness	 for	 ICA-based	RSNs.	(A)	cross-correlation	between	spatial	maps	from	

tICA	and	fMRI	templates;	(B)	cross-correlation	between	spatial	maps	from	sICA	and	fMRI	templates;	(C)	

bar	plot	of	correlations	between	matching	and	mismatching	RSNs,	obtained	using	either	tICA	or	sICA.	(D)	

cross-correlation	 between	 RSNs	 obtained	 using	 tICA	 from	 two	 equally	 long	 EEG	 segments;	 (E)	 cross-

correlation	 between	 RSNs	 obtained	 using	 sICA	 from	 two	 equally	 long	 EEG	 segments;	 (F)	 bar	 plot	 of	

correlations	 between	 matching	 and	 mismatching	 RSNs,	 obtained	 using	 either	 tICA	 or	 sICA	 from	 two	

equally	long	EEG	segments.	

	

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/077107doi: bioRxiv preprint first posted online Sep. 23, 2016; 

http://dx.doi.org/10.1101/077107
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 20	

Our	 results	 provided	 evidence	 for	 a	 robust	 EEG	RSN	 extraction	using	 sICA.	 To	 better	

understand	to	what	extent	the	sICA	results	depended	on	the	use	of	hdEEG,	we	performed	more	

detailed	analyses.	First,	we	examined	 the	 influence	of	 the	montage	density	by	comparing	 the	

RSNs	obtained	using	32-,	64,	128-	and	256-channel	EEG.	The	latter	yielded	the	highest	values	of	

spatial	correlation	with	 the	 template	maps,	but	 the	difference	with	128-channel	EEG	was	not	

significant	 (Fig.	 4A).	 Also,	 our	 analyses	 confirmed	 that	 network	 reconstruction	 was	 more	

accurate	with	a	head	model	based	on	12-layer	FEM	as	 compared	 to	5-layer	FEM	and	3-layer	

boundary	element	method	(BEM)	model	built	on	an	individual	MR	image,	as	well	as	a	3-layer	

BEM	built	 using	 a	 template	MR	 image.	 Yet,	 the	use	of	 a	 less	precise	head	model	 had	 smaller	

impact	 on	 the	RSN	 reconstruction	 than	 a	 reduced	montage	 density	 (Fig.	 4B).	 Also,	we	 found	

eLORETA	 source	 localization	 to	 be	 only	 slightly	 superior	 to	 exact	 low-resolution	 brain	

electromagnetic	 tomography	 (sLORETA),	 whereas	 the	 reconstruction	 improvement	 as	

compared	 to	 minimum	 norm	 estimate	 (MNE)	 and	 linearly	 constrained	 minimum	 variance	

(LCMV)	methods	were	remarkable	(Fig.	4C).	The	quantitative	analyses	assessing	the	impact	of	

the	 EEG	 montage	 density,	 type	 of	 head	 model	 and	 use	 of	 source	 localization	 method	 were	

supported	by	visual	inspection	of	the	EEG-RSN	maps	(Fig.	5).		

	

Fig.4	 –	 Accuracy	 of	 RSN	 reconstruction	 with	 different	 EEG	 montage	 density,	 head	 model	 and	

source	 localization	methods.	Bar	plots	 showing	mean	and	 standard	error	of	 the	 spatial	 correlations	

between	corresponding	fMRI-RSNs	and	EEG-RSNs	(A)	obtained	by	128-,	64-	and	32-channel	recordings,	

using	12-layer	realistic	FEM	and	eLORETA	source	localization;	(B)	obtained	by	5-layer	realistic	FEM,	3-

layer	 realistic	 BEM	 and	 3-layer	 template	 BEM,	 using	 256-channel	 recordings	 and	 eLORETA	 source	

localization;	 (C)	 obtained	 by	 sLORETA,	 MNE	 and	 LCMV,	 using	 256-channel	 recordings	 and	 12-layer	

realistic	FEM.	The	horizontal	dashed	line	indicates	the	average	correlation	of	corresponding	fMRI-RSNs	

and	 EEG-RSNs	 obtained	 using	 256-channel	 recordings,	 12-layer	 realistic	 FEM	 and	 eLORETA	 source	
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localization	 (default	 configuration	 in	 the	 pipeline).	 The	 markers	 above	 the	 bars	 indicate	 statistically	

significant	reduction	between	correlation	values	obtained	using	a	specific	configuration	and	the	default	

configuration	in	the	pipeline	(one-tailed	paired	t-test:	*	=	p<0.05;	**	=	p<0.01).	

	

	

Fig.5	 –	 Influence	 of	 EEG	 montage	 density,	 head	 model	 and	 source	 localization	 methods	 on	

network	 reconstruction.	 (A)	 DMN	 and	 (D)	 DSN	 maps	 obtained	 using	 128-,	 64-	 and	 32-channel	

recordings	respectively,	using	12-layer	realistic	FEM	and	eLORETA	source	localization;	(B)	DMN	and	(E)	

DSN	 maps	 obtained	 using	 5-layer	 realistic	 FEM,	 3-layer	 realistic	 BEM	 and	 3-layer	 template	 BEM	

respectively,	 using	 256-channel	 recordings	 and	 eLORETA	 source	 localization;	 (C)	 DMN	 and	 (F)	 DSN	

maps	obtained	by	sLORETA,	MNE	and	LCMV	localization	respectively,	using	256-channel	recordings	and	

12-layer	realistic	FEM.	
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4.	Discussion	

The	main	goal	of	this	study	was	the	detection	of	large-scale	brain	networks	from	hdEEG	

data,	with	a	spatial	accuracy	comparable	to	the	one	that	can	be	obtained	using	fMRI.	This	is	a	

particularly	complex	task,	as	it	requires	the	precise	estimation	of	neuronal	activity	in	the	cortex	

from	recordings	made	over	 the	 scalp.	To	achieve	 that	 goal,	we	devised	a	processing	pipeline	

that	 is	 tailored	 to	 hdEEG	 data	 and	 includes	 state-of-the-art	 analysis	 techniques	 such	 as	

appropriate	 data	 pre-processing,	 realistic	 head	 model	 construction,	 accurate	 source	

localization	and	ICA-based	connectivity	analysis.	Our	results	demonstrated	that	the	use	of	high-

density	EEG	montage	is	crucial	for	RSN	detection,	and	that	also	the	accuracy	of	the	head	model	

and	 the	kind	of	 source	 localization	used	are	 important	 for	accurate	network	reconstructions.	

To	 the	 best	 of	 our	 knowledge,	 only	 one	 EEG	 study	 attempted	 to	 reconstruct	 brain	 networks	

using	 tICA	 (Yuan	 et	 al.,	 2016),	 but	 failed	 to	 show	 maps	 that	 correspond	 to	 fMRI	 networks.	

Notably,	we	showed	for	the	first	time	that	sICA	can	be	effectively	used	for	the	detection	of	EEG-

RSNs	that	are	largely	matching	previously	reported	fMRI-RSN	maps.	

	

4.1	High-density	EEG	for	source-space	analyses	

In	 this	 study,	we	 investigated	 the	RSNs	 spatial	 patterns	using	hdEEG.	 Specifically,	we	

integrated	information	from	hdEEG	data,	realistic	electrode	positions	and	structural	MR	images.	

A	number	of	previous	 studies	examined	 functional	 connectivity	with	EEG	signals	 (Smit	et	al.,	

2008);	 however,	 connectivity	 analyses	were	 kept	 at	 the	 sensor	 level	 due	 to	 the	 low-density	

electrode	coverage.	 Interpretation	of	 the	results	of	 these	studies	 is	not	straightforward,	since	

EEG	recordings	contain	a	mix	of	neuronal	activity	from	different	brain	regions.	More	recently,	

interest	of	the	scientific	community	is	shifting	from	low-density	EEG	toward	high-density	EEG,	

from	 sensor	 space	 analyses	 toward	 source	 space	 analyses,	 thanks	 to	 the	 technological	

development	and	the	advanced	computing	capacity	of	computers.	Our	work	contributed	to	the	

development	 of	 analysis	 tools	 specifically	 tailored	 to	 hdEEG,	 providing	 a	 novel	 way	 to	

investigate	 brain	 activity	 in	 a	 non-invasive	manner,	 and	with	 relatively	 accurate	 spatial	 and	
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temporal	 resolution.	 Our	work	 emphasized	 the	 importance	 of	 high-density	montages	 for	 the	

EEG-RSN	studies	(Fig.	4A),	especially	for	the	RSNs	including	distant	brain	regions	such	as	the	

DMN	(Fig.	2B	and	5A);	however	RSNs	with	a	less	distributed	pattern,	as	for	instance	DSN,	were	

successfully	reconstructed	also	with	a	low	density	EEG	montage	(Fig	5D).	Moreover,	previous	

work	clearly	showed	the	 importance	of	accurate	 information	on	electrode	positions	 is	crucial	

for	accurate	EEG	re-referencing	(Liu	et	al.,	2015)	and	source	localization	(Van	Hoey	et	al.,	2000;	

Wang	and	Gotman,	2001).	However,	this	is	still	neglected	in	a	considerable	part	of	current	EEG	

studies.		

	

4.2	Forward	model	and	solution	to	the	inverse	problem	

Previous	 studies	 suggested	 that	 the	 use	 of	 a	 realistic	 head	 model	 is	 essential	 for	

retrieving	 EEG	 sources	 (Ramon	 et	 al.,	 2006)	 and	 for	 conducting	 connectivity	 analyses	 in	 the	

source	space	(Cho	et	al.,	2015).	In	particular,	the	head	model	is	used	to	find	the	scalp	potentials	

that	 would	 result	 from	 hypothetical	 dipoles,	 or	 more	 generally	 from	 a	 current	 distribution	

inside	the	head.	Accordingly,	we	paid	particular	attention	to	the	construction	of	a	realistic	head	

model.	First,	we	used	a	structural	MR	image	for	each	subject	rather	than	a	template,	which	was	

used	to	achieve	a	detailed	segmentation	of	the	head	tissues.	A	large	number	of	previous	studies	

modeled	the	head	with	three	compartments,	i.e.	skull,	skin	and	brain	(Fuchs	et	al.,	2002),	or	five	

compartments,	i.e.	skull,	skin,	white	matter,	gray	matter	and	cerebrospinal	fluid	(Van	Uitert	et	

al.,	2003).	Arguing	against	this	oversimplification,	we	used	a	finite	element	model	(FEM)	based	

on	12	different	 tissues,	 following	 the	approach	suggested	by	 recent	 studies	 that	modeled	 the	

effect	 of	 transcranial	 electrical	 stimulation	 of	 the	 brain	 (Holdefer	 et	 al.,	 2006;	Wagner	 et	 al.,	

2014).	 Our	 performance	 analysis	 confirmed	 the	 importance	 of	 using	 a	 realistic	 head	 model	

built	on	the	MR	image	of	the	subject’s	head	(Figs.	4B	and	5B,E).	On	the	other	hand,	we	observed	

only	subtle	 improvements	with	a	head	model	created	with	a	12-layer	FEM	as	compared	to	5-

layer	 FEM.	 The	 improvement	 was	 more	 marked	 compared	 to	 3-layer	 BEM,	 in	 which	 white	

matter	and	gray	matter	belong	to	the	same	layer	and	are	assigned	the	same	conductivity	value.	

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/077107doi: bioRxiv preprint first posted online Sep. 23, 2016; 

http://dx.doi.org/10.1101/077107
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

In	 our	 pipeline,	 a	 realistic	 head	 model	 was	 used	 in	 our	 processing	 pipeline	 in	

combination	with	eLORETA	for	the	reconstruction	of	ongoing	brain	activity	in	the	source	space.	

It	 is	worth	noting	 that	 the	performance	 of	 source	 localization	 algorithms	depends	 on	 source	

depth,	on	the	noise	level,	on	the	number	of	recording	electrodes	and	on	the	head	model	(Michel	

et	al.,	2004)	and	there	is	no	general	consensus	about	which	source	localization	method	delivers	

best	 performance	 for	 EEG	 (Michel	 et	 al.,	 2004).	 Our	 results	 confirmed	 the	 suitability	 of	

eLORETA,	 as	 well	 as	 sLORETA,	 for	 EEG	 connectivity	 investigations	 (Figs.4C	 and	 5C,F),	

compared	 with	 MNE	 and	 LCMV.	 As	 a	 linear,	 weighted	 minimum	 norm	 inverse	 solution	

proposed	 as	 an	 improvement	 of	 the	 well-know	 LORETA,	 eLORETA	 has	 been	 found	 to	 be	

particularly	 accurate	 in	 the	 presence	 of	 low-noise	 signals	 (Pascual-Marqui	 et	 al.,	 2011)	 and	

suitable	 for	 the	 study	 of	 brain	 connectivity	 using	 EEG	 (Aoki	 et	 al.,	 2015).	 Above	 all,	 our	

quantitative	analyses	on	the	correspondence	between	EEG-RSNs	and	fMRI-RSNs	(Figs.	3	and	4)	

lend	support	to	our	choices	in	terms	of	head	modeling	and	source	localization	methods.		

	

4.3	Network	detection	by	ICA	

We	detected	RSNs	using	independent	component	analysis	(ICA)	rather	than	alternative	

methods	based	on	seed-based	connectivity	 (Brookes	et	al.,	2012;	de	Pasquale	et	al.,	2010;	de	

Pasquale	et	al.,	2012),	as	ICA	is	a	data-driven	technique	that	can	produce	multiple	RSNs	by	only	

imposing	 the	 constraint	of	 either	 spatial	 or	 temporal	 independence	between	RSNs	 (sICA	and	

tICA,	respectively).	sICA	has	been	largely	employed	for	the	detection	of	RSNs	with	fMRI	data,	in	

which	 the	number	of	 	 time	points	 is	always	much	smaller	 than	 the	number	of	voxels.	 	 In	 the	

case	 of	 EEG/MEG	 connectivity	 studies,	 tICA	 has	 been	 preferred	 to	 sICA	 since	 it	 is	 possibly	

better	suited	to	capture	the	non-linear	and	non-stationary	nature	of	neurophysiological	signals	

(Brookes	et	al.,	2011;	Yuan	et	al.,	2016).	In	this	study,	we	showed	for	the	first	time	that	sICA	can	

be	successfully	applied	for	the	detection	of	RSNs	from	hdEEG	data,	and	that	the	spatial	patterns	

match	 better	 with	 previously	 published	 fMRI-RSNs	 (Fig.	 2B	 and	 Supplementary	 Fig.	 6).	
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Importantly,	sICA	seemed	to	provide	more	robust	RSN	detection	than	tICA,	and	to	be	minimally	

affected	by	the	problem	of	signal	leakage	(Brookes	et	al.,	2012)	(Figs.	2	and	3).	Our	study	has	

also	 the	particular	merit	of	showing	RSNs	that	were	previously	reported	only	using	 fMRI	but	

not	MEG/EEG,	such	as	VAN,	AN	and	MPN	(Mantini	et	al.,	2013)	(Fig.	2).	A	possible	explanation	

for	an	increased	sensitivity	in	RSN	detection	may	be	the	fact	that	we	extracted	EEG-RSN	maps	

at	 the	single-subject	 level	and	 in	 individual	 space,	 rather	 than	 transforming	 the	source-space	

power	 time-courses	 to	 common	 space	 and	 performing	 a	 single	 ICA	 on	 concatenated	 time-

courses	 from	all	 subjects.	The	primary	reason	 for	our	choice	 is	methodological,	and	relies	on	

the	possibility	 to	better	 incorporate	 information	on	head	modeling	and	electrode	positioning	

(Marino,	2016)	 in	source	activity	reconstructions.	However,	 it	should	also	be	considered	that	

the	extraction	of	RSNs	at	the	single	subject	level	may	be	important	for	clinical	applications,	and	

in	 particular	 for	 the	 study	 of	 stroke,	 multiple	 sclerosis,	 Alzheimer’s	 disease	 and	 all	 other	

conditions	in	which	brain	plasticity	(Johnston,	2004)	may	occur.			

	

4.4	Study	limitations	and	caveats	

The	 pipeline	 for	 the	 analysis	 of	 hdEEG	 data	 includes	 several	 analysis	 steps.	 The	

successful	 detection	 –	 for	 the	 first	 time-	 of	 EEG-RSNs	 indirectly	 confirms	 that	 each	 of	 these	

steps	 yielded	 satisfactory	 results.	 From	 the	 methodological	 point	 of	 view,	 an	 important	

advancement	was	the	creation	of	a	realistic	head	model	with	12	distinct	compartments,	which	

permits	to	better	account	for	potential	spatial	distortions	in	the	flow	of	currents	from	sources	

to	 sensors.	 It	 should	 be	 noted,	 however,	 that	 our	 head	 model	 did	 not	 consider	 tissue	

anisotropy.	 Considering	 anisotropy	may	 lead	 to	 even	more	 accurate	 results,	 in	 particular	 for	

subcortical	 regions	 (Cho	et	 al.,	 2015;	Wolters	et	 al.,	 2006).	Also,	we	used	conductivity	values	

derived	from	the	literature.	A	potential	improvement	may	come	from	the	in-vivo	estimation	of	

head	 tissue	conductivity,	 for	which	 techniques	are	being	developed	 (Akalin	Acar	et	al.,	2016;	

Lew	et	 al.,	 2009)	and	may	be	available	 in	 the	next	 future.	Another	potential	 limitation	of	 the	

present	study	pertains	to	the	use	of	ICA	for	network	detection.	Specifically,	the	number	of	ICs	
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extracted	 from	 the	 EEG	 power	 timecourses	was	 performed	 using	 the	MDL	 approach,	 in	 line	

with	previous	 fMRI-RSN	studies	(Li	et	al.,	2007).	Of	note,	we	did	not	examine	how	the	use	of	

different	IC	numbers	impacts	on	the	quality	of	the	detected	RSNs.	Future	studies	are	warranted	

to	evaluate	 if	EEG-RSN	detection	can	be	 further	 improved	by	using	alternative	approaches	 to	

estimate	the	number	of	ICs.					

	

5.	Conclusion	

In	 this	 study,	we	 successfully	 detected	 large-scale	 brain	 networks	 using	 hdEEG	 data,	

based	 on	 a	 robust	 methodology	 for	 noise	 and	 artifact	 reduction,	 head	modeling	 and	 source	

localization.	The	development	of	 such	methodology	may	have	broader	 impact	 on	 the	 field	 of	

brain	 imaging	 and	 neuroscience.	 We	 posit	 that	 hdEEG	 can	 constitute	 a	 powerful	 tool	 for	

investigating	 temporal	and	spectral	signatures	of	 long-range	 functional	connectivity	 in	health	

and	 disease.	 Notably,	 the	 characterization	 of	 functional	 connectivity	 dynamics	 using	 fMRI	 is	

problematic,	given	the	relatively	low	temporal	resolution	of	the	technique.	In	contrast,	EEG	–	as	

well	as	MEG-	permits	examining	network	reconfiguration	at	very	fast	time	scale.	Moreover,	the	

combination	 of	 hdEEG	 with	 simultaneous	 fMRI	 can	 unravel	 the	 direct	 relationship	 between	

functional	 connectivity	measured	 through	 electrophysiological	 and	 hemodynamic	 techniques	

(Mantini	et	al.,	2007b).	Finally,	analyses	of	functional	connectivity	based	on	hdEEG	data	may	be	

particularly	 relevant	 in	 a	 clinical	 context.	 In	 particular,	 the	 use	 of	 functional	 connectivity	

measures	 from	 hdEEG	 has	 the	 potential	 to	 provide	 novel	 and	more	 sensitive	 biomarkers	 to	

improve	diagnostics.	
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