
A Brief Overview of Neural Coding
Lecture to Cognitive Neuroscience class

Rob Kass

Department of Statistics and Center for the Neural Basis of Cognition
Carnegie Mellon University
www.stat.cmu.edu/∼kass

October 11, 2007

Kass Neural Coding



The Problem

Context of brain science:

I What principles may be used to describe mental processes?

I What principles may be used to describe the brain?

I How does neuronal activity produce behavior?

Perkel and Bullock (1968): The problem of neural coding is to
elucidate “the representation and transformation of information in
the nervous system.”
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The Starting Point

The simplest (“textbook”) answer to the question “How do
neurons carry information?” is that a neuron responds to a
relevant stimulus, or contributes to the production of an action, by
increasing its firing rate.

Usually attributed to Adrian (e.g., Adrian, 1928).

May be illustrated by receptive field of a neuron in visual
cortex (next fig).
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Firing rate increases when stimulus is in receptive field.

Kass Neural Coding



Some Immediate Questions

I To what extent do simple qualitative descriptions adequately
capture the response characteristics of individual neurons?

I To what extent can results from individual neurons be
informative about the extremely complicated network in even
a small part of the brain?

Consider a standard conception of the way neural inputs lead to
action potentials.
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Some Immediate Questions

I To what extent do simple qualitative descriptions adequately
capture the response characteristics of individual neurons?

I To what extent can results from individual neurons be
informative about the extremely complicated network in even
a small part of the brain?

It may help to be reminded of the way spike trains are usually
displayed.
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Some General Questions

I Which features of spike trains are “signal” and which are
“noise?”

I Does the PSTH from a single neuron represent well the signal
from a population (an “ensemble”) of similar neurons? (Cf.
Shadlen and Newsome, 1998)

Or, are there signals carried by populations (“ensembles”) of
neurons that are not apparent from individual spike trains?

I What time scales are relevant to neural coding?
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Some Possibilities, with Terminology

I Rate coding

I Temporal coding

I Population coding

I Sparse coding
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Rate Coding and Temporal Coding

Rate coding refers to information being carried by the firing rate.
It is often argued, or assumed, that firing rate captures essentially
all relevant information.

Temporal coding may refer to several quite different ideas: (i)
Much of the information may be transmitted by a neuron during
certain small intervals of time, (ii) synchronous, or what I would
call quasi-synchronous, firing of neurons within and across
ensembles may carry important information, (iii) the precise
timing, or pattern, of spikes may carry information.

Idea (ii) has received much attention due to its potential for
solving the “binding problem.” The arguments in its favor,
however, are rather intricate.
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Population Coding

Population coding refers to information available from ensembles
that goes beyond simple summation of individual signals. It is
often associated with the method of Georgopoulos, et al. (1986),
but many analysts have also asked what an “ideal observer” could
learn from a population of neurons.

Quite different ideas also may be included under the general notion
that disparate neural responses may be combined, according to
some simple principles, to produce a characterization of a
complicated phenomenon.
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Sparse Coding

Sparse coding refers to strong selectivity (narrow tuning curves), so
that relatively small numbers of neurons would be involved in
carrying the signal.

Note that the notion of “tuning” is widely used; the intuition
comes mainly from 1-dimensional tuning curves, but is applied in
much more complicated situations.
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Source: Henry et al.
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Sparse Coding

Sparse coding refers to strong selectivity (narrow tuning curves), so
that relatively small numbers of neurons would be involved in
carrying the signal.

Sparseness of individual neuronal responses comes into play in
some notions of population coding.
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A Fundamental Observation

Perhaps the most important conclusion of the workshop
discussions reported by Perkel and Bullock (1968) was that the
information represented by a neuronal spike train necessarily
depends on the neuron’s inputs and outputs, so that one should
not expect universally-applicable principles of neural coding
(Gerstein, personal communication).

Put differently, the circumstances matter: distinct mechanisms
may apply to differing systems, and to differing organisms, stimuli,
and collections of neurons within systems.
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Single Cells

I It is universally acknowledged that firing rates carry
information. The various possibilities listed speak about
elaborations, or additional mechanisms.

I Barlow (1972) argued in favor of the completeness of
single-cell information, in the sense that the firing rate of a
single cell could carry all relevant information and populations
would add little else. He replaced what William James had
called “pontifical cells” with “cardinal cells, ... each [of which]
makes a complicated statement [in order to] express the whole
perception.” See the discussion of grandmother cells by Gross
(2002).

There are two aspects to this: (i) sharp selectivity of neuronal
response and (ii) relevance to behavior of responses of only a
few cells.

Kass Neural Coding



Face recognition would apparently be an example of sparse coding,
and it may elucidate Barlow’s “cardinal cell” remark.

Source: Desimone, R., Ungerlieder, L.G., Handbook of Neurophysiology, page 287, Elsevier Science Publishers, 1989.
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I A very different case comes from a tantalizing report that
there exist motor cortical cells that, after training, respond
during an arm movement up and then left (with a sharp left
turn) but not when the arm movement is straight-line
unidirectional (Ashe et al., 1993).
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Top: response to sharp left turn (two cells); Bottom: response to
straight movements.
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Single Cells (Continued)

I Part of Barlow’s argument involved the ability of individual
cells to predict psychophysical measurements (absorption of
only a few photons in the retina leads to sensation of light).
See Fig from Parker and Newsome (1998), involving response
to vibration applied to skin at various frequencies and
amplitudes.
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Amplitude required to elicit response among humans (“detection”)
is close to the minimal amplitude required for response among two
types of sensory neurons in monkeys.

Source: Parker and Newsome (1998).
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I Britten, Shadlen, Newsome, and Movshon (1992) considered
the ability of single MT neurons to predict eye saccades in
response to stochastic dot motion. “For half of the neurons in
our study, the neurometric function derived from single-unit
data was statisticially indistinguishable from the psychometric
function measured on the same set of trials.”
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Rate modulation

I In early segments of sensory systems very sharp modulations
in spiking activity have been observed. Similar effects appear
in bird song production (Chi and Margoliash, 2001).
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Rate Modulation (Continued)

Optican and Richmond (1987) recorded from IT during
presentation of Walsh functions and considered the temporal
structure of the spike trains. They concluded that “[their] methods
have shown that neurons in [IT] convey messages by temporal
modulation of their firing rates.”
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Heller, Hertz, Kjaer, and Richmond (1995) analyzed neurons in V1
and IT and found “all measurable information is carried in an
effective time-varying rate, obtained by averaging the neuronal
response with a resolution no finer than about 25 ms in [V1] and
twice that in [IT].... Most of the information tends to be
concentrated in one or, more often, two brief packets, one at the
very beginning of the response and the other typically 100 ms later.
The first packet is the most informative part of the message....”
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Bair and Koch (1996) reported that in MT neurons firing rate
could be modulated in a range of about 10 ms (see figure from
Shadlen and Newsome, 1998). Rieke, et al. (1996) give similar
results in frog auditory and fly visual areas.
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Source: Shadlen and Newsome (1998).
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Population coding

I Georgopolous, Schwartz and colleagues: Motor cortex neurons
are directionally “tuned.”
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Source: Georgopoulos et al.
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Source: Georgopoulos et al.
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I Furthermore, Georgopoulos, Schwartz, and colleagues
observed that directional tuning could be used for prediction.

I For movement M

−→
P (M) =

∑
wi (M)

−→
D i

−→
D i is direction of maximal firing (“preferred direction”) for i th

neuron
wi (M) is a weight based on firing rate

Kass Neural Coding



“Population vector”
−→
P (M) predicts M.

Source: Kandel, Schwartz, and Jessell
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Comments on Population Coding

I Broad tuning and prediction based on populations of neurons
are ideas that may be widely applied (e.g., Lewis and Kristan,
1998; Petersen, Panzeri, and Diamond, 2001).

I But do M1 neurons code for movement direction (velocity)?
Note that muscle activity for reaching will also show
directional preference. Kakei, Hoffman, and Strick (1999)
considered M1 and muscle activity in a wrist movement task.
They found some “muscle-like” neurons and some (more)
“extrinsic” neurons.
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The Ideal Observer

I Sanger (1994, 1996) noted that the prediction of M by
−→
P (M)

is a mathematical consequence of directional tuning when the

preferred directions
−→
D i are uniformly distributed.

I Other statistical prediction methods are possible and can, in
fact, be much more efficient. (Nor does one need a uniform
distribution of preferred directions.) Maximum likelihood and
Bayesian approaches are fully efficient, in a statistical sense.

Brown et al. (1998) used data from hippocampus “place
cells” to reconstruct movement of a rat via Bayes’ Theorem.
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Black is rat’s path; green is “ideal observer” reconstruction from
small number of cells.

Kass Neural Coding



But does the nervous system equal or approximate an
ideal observer?

Conceivably, systems like the local bend network in the leech might
be a starting point for research in this direction (Lewis and
Kristan, 1998).
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Sparse Population Coding: Visual System

Olshausen and Field (1996)

I Found basis set for a sample of 2D images that maximized

fit + λ · sparseness

I Produced basis functions that are localized, oriented, and
narrow in spatial frequency, like V1 simple cells.
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Sparse Population Coding: Auditory System

Smith and Lewicki (2006)

I Found basis set for a sample of acoustic signals to maximize
fidelity of fit, subject to being sparse.

I Produced basis functions that are asymmetric sinusoids, with
sharp attack and gradual decay, like auditory neuronal signals.
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Red theoretical functions match blue signals from cat auditory
nerves.
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Timing in ensembles

Oscillations and “synchrony” may bind disparate components of
perception and awareness (Singer and Gray, 1995; Engel and
Singer, 2001; Engel, Fries, and Singer, 2001). The argument has
several steps:

1. Quasi-synchronous firing could, in principle, contribute the
kind of boost in information that seems essential for solving
the binding problem.
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Source: Engel, Fries, Singer
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Timing in ensembles

The argument has several steps:

1. Quasi-synchronous firing could, in principle, contribute the
kind of boost in information that seems essential for solving
the binding problem.

2. Oscillations can produce quasi-synchronous firing.

3. Oscillations have been observed, and vary with cognitive state.

4. Quasi-synchronous firing has been observed in a variety of
studies (see Engel and Singer, 2001).

5. There are mechanisms that may enable neuronal coincidence
detection. (Dendritic time constants appear to be about right;
see London and Haüsser, 2005.)
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Timing in ensembles

Time scale is crucial: What would be the effect of jittering spike
times by ∆t = 1, 5, 10, 50 ms.?

Correlation (of spikes, or spike counts) across neurons again
depends on time scale.
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Timing in ensembles: Example 1

I Locust antennal lobe: transformation from widely responsive
Projection Neurons (PN) to sparsely responsive Kenyon Cells
(KC) (Perez-Orive et al., 2002).

Note: approximately 830 PNs and 50,000 KCs; each PN
contacts approximately 600 KCs; each KC gets input from
approximately 10-20 PNs.

(Figure shows responses to 16 odors in 3 PNs (A) and 3 KCs
(B).)
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Transformation in Antennal Lobe

Laurent (2002), and colleagues, argue that KCs are coincidence
detectors, and that differing temporal responses among PNs enable
sparsening—if a particular combination of PNs fire synchronously
then a KC will fire.
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Transformation in Antennal Lobe

1. KCs get input from few PNs and PN inputs vary across time.

2. Lateral Horn Interneurons (LHIs) deliver inhibitory input to
KCs, roughly in phase opposite to KC local field potential
oscillations (Perez-Orive et al., 2002).

3. KC EPSPs are narrowed during excitation (Perez-Orive et al.,
2002).

4. There is compelling evidence that oscillations exist and are
behaviorally relevant (Stopfer, Bhagavan, Smith, and Laurent,
1997).

Items 1-3 create conditions for rare KC firing. Item 4 seems to
indicate that some mechanism of this sort is likely to explain
sparsening and its importance.
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Transformation in Antennal Lobe

Note: Here, the “synchrony” corresponding to reported 20-30 Hz
oscillations is at a time scale of roughly 10 ms (i.e., relevant spikes
occur within, very roughly, about 5-10 ms of each other).
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Timing in ensembles: Example 2

Riehle, Grün, Diesmann, and Aertsen (1997) examined neurons in
motor cortex during a delayed-response hand-reaching task and
found occasional synchronous firing, within 5 ms window, at times
of anticipation of the signal to move.
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Source: Riehle et al.
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Correlation and Its Effects

I There have been many reports of correlation among neurons
and discussions of its physiological interpretation. The
question is, In what ways is the correlated activity of neurons
relevant to their transmission of information? The answers
depend, in part, on the way “correlation” and “information”
are defined.

Note that correlation could be measured (i) across stimuli, (ii)
within trials, or (iii) across trials.

Statistically, in each case, one evaluates whether two neurons
appear to be spiking together more frequently than would be
predicted under independence.
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I Zohary, Shadlen, and Newsome (1994) found that pairs of
simultaneously recorded MT neurons (during stochastic dot
motion) exhibited correlation (across trials) of about r = .12.
This redundancy can limit the signal amplification possible
from ensembles: the amplification gain from 100 correlated
neurons is roughly equivalent to that obtained from only a few
independent neurons. “Our analysis suggests that the
covariation of single-neuron responses and psychophysical
detections, an observation that strains credulity at first
glance, is a logical consequence of weakly correlated noise
within the pool of sensory neurons leading to a decision.”

I Combining this with the psychometric efficiency of single
neurons led Shadlen and Newsome (1998) to suggest that
“50-100 neurons might constitute a minimal signaling unit.”
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I However, Abbott and Dayan (1999) pointed out that the
analysis of Shadlen and Newsome (1998), noting the
deleterious effect of neuronal correlation, assumes an output
neuron averages its inputs. If, instead, it uses maximum
likelihood (or any statistically efficient decoding method) to
“estimate the stimulus” then correlation among neurons will
not degrade the estimate (unless the pooled neurons have
identical tuning curves).

I In much the same vein, using information theory, Reich et al.
(2001) found that “keeping track of which neuron fires each
spike preserves a considerable amount of information ... and it
prevents an even greater information loss [which would be
obtained] from summing responses of neurons with different
selectivities.”
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Further Relevance of Correlated Spiking

I Hatsopoulos, Ojakangas, Paninski, and Donoghue (1999)
found that excess correlated spiking in pairs of M1 neurons
carried substantial information about movement direction for
a simple movement task. “Information” here refers to
information-theoretic calculations. (See Borst and Theunissen,
1999, for a description of information-theoretic methods.)

I On the other hand, Nirenberg, Carcieri, Jacobs, and Latham
(2001) analyzed responses of retinal ganglion cells to natural
scenes. Again using information theoretic methods they found
that 90% of the information about the scene could be
obtained by assuming the neurons fired independently.
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Precise Timing: Analytical Caveats

I Careful investigations of synchrony at short time scales involve
quantitative evaluation of rarity among rare events. Here,
spike sorting becomes very important. Bar-Gad, Ritov,
Vaadia, and Bergman (2001) have shown how errors in spike
sorting can lead to spurious indications of near-synchronous
firing. Bar-Gad, Ritov, and Bergman (2001) have also shown
how failure to take account of the refractory period can
produce misleading indications of oscillatory behavior.

I Abeles (1991) and others have argued that precisely timed
spike patterns carry information beyond what is available from
firing rates. This is subtle, statistically. (See Oram, Wiener,
Lestienne and Richmond, 1999.)
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Statistical Problems

I Describing and analyzing temporal response to stimuli.

I Describing, and accounting for, variability across repeated
trials.

I Describing tuning curves.

I Developing “ideal observer” analyses.

I Analyzing phase in neural response relative to LFP.

I Analyzing correlation across sets of neurons.

I Describing precise timing relationships among correlated
neurons.

→ Careful statistical analysis is important in understanding
neural coding.

Kass Neural Coding



Statistical Problems

I Describing and analyzing temporal response to stimuli.

I Describing, and accounting for, variability across repeated
trials.

I Describing tuning curves.

I Developing “ideal observer” analyses.

I Analyzing phase in neural response relative to LFP.

I Analyzing correlation across sets of neurons.

I Describing precise timing relationships among correlated
neurons.

→ Careful statistical analysis is important in understanding
neural coding.

Kass Neural Coding



Reprise: How do neurons code information?

I There remain many possibilities:
I Firing rates among pools of similar neurons;
I Rates among small numbers of neurons;
I Population coding (in some form);
I Correlated or synchronous activity, but time scale matters

(“quasi-syncronous” might be a better term).

I What do we mean by “information?”

Apparently, the context matters. Though general principles
appear to be emerging, we must remember to specify which
neurons and what information. Also, the data analysis can be
delicate.
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