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Abstract—An improvement of the information transfer rate of
brain-computer communication is necessary for the creation of
more powerful and convenient applications. This paper presents
an asynchronously controlled three-class brain-computer inter-
face-based spelling device [virtual keyboard (VK)], operated by
spontaneous electroencephalogram and modulated by motor im-
agery. Of the first results of three able-bodied subjects operating
the VK, two were successful, showing an improvement of the
spelling rate , the number of correctly spelled letters/min, up to
= 3 38 (average = 1 99).

Index Terms—Asynchronous control, brain-computer interface
(BCI), motor imagery, virtual keyboard (VK).

I. INTRODUCTION

COMMUNICATION and the ability to interact with the en-
vironment are basic needs for human relationships. For

people who suffer from severe physical disabilities or palsy, the
ability to comply with this need is limited or even impossible.
In contrast to impaired motor activity, the sensory and cognitive
functions are usually almost intact (locked-in state). Bioelec-
trical brain signals, such as those reflected by electroencephalo-
gram (EEG) or electrocorticogram (ECoG), have been proved
to provide an alternative communication channel. Intellectual
activity can modify the bioelectrical brain activity without any
motor action. A brain-computer interface (BCI) is able to recog-
nize voluntary changes in the ongoing electrophysiological sig-
nals and to map different brain states to appropriate commands
in order to operate communication aids [1]–[5].

Patients suffering from amyotrophic lateral sclerosis (ALS)
learned to operate an electronic spelling device [1]. With a bi-
nary decision, which requires the discrimination of two dif-
ferent brain states (classes), the German alphabet was split it-
eratively, following a fixed procedure, into two halves until the
desired letter was isolated. The communication performance,
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given by the spelling rate and measured in correct selected
letters/min, reached values of about 0.5 letters/min .
Using the same letter selection strategy, a patient suffering from
severe cerebral palsy achieved spelling rates of approximately
one letter/min controlling the Graz-BCI [6]. To im-
prove the spelling rate or, more generally, to increase the
information transfer rate is a main goal in BCI research.

The aim of this paper is to introduce a new Graz-BCI based
spelling application designed to provide an increase in the in-
formation transfer rate. The basic principle of the Graz-BCI is
the classification of sensorimotor EEG patterns generated by the
imagination of motor activity (e.g., left hand, right hand, foot, or
tongue) [4], [7]. The setup of the classifier is done by performing
a cue-based repetitive training of mental motor imagery. During
the following feedback training, the real-time classification re-
sult of the ongoing EEG is presented to the subject (e.g., moving
cursor). By repeating this training and updating the classifier,
the subject and the BCI can mutually adapt to one another.

The following points were taken into account for the imple-
mentation and design of the virtual keyboard (VK).

1) Improvement of the classification accuracy: Since bio-
logical signals show a large inherent variability, the relia-
bility of a classifier is very important. The adaptation and
optimization of the parameters of the selected information
processing methods should lead to a better generalization
and, consequently, to a reduction of misclassification.

2) Increase of the number of discriminable brain patterns:
An increase of the number of brain patterns that can be
equally reliably detected may increase the communica-
tion speed. If the two-class process described above is di-
vided in three instead of two parts, less selection steps are
necessary.

3) Noncue-based (asynchronous) information transfer:
The real-time Graz-BCI operates in a cue-based or
synchronous communication mode [4], [7]. If the
BCI (receiver) is prepared to handle an input, a ready
signal (cue) is sent to the user (transmitter). Therefore,
cue-based communication requires an additional signal
to enable a proper information transfer. A side effect is an
idling period, in which the user and the BCI are waiting.
Besides this synchronous transfer mode, asynchronous
transfer is also possible. In the latter case, no additional
signal is required, since all the information is already
contained in the conveyed signal. The BCI processes
the incoming physiological signals and reacts properly
if a known input pattern is found [8], [9]. From an engi-
neering point of view, the asynchronous mode is more
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TABLE I
OVERVIEW OF SELECTED ELECTRODE POSITIONS ACCORDING

TO INTERNATIONAL 10–20 SYSTEM. DEVIATION FROM PREDEFINED

POSITION IS GIVEN AS ANTERIOR (+) OR POSTERIOR (�)
DISTANCES IN CENTIMETERS. FOR SUBJECT l1 AND O3, ELECTRODE

DISTANCE WAS 5 CM, AND FOR SUBJECT k3 WAS ONLY HALF (2.5 CM)

difficult to handle than the synchronous. For the user,
however, it does reflect the behavior of dialog partners
in a good conversation, that is the coordination of timing
and speed.

With an asynchronously controlled three-class VK, copy
spelling experiments were performed and first results of three
able-bodied subjects are reported.

II. METHODS

A. Subjects and Data Acquisition

Three healthy subjects familiar with the cue-based two-class
Graz-BCI VK participated in this study. Each subject was seated
in a comfortable armchair located about 1.5 m in front of a com-
puter screen. Three bipolar EEG-channels were recorded from
six gold electrodes placed over the cortical hand and foot area
according to the international 10–20 system. The exact electrode
position for each subject is summarized in Table I. It is important
to note that subject k3 had smaller electrode distances (2.5 cm)
compared to l1 and o3 (5.0 cm). This is the result of previous
experiments, where an improvement of the classification accu-
racy was found with smaller electrode distances. The EEG was
band-pass filtered between 0.5 and 30 Hz and recorded with a
sample frequency of 128 Hz.

B. Controlling the Graz BCI

1) Training Paradigm: The training consisted of a repeti-
tive process of cue-based movement imagery trials. The stan-
dard two-class Graz-BCI training paradigm [4] was modified
and adjusted in order to handle three classes: “left hand,” “right
hand,” and “foot” movement imagination. The duration of each
trial varied randomly between 8 and 10 s and started with a blank
screen. At second 2, a short warning tone was presented and a
fixation cross appeared in the middle of the screen. From sec-
onds 3–7 an arrow (cue) was shown, indicating the mental task
to be performed. An arrow pointing to the left, to the right, or
downward indicated the imagination of a left hand, right hand,
or foot movement, respectively. The order of appearance of the
arrows was randomized and at second 7 the screen was cleared
[Fig. 1(a)]. Two sessions were recorded for each subject on dif-
ferent days. Each session consisted of three runs with 30 trials
each (ten trials per class).

During the feedback training, the subjects had to learn to con-
trol a cursor placed in the middle of the screen. On the left side,
right side, and below the cursor three randomly selected letters
were visible. The task was to move the cursor toward the pre-
viously highlighted letter [Fig. 1(b)]. Two feedback runs where

Fig. 1. (a) Training and (b) feedback paradigm. (a) At second 2, a warning tone
was presented and a fixation cross appeared. From seconds 3–7, subject had to
imagine a motor activity according to the presented cue (arrow). (b) At second
2, visual feedback (cursor) and three randomly selected letters were visible (on
the left side, right side, and below the cursor). Goal was to move the cursor
(from seconds 3–7) into the direction of previous highlighted letter (seconds
3–4). Target is the letter “B..

Fig. 2. Online BCI feedback loop: bandpower features (BP) were extracted
from the ongoing EEG, classified, and result was passed to the feedback
training (FB) or the virtual keyboard (VK) spelling application. Classifier
consisted of three LDA discriminant functions, each trained to distinguish
between two different movement imagery related brain patterns (e.g., LDA1
left versus right hand). Sign of the classification result indicates class affiliation
(negative 	 versus positive �). Classifier output was computed according to
Table II.

performed from each subject with 30 trials each (ten trials per
class).

2) Feature Extraction and Classification: For online pro-
cessing, logarithmic band-power (BP) features were extracted
from the ongoing EEG and classified using Fisher’s linear dis-
criminant analysis (LDA). The BP estimate was computed by
digitally bandpass filtering the EEG, squaring the signal, and
averaging the samples over a predefined period. As in previous
experiments [10], two frequency bands were selected and ap-
plied to each EEG channel (six BP features).

The three-class discrimination problem was solved by
combining three LDA discriminant functions. Each function
was trained to distinguish between two different motor imagery
brain patterns. The classifier output was computed by logically
combining the single LDA results. Fig. 2 shows the real-time
BCI feedback loop used for the experiments and the interre-
lationship between the LDAs. The logical state table of the
classifier is reported in Table II. The criterion for the classifier
output was the independent detection of the same EEG-pattern
of two LDAs. This procedure was adopted with the aim to
increase the robustness and reliability of the classifier. The
deflection of the cursor was computed by averaging the LDA
distance values of the two LDAs involved in the classification
result. If no pattern could be detected, the value was set to zero
(initial position).

3) Feature Selection: The BP estimates are dependent on
the bandpass frequency band, on the number of samples used
for the averaging, and the time within the motor imagery period.
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TABLE II
LOGICAL STATE TABLE OF CLASSIFIER. SIGN OF EACH LDA CLASSIFICATION

RESULT IS AN INDICATOR OF CLASS AFFILIATION. INPUT FEATURES BELONG

TO CLASS 1 FOR NEGATIVE VALUES 	 AND TO CLASS 2 FOR POSITIVE

VALUES �. BRAIN PATTERN WAS CLASSIFIED ONLY IF TWO LDAS

WERE ABLE TO DISCRIMINATE THE SAME PATTERN INDEPENDENTLY.
FEEDBACK PARAMETER WAS COMPUTED BY AVERAGING TWO LDA

DISTANCE VALUES INVOLVED IN CLASSIFICATION RESULT. OTHERWISE,
VALUE WAS SET TO ZERO. (SEE ALSO FIG. 2)

TABLE III
RANGE OF BP PARAMETERS USED FOR GA OPTIMIZATION

The problem was to find suitable parameter values able to mini-
mize misclassification. The parameter ranges taken into account
are summarized in Table III. About 5.8 10 combinations were
possible, and therefore the setup of the classifier was done by
a genetic algorithm (GA)-based optimization process [11]. The
optimization task was to find two BP features, suitable for each
channel, with two nonoverlapping frequency bands, but with the
same averaging and time values. The averaging period and the
point in time were encoded into integer values. The frequency
bands gene consisted of four discrete values, representing the
lower and upper cutoff frequencies of the two nonoverlapping
bands. From two parents, three offspring were recombined: two
by interchanging the lower band and one by averaging the upper
and lower band, respectively. Mutation varied the bandwidth of
either the lower or upper band by randomly changing one cutoff
frequency. For 20 different populations (initial size 80, offspring
50 individuals), the GA was repeated for 100 generations with a
mutation rate of 0.02. The individuals were selected according
to the rank selection method. The minimization of the mean
value of the three LDA classification error rates was selected
as optimization criterion (fitness function). The error rates were
computed by a 10 10-fold cross-validation LDA training. In
contrast to the general attempt to reduce the computational ef-
fort of the fitness function, the cross-validation training was rel-
atively time consuming. However, the expectation of this proce-
dure was a better generalization performance of the classifier.

The GA was applied to the motor imagery training sessions
(without feedback).

4) Asynchronous Control Strategy: During the feedback ex-
periments, the classifier, trained with the parameters obtained
by the GA, was applied to the ongoing EEG sample by sample.
In this way, 128 decisions were computed each second. How-
ever, only each twelfth sample was used for the feedback gen-
eration (approximately ten screen updates per second). The re-
sulting class information stream was mapped to the position of

Fig. 3. Graphical user interface of VK. (a) Small upper part (black area) is
used for presentation of spelled letters and the remaining big part (white area)
is required for letter selection process. Visual feedback is given by a cursor
(gray square). Below the cursor, two assembly lines, one on each side, carrying
the alphabetically sorted letters are visible. To avoid disturbing influences,
letters on left and right side were vertical displaced. Example: Selection of the
letter “H.” (b) Pass through the letters by performing an ongoing foot motor
imagery until the desired item is visible on the left or right side of the screen.
Cursor disappears from the screen in order to give subject the opportunity to
concentrate on letters. (c) Letter, which exceeds the horizontal line below the
cursor, becomes highlighted and can be selected by moving the cursor toward
its direction. VK accepts letter if cursor had exceeded subject-specific left or
right threshold (vertical lines on the left and right side of the screen) for a
subject-specific period (continuous left-hand or right-hand motor imagery). (d)
Selected letter appears in text region and letter selection process can start again.
Note, in parts (b) and (c), appearance of control commands DELETE and OK.

the feedback cursor. The subject was able to move the cursor
without the constraints of a fixed timing scheme. Based on this
control mechanism, the new graphical user interface for the VK
was developed.

C. Virtual Keyboard

1) Design and Operation: The screen was divided into two
parts: a small upper part (about 20%) was used for the presen-
tation of the selected letters and words, respectively, while the
letter selection process and the visual biofeedback (cursor) used
the remaining lower part. A total of 26 letters, taken from the
German alphabet, were arranged alphabetically on two moving
assembly lines on the left and right half of the screen. A vertical
displacement between the letters on both sides should avoid the
sensation of competition between the items [Fig. 3(a)]. Every
five letters, a control command was inserted: DELETE, used
to delete the last spelled letter and OK to confirm the spelled
word. Five items were visible on each side. As long as foot
motor imagery (class 3) was detected, the items scrolled from
the bottom to the top of the screen. The scrolling speed was as-
sociated with the movement of the cursor. The higher the dis-
tance from the origin, the faster was the speed of the scrolling.
If an item reached the top of the selection area it disappeared
and a new one appeared from the bottom. In order to avoid dis-
turbing influences and give the subject the opportunity to con-
centrate on the moving objects, the feedback cursor was hidden
during the scrolling process [Fig. 3(b)]. The item on the top-
most position could be selected by moving the feedback cursor
toward the desired left or right direction by performing a left-
or right-hand movement imagination (class 1 and 2). A confir-
mation of the selection occurred, if the cursor had exceeded a
subject-specific left or right side threshold for a subject-specific
time period [Fig. 3(c)]. The selected letter was presented in the
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TABLE IV
OFFLINE RESULTS OF GA-BASED OPTIMIZATION OF TRAINING WITHOUT

FEEDBACK SESSIONS. FOR EACH SUBJECT, BEST CLASSIFICATION TIME (FROM

BEGINNING OF TRIAL), CORRESPONDING FREQUENCY BANDS, AND NUMBER

OF SAMPLES TO AVERAGE ARE SUMMARIZED. THE CLASSIFICATION ERROR

VERSUS THE CLASSIFICATION ERROR ACHIEVED WITH STANDARD
BANDPOWER VALUES (10-12 HZ AND 16-24 HZ AND 128 SAMPLES) IS

SHOWN FOR COMPARISON

upper part of the screen and the spelling procedure could start
again [Fig. 3(d)].

2) Copy Spelling: Directly after the feedback training
(Section II-B1), the subjects had to exercise to control the
VK by spelling their own name. During this period, the sub-
ject-specific parameters were adjusted. The left- and right-side
threshold was set to the class-specific mean value of the LDA
distances. The scrolling speed was adjusted according to the
indications specified by the user. Subsequently, a copy spelling
training, in which no wrong letter was accepted by the system
(“error-ignoring” mode) was performed using the German
words BITTE (please), HELFEN (help), HUNGRIG (hungry),
BRAUCHEN (need), and SCHMERZEN (pain). The entire
feedback and copy spelling training (third session) lasted about
2 h.

The copy spelling test was performed on another day (fourth
session). The subject had the task of spelling the previously
exercised German words BITTE, HELFEN, HUNGRIG,
BRAUCHEN, and SCHMERZEN.

III. RESULTS

The feature parameters, extracted from the training sessions
by the GA-based optimization process, are summarized in
Table IV. Compared to subject l1, the frequency components
for subject k3 and o3 are very similar. The same holds for the
classification time and the averaging value. In addition, the best
classification accuracy, computed for each sample within the
motor imagery period (from seconds 3–7) using the standard
BP parameters (10–12 and 16–24 Hz averaged over 1 s), is
reported. The improvement of the classification performance is
clearly visible in the decrease of the error rate: 2.00% for k3,
16.34% for l1, and 6.09% for o3. The classifiers built with the
parameters found were working properly with new data also.
Fig. 4 shows the time courses of the error rate of the online
feedback runs. For the period relevant for motor imagery, the
best classification performance is 5.00% error for k3, 3.33%
for l1 and 6.67% for o3.

The copy spelling results are shown in Table V. The mean
spelling time in seconds for a letter was computed by
dividing the time needed to complete the word by the length
of the word. Consequently, the spelling rate, or the correctly
selected letters/min , was . The best was
3.38 for subject k3 and 2.85 for l1. During the session, subject
k3 made only two spelling errors, while at least one error per
word occurred for l1.

Fig. 4. Classification error curves of online feedback training. Classifier, setup
from the GA for each subject, was working properly with new and unknown
data. Beginning with second 3 (cue presentation), classification error decreased
until second 7 (end of feedback presentation).

TABLE V
COPY SPELLING RESULTS FOR SUBJECTS k3 AND l1. SPELLING TIME IN

SECONDS, NUMBER OF MISSPELLED LETTERS, AND RESULTING SPELLING

RATE � IN LETTERS PER MINUTE IS REPORTED

Fig. 5. Spelling performance for word BITTE. Subject k3 missed the first letter
“B” and had to browse through entire alphabet. Subject l1 selected a wrong letter
and had to correct this mistake.

Subject o3 was not able to correctly spell a single word. The
first letters could be selected without any problem, but the longer
the duration of the copy spelling run, the worse the control. The
experiment had to be interrupted. Instead of the copy spelling,
a cue-based feedback training was performed (one run of 30
trials). The analysis of the data showed classification error rates
comparable to the previous feedback training (Fig. 4). The good
separability of the EEG-patterns was overlapping with the sub-
jective impression stated by o3 to be able to control the feedback
cursor. Although the subject was able to handle the cue-based
operation mode, the asynchronous mode could not be controlled
for a longer period.

Fig. 5 shows the copy spelling performance of the word
BITTE. Subject k3 completed the word in 163.46 s without
any spelling error. One error, however, was made during the
scrolling function. The first letter “B” was missed and k3 had
to go through the entire alphabet until the letter reappeared.
This explains the 60 s used for the first letter. Subject l1 made
an incorrect selection with the second letter “I” and chose the
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Fig. 6. Power spectral density for channel C4. Each plot shows subject specific
power spectra of motor imagery period during online feedback experiment.
Values for subject k3 vary because of different electrode arrangement and
amplifier gain settings. No evidence of muscle artifacts is visible.

antecedent letter “G” instead,. This implied two additional
spelling steps: deleting the misspelled letter and choosing
the correct one. The word was correctly spelled in 105.13 s.
Although l1 made two more selections, the spelling rate was
higher.

The curves in Fig. 6 show for each subject the spectral density
of the EEG recorded over C4 during the online feedback exper-
iment. The spectra were computed by averaging the single trial
spectra of the motor imagery period. No evidence of muscle ar-
tifacts is visible. The spectral density values of subject k3 are
different because of the smaller electrode distances and ampli-
fier gain settings.

IV. CONCLUSION

The mean overall spelling rate, for the two successful users,
of 1.99 letters/min seems to indicate an improve-
ment compared to the earlier cue-based version of the VK, given
that the best performance of able-bodied subjects varied be-
tween 0.50 and 0.85 letters/min (fixed trial length of 8 s) [12].
For trial-based applications, the information transfer rate can be

computed according to the formula proposed in [13]. For the
asynchronous selection of letters, however, several successive
and therefore no longer independent classification results have
to be considered. Consequently, the proposed formula cannot be
applied. As a measure of performance, the spelling rate was
computed.

The spelling of the word BITTE demonstrates that new con-
trol and selection strategies had to be acquired by the subjects.
With the two-class VK and the dichotomous letter and com-
mand selection procedure, a misspelling induced a longer series
of correction steps [12]. The new design combines letters and
control commands and corrections can be done much faster.

The GA-based optimization of the input features proved to
be a suitable tool because the selected subject specific BP pa-
rameters clearly improved the classification performance com-
pared to the use of the standard values. However, the relatively
high-frequency components of the second band for each sub-
ject were surprising (Table IV). A possible explanation for the
higher beta bands is the optimization task assigned to the GA: it
was to find two different frequency bands within the range be-
tween 5 and 40 Hz. Further analysis of the feature relevance
should give more details. Because of the involvement of the
higher frequency bands, special care in avoiding muscle artifacts
was taken. The inspection of the recorded EEG signal and the
frequency spectra confirmed that the cursor control definitely
was not based on muscle activity (Fig. 6).

Of interest is that only two out of three subjects, all familiar
with BCI-experiments, were successful in operating the asyn-
chronous VK. This is surprising because all three subjects had
classifiers with an error rate of around 10% and were able to con-
trol the feedback cursor. One possible reason might be the short
training period (one session only). The asynchronous three-class
VK is more cognitively demanding than the two-class cue-based
version. This is also visible in the variability of the spelling time.
No consistent spelling performance could be achieved. More
training will possibly lead to better results. An alternative ex-
planation is the distracting effect of the new visual presentation.
Compared to the two-class version, in which the screen con-
tent was static during a trial and only the feedback was moving
within the predefined period, a dynamic scenario with several
moving objects was presented. The visual input has a strong im-
pact on motor cortex activity [14] and can lead to a deterioration
or changing of the motor imagery related EEG patterns. More
research on this effect is neccessary.

The new design holds the potential to further increase the
spelling rate. At the same time, however, multiple classes and
asynchronous control can limit the usability of the system. Users
do require more training and the cognitive load is higher. The
latter demand poses the problem that the new spelling system is
not equally suited for all people. Users that are able to handle
the demands, however, can benefit from a higher information
transfer rate.

REFERENCES

[1] N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter,
J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The
thought translation device (TTD) for completely paralyzed patients,”
IEEE Trans. Rehab. Eng., vol. 8, pp. 190–193, June 2000.

[2] E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis:
Assessing the speed of a P300-based brain-computer interface,” IEEE
Trans. Rehab. Eng., vol. 8, pp. 174–179, June 2000.



984 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

[3] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh,
M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith,
“A direct brain interface based on event-related potentials,” IEEE Trans.
Rehab. Eng., vol. 8, pp. 180–185, June 2000.

[4] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-com-
puter communication,” Proc. IEEE, vol. 89, pp. 1123–1134, July 2001.

[5] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain-computer interfaces for communication and control,”
Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, June 2002.

[6] C. Neuper, G. Müller, A. Kübler, N. Birbaumer, and G. Pfurtscheller,
“Clinical application of an EEG-based brain-computer interface: A case
study in a patient with severe motor impairment,” Clin. Neurophysiol.,
vol. 114, no. 3, pp. 399–409, Mar. 2003.

[7] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G.
Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer in-
terface (BCI),” IEEE Trans. Neural Syst. Rehab. Eng., vol. 9, pp. 49–58,
Mar. 2001.

[8] J. Kaiser, J. Perelmouter, I. H. Iversen, N. Neumann, N. Ghanayim, T.
Hinterberger, A. Kubler, B. Kotchoubey, and N. Birbaumer, “Self-initi-
ation of EEG-based communication in paralyzed patients,” Clin. Neuro-
physiol., vol. 112, no. 3, pp. 551–554, 2001.

[9] S. G. Mason and G. E. Birch, “A brain-controlled switch for asyn-
chronous control applications,” IEEE Trans. Biomed. Eng., vol. 47, pp.
1297–1307, Oct. 2000.

[10] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEG-
based discrimination between imagination of right and left hand move-
ment,” Electroenceph. Clin. Neurophysiol., vol. 103, pp. 642–651, 1997.

[11] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[12] B. Obermaier, G. R. Müller, and G. Pfurtscheller, “Virtual keyboard con-
trolled by spontaneous EEG activity,” IEEE Trans. Neural Syst. Rehab.
Eng., vol. 11, pp. 422–426, Dec. 2003.

[13] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer
interface research at the wadsworth center,” IEEE Trans. Rehab. Eng.,
vol. 8, pp. 222–226, June 2000.

[14] G. Rizzolatti and G. Luppino, “The cortical motor system,” Neuron, vol.
31, pp. 889–901, Sept. 2001.

Reinhold Scherer received the M.S. degree in
computer science from the Graz University of
Technology, Graz, Austria, in 2001. He is currently
working toward the Ph.D. degree at the Institute of
Human-Computer Interfaces, Graz University of
Technology.

His research interests include real-time biosignal
processing and the closed-loop feedback of
brain-computer communication systems.

Gernot R. Müller (M’03) received the M.S. degree
in biomedical engineering from the Graz University
of Technology, Graz, Austria, in May 2000. He is cur-
rently working toward the Ph.D. degree at the same
university.

His research interests include brain-computer
communication systems and the human somatosen-
sory system.

Christa Neuper received the Ph.D. degree in psy-
chology from the University of Graz, Graz, Austria,
in 1984.

She currently holds the positions of Assistant
Professor and Research Scientist in the Department
of Psychology, University of Graz and the Institute of
Human-Computer Interfaces at the Graz University
of Technology, respectively. Her research interests
have included the study of brain oscillations and
the development of EEG-based communication
technology.

Bernhard Graimann received the M.S. degree in computer science and
the Ph.D. degree in biomedical engineering from the Graz University of
Technology, Graz, Austria, in 1999 and 2002, respectively.

He is currently an Assistant Research Scientist in the Institute of Human-
Computer Interfaces, Graz University of Technology. His research interests in-
clude biosignal processing, heuristic optimization, and brain-computer commu-
nication systems.

Gert Pfurtscheller (M’00) received the M.S. and
Ph.D. degrees in electrical engineering from the
Graz University of Technology, Graz, Austria.

He is a Professor of medical informatics, Director
of the Institute of Human-Computer Interfaces,
Graz University of Technology, and Director of the
Ludwig Boltzmann-Institute for Medical Informatics
and Neuroinformatics. His research interests include
functional brain topography using event-related
desynchronization, the design of brain-computer
communication systems, and navigation in virtual

environments by a brain-computer interface.


