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SUMMARY

Perceptual experience consists of an enormous num-
ber of possible states. Previous fMRI studies have
predicted a perceptual state by classifying brain
activity into prespecified categories. Constraint-free
visual image reconstruction is more challenging, as
it is impractical to specify brain activity for all possible
images. In this study, we reconstructed visual images
by combining local image bases of multiple scales,
whose contrasts were independently decoded from
fMRI activity by automatically selecting relevant vox-
els and exploiting their correlated patterns. Binary-
contrast, 10 3 10-patch images (2100 possible states)
were accurately reconstructed without any image
prior on a single trial or volume basis by measuring
brain activity only for several hundred random
images. Reconstruction was also used to identify
the presented image among millions of candidates.
The results suggest that our approach provides an ef-
fective means to read out complex perceptual states
from brain activity while discovering information
representation in multivoxel patterns.

INTRODUCTION

Objective assessment of perceptual experience in terms of brain

activity represents a major challenge in neuroscience. Previous

fMRI studies have shown that visual features, such as orientation

and motion direction (Kamitani and Tong, 2005, 2006), and visual

object categories (Cox and Savoy, 2003; Haxby et al., 2001) can

be decoded from fMRI activity patterns by a statistical ‘‘de-

coder,’’ which learns the mapping between a brain activity

pattern and a stimulus category from a training data set. Further-

more, a primitive form of ‘‘mind-reading’’ has been demonstrated

by predicting a subjective state under the presentation of an am-

biguous stimulus using a decoder trained with unambiguous
stimuli (Kamitani and Tong 2005, 2006; Haynes and Rees,

2005). However, such a simple classification approach is insuffi-

cient to capture the complexity of perceptual experience, since

our perception consists of numerous possible states, and it is im-

practical to measure brain activity for all the states. A recent study

(Kay et al., 2008) has demonstrated that a presented image can

be identified among a large number of candidate images using

a receptive field model that predicts fMRI activity for visual

images (see also Mitchell et al., 2008, for a related approach).

But the image identification was still constrained by the candidate

image set. Even more challenging is visual image reconstruction,

which decodes visual perception into an image, free from the

constraint of categories (see Stanley et al., 1999, for reconstruc-

tion using LGN spikes).

A possible approach is to utilize the retinotopy in the early

visual cortex. The retinotopy associates the specific visual field

location to the active cortical location, or voxel, providing a map-

ping from the visual field to the cortical voxels (Engel et al., 1994;

Sereno et al., 1995). Thus, one may predict local contrast infor-

mation by monitoring the fMRI signals corresponding to the

retinotopy map of the target visual field location. The retinotopy

can be further elaborated using a voxel receptive-field model. By

inverting the receptive-field model, a presented image can be

inferred given the brain activity consistent with the retinotopy

(Thirion et al., 2006).

However, it may not be optimal to use the retinotopy or the

inverse of the receptive field model to predict local contrast in

an image. These methods are based on the model of individual

voxel responses given a visual stimulus, and multivoxel patterns

are not taken into account for the prediction of the visual stimulus.

Recent studies have demonstrated the importance of the activity

pattern, in particular the correlation among neurons or cortical

locations in the decoding of a stimulus (Averbeck et al., 2006;

Chen et al., 2006). Since even a localized small visual stimulus

elicits spatially spread activity over multiple cortical voxels (Engel

et al., 1997; Shmuel et al., 2007), multivoxel patterns may contain

information useful for predicting the presented stimulus.

In addition, a visual image is thought to be represented at

multiple spatial scales in the visual cortex, which may serve to
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retain the visual sensitivity to fine-to-coarse patterns at a single

visual field location (Campbell and Robson, 1968; De Valois

et al., 1982). The conventional retinotopy, by contrast, does

not imply such multiscale representation, as it simply posits a

location-to-location mapping. It may be possible to extract mul-

tiscale information from fMRI signals and use it to achieve better

reconstruction.

Here, we present an approach to visual image reconstruction

using multivoxel patterns of fMRI signals and multiscale visual

representation (Figure 1A). We assume that an image is repre-

sented by a linear combination of local image elements of multi-

ple scales (colored rectangles). The stimulus state at each local

element (Ci, Cj, .) is predicted by a decoder using multivoxel

patterns (weight set for each decoder, wi, wj, .), and then

the outputs of all the local decoders are combined in a statisti-

cally optimal way (combination coefficient, li, lj, .) to recon-

struct the presented image. As each local element has fewer

possible states than the entire image, the training of local

decoders requires only a small number of training samples.

Hence, each local decoder serves as a ‘‘module’’ for a simple

image component, and the combination of the modular de-

coders allows us to represent numerous variations of complex

images. The decoder uses all the voxels from the early visual

areas as the input, while automatically pruning irrelevant voxels.

Thus, the decoder is not explicitly informed about the retinotopy

mapping.

We applied this approach to the reconstruction of contrast-

defined images consisting of 10 3 10 binary patches (Figure 1B).

We show that once our model is trained with several hundred

random images, it can accurately reconstruct arbitrary images

(2100 possible images), including geometric and alphabet shapes,

on a single trial (6 s/12 s block) or volume (2 s) basis, without any

prior information about the image. The reconstruction accuracy is

quantified by image identification performance, revealing the

ability to identify the presented image among a set of millions of

candidate images. Analyses provide evidence that the multivoxel

pattern decoder, which exploits voxel correlations especially in

V1, and the multiscale reconstruction model both significantly

contribute to the high quality of reconstruction.

RESULTS

In the present study, we attempted to reconstruct visual images

defined by binary contrast patterns consisting of 10 3 10 square

patches (Figure 1). Given fMRI signals r, we modeled a recon-

struction image Î(xjr) by a linear combination of local image

bases (elements) fm(x) (Olshausen and Field, 1996),

bIðxjrÞ= X
m

lmCmðrÞfmðxÞ;

where x represents a spatial position in the image, Cm(r) is the

contrast of each local image basis predicted from fMRI signals,

and lm is the combination coefficient of each local image basis.

The local image bases, fm(x), were prefixed such that they re-

dundantly covered the whole image with multiple spatial scales.

We used local image bases of four scales: 1 3 1, 1 3 2, 2 3 1,

and 2 3 2 patch areas. They were placed at every location in
916 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
the image with overlaps. Thus, fm(x) served as overcomplete

basis functions, the number of which was larger than that of all

the patches. Although image elements larger than 2 3 2 or those

with nonrectangular shapes could be used, the addition of such

elements did not improve the reconstruction performance.

For each local image basis, we trained a ‘‘local decoder’’ that

predicted the corresponding contrast using a linearly weighted

sum of fMRI signals. The weights of voxels, w, were optimized

using a statistical learning algorithm described in Experimental

Procedures (‘‘sparse logistic regression,’’ Yamashita et al.,

2008) to best predict the contrast of the local image element

with a training data set. Note that our algorithm automatically se-

lected the relevant voxels for decoding without explicit informa-

tion about the retinotopy mapping measured by the conventional

method.

The combination coefficient, lm, was optimized to minimize

the errors between presented and reconstructed images in

a training data set. This coefficient was necessary because

the local image bases were overcomplete and not independent

of each other. Trained local decoders and their combination

coefficients constituted a reconstruction model.

fMRI signals were measured while subjects viewed a sequence

of visual images consisting of binary contrast patches on a 10 3

10 grid. In the ‘‘random image session,’’ a random pattern was

presented for 6 s followed by a 6 s rest period (Figure 1B). A total

of 440 different random images were shown (each presented

once). In the ‘‘figure image session,’’ an image forming a geomet-

ric or alphabet shape was presented for 12 s followed by a 12 s

rest period. Five alphabet letters and five geometric shapes were

shown six or eight times. We used fMRI signals from areas V1

and V2 for the analysis (unless otherwise stated). The data

from the random image session were analyzed by a cross-

validation procedure for quantitative evaluation. They were

also used to train a model to reconstruct the images presented

in the figure image session.

Reconstructed Visual Images
Reconstructed images from all trials of the figure image session

are illustrated in Figure 2A. They were reconstructed using the

model trained with all data from the random image session.

Reconstruction was performed on single-trial, block-averaged

data (average of 12 s or six-volume fMRI signals). Note that no

postprocessing was applied. Even though the geometric and

alphabet shapes were not used for the training of the reconstruc-

tion model, the reconstructed images reveal essential features of

the original shapes. The spatial correlation between the pre-

sented and reconstructed images was 0.68 ± 0.16 (mean ± s.d.)

for subject S1 and 0.62 ± 0.09 for S2.

We also found that reconstruction was possible even from 2 s

single-volume data without block averaging (Figure 2B). The

results show the temporal evolution of volume-by-volume recon-

struction including the rest periods. All reconstruction sequences

are presented in Movie S1.

Image Identification via Reconstruction
To further quantify reconstruction performance, we conducted

image identification analysis (Kay et al., 2008; Thirion et al.,

2006) in which the presented image was identified among a
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number of candidate images using an fMRI activity pattern

(Figure 3A). We generated a candidate image set consisting of

an image presented in the random image session and a specified

number of random images selected from 2100 possible images

(combinations of 10 3 10 binary contrasts). Given an fMRI activ-

ity pattern, image identification was performed by selecting the

image with the smallest mean square difference from the recon-

structed image. The rate of correct identification was calculated

for a varied number of candidate random images.

In both subjects, image identification performance was far

above the chance level, even up to an image set size of 10 million

(Figure 3B). The identification performance can be further
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Figure 1. Visual Image Reconstruction

(A) Reconstruction procedure. fMRI activity is measured while a contrast-defined 10 3 10 patch image is presented. ‘‘Local decoders’’ use linearly weighted

multivoxel fMRI signals (voxel weights, wi, wj, .) to predict the contrasts (contrast values, Ci, Cj, .) of ‘‘local image bases’’ (or elements) of multiple scales

(1 3 1, 1 3 2, 2 3 1, and 2 3 2 patch areas, defined by colored rectangles). Local image bases are multiplied by the predicted contrasts and linearly combined

using ‘‘combination coefficients’’ (li, lj, .) to reconstruct the image. Contrast patterns of the reconstructed images are depicted by a gray scale. Image bases

of the same scale (except the 1 3 1 scale) partially overlapped with each other, though the figure displays only nonoverlapping bases for the purpose of

illustration.

(B) Sequence of visual stimuli. Stimulus images were composed of 10 3 10 checkerboard patches flickering at 6 Hz (patch size, 1.15� 3 1.15�; spatial frequency,

1.74 cycle/�; contrast, 60%). Checkerboard patches constituted random, geometric, or alphabet-letter patterns. Each stimulus block was 6 s (random image) or

12 s (geometric or alphabet shapes) long followed by a rest period (6 or 12 s).
Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc. 917
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Figure 2. Reconstruction Results
(A) Reconstructed visual images. The reconstruction results of all trials for two subjects are shown with the presented images from the figure image session. The

reconstructed images are sorted in ascending order of the mean square error. For the purpose of illustration, each patch is depicted by a homogeneous square,

whose intensity represents the contrast of the checkerboard pattern. Each reconstructed image was produced from the data of a single trial, and no postpro-

cessing was applied. The mean images of the reconstructed images are presented at the bottom row. The same images of the alphabet letter ‘‘n’’ are displayed in

the rightmost and leftmost columns for each subject.

(B) Visual image reconstruction from a single-volume fMRI activity pattern. Representative reconstruction results are shown with the presented images, including

the rest periods (subject S1; 2 s/image). Each reconstructed image was produced from a 2 s single-volume fMRI activity pattern, and no postprocessing was

applied. The hemodynamic response delay is not compensated in this display.
extrapolated by fitting the sigmoid function. The extrapolation

suggests that performance above 10% correct could be

achieved even with image sets of 1010.8 for S1 and of 107.4 for

S2, using block-averaged single-trial data. The identification

performance with 2 s single-volume data was lower than that

of block-averaged data, but was still above the chance level
918 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
for a large number of candidate images (above 10% correct

with image sets of 108.5 for S1 and of 105.8 for S2).

In the following sections, we examine how multivoxel patterns

and multiscale image representation, critical components of our

reconstruction model, contributed to the high reconstruction

performance.



Neuron

Visual Image Reconstruction from Human fMRI
Weight Distribution on the Cortical Surface
Our algorithm for training local decoders automatically selected

relevant voxels and assigned weights, thereby yielding robust

classification performance (Yamashita et al., 2008; see Figure S1

for comparison with conventional algorithms without sparse

voxel selection). We first examined the distributions of voxel

weights of local decoders in comparison with the conventional

retinotopy. Cortical surface maps show the distributions of

weight magnitudes for a foveal and a peripheral patch (Figure 4A).

The largest weight values are found around the cortical locations

consistent with the retinotopic representation of the patch loca-

tions. The distributions of voxel weights for 1 3 1 decoders are

summarized in Figure 4B. Decoders were sorted by the eccen-

tricity and the polar angle of their target locations, and voxels

were sorted by their corresponding eccentricity and polar angle

Figure 3. Image Identification using Recon-

structed Images

(A) Image identification procedure.The meansquare

difference is measured between a reconstructed im-

age and each image in the candidate set consisting

of the presented image and a specified number of

randomly generated images (bar graphs). The one

with the smallest difference is identified as the

predicted image (marked by an asterisk). The figure

depicts an example of correct identification.

(B) Identification performance as a function of im-

age set size. Identification was repeated for 20 can-

didate sets of randomly generated images for each

reconstructed image from the random image ses-

sion. Reconstructed images were obtained using

either block-averaged data (6 s) or single-volume

data (2 s). The percentage of correct identification

was averaged across the candidate sets (error

bars, s.d.; dashed line, chance level).

identified by the conventional retinotopy

mapping from a separate experiment.

Large weight values were distributed

around the diagonal line, indicating that

local decoders mainly used voxels corre-

sponding to the retinotopic locations for

their target patches (see Figure S2 for

comparison between the conventional

retinotopy and the map of the voxels rele-

vant for the decoding). The weight distri-

bution tended to be blurred for peripheral

patches, indicating that peripheral de-

coders failed to select retinotopic voxels

(Figure 4B, left). Along the polar angle,

the patches around the vertical and hori-

zontal meridians (0/180� and 90�, respec-

tively) showed higher correlation with the

retinotopy than those at other angles

(Figure 4B, right). This is partly because

the locations of the patches arranged on

the square grid have anisotropy with re-

spect to the polar angle: the patches

around the meridians are located at

smaller eccentricity than those at nonmeridian angles on aver-

age. When the eccentricity was matched between the meridian

and non-meridian patches, the difference became less pro-

nounced.

Advantage of Multivoxel Pattern Decoders
Our local decoders were trained to exploit multivoxel patterns for

the prediction of target contrast (‘‘multivoxel pattern decoders’’).

However, as noted above, the locations of the selected voxels

were largely consistent with the conventional retinotopy. Thus,

a simple mapping between a cortical location [single or group

of voxel(s)] and a stimulus position might be sufficient for the

decoding.

To examine whether multivoxel patterns were effectively used

for the decoding, we devised other types of local decoders that
Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc. 919
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Figure 4. Weight Distribution on the Visual Cortex

(A) Distributions of voxel weights on the flattened cortex for a foveal and a peripheral decoder. Voxel weights are shown on the right visual cortical surface of

subject S1. The location of each patch (1 3 1) is indicated in the inset of the top-right corner. The white lines are the V1 and V2 borders.

(B) Summary of voxel weight distribution. Local decoders (1 3 1) for the left visual field were sorted by the eccentricity and the polar angle of their targets

(horizontal axis, 0.5� bins for eccentricity and 10� bins for polar angle), and contralateral voxels were sorted by their corresponding eccentricity and polar angle

identified by the conventional retinotopy mapping (vertical axis, 0.5� bins for eccentricity and 10� bins for polar angle). The magnitudes of voxel weights were

averaged in each target location and cortical location for ten models generated by the cross-validation analysis (two subjects pooled). Similar results were

observed for the local decoders for the right visual field.
only used retinotopic voxels (‘‘retinotopic decoders’’). By apply-

ing the standard general linear model to the data from the ran-

dom image session, we identified a single voxel with the highest

t value, or a group of significantly responsive voxels (p < 0.05,

false discovery rate [FDR] corrected for multiple comparisons)

for each patch (Figure S3). This technique, known as the multifo-

cal retinotopy mapping, gives the equivalent of the conventional

phase-encoded retinotopy map (Hansen et al., 2004; Vanni et al.,

2005). We used (1) the most responsive voxel, (2) the average of

the significantly responsive voxels, or (3) the ‘‘t value weighted’’

average of the significantly responsive voxels as the input. The

decoders consisted of the standard univariate logistic regression

model. The performance of these decoders was compared with

that of the multivoxel pattern decoder.

Cross-validation analysis using the random image trials re-

vealed that the multivoxel pattern decoder achieved significantly

higher correct rates than either of the three retinotopic decoders

(two-way ANOVA, Bonferroni-corrected p < 0.05 for multiple

comparisons), while the difference gradually diminished at the
920 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
periphery approaching the chance level (Figure 5A). Although

the figure illustrates the performance only for the 1 3 1 scale,

the decoders of other scales showed similar results. The number

of the significantly responsive voxels was larger than the number

of the voxels selected by the multivoxel pattern decoder for the

foveal to middle eccentricity. Since in this range of eccentricity

the multivoxel pattern decoder largely outperformed the retino-

topic decoders, the higher performance of the multivoxel pattern

decoder is not merely due to noise reduction by pooling multi-

voxel signals. These results indicate that our local decoders

did not simply depend on the mapping between a cortical loca-

tion and a stimulus location, but that they effectively exploited

multivoxel patterns.

One of the key features of multivoxel patterns is the correla-

tion between voxels. Our multivoxel pattern decoder takes into

account the correlation between voxels in the training data to

determine voxel weight parameters, as is the case with other

multivariate statistical methods (see Supplemental Data; Yama-

shita et al., 2008). To examine how voxel correlations contribute
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to decoding accuracy, we trained the decoder with fMRI data in

which voxel correlations were removed and compared the

performance with that of the original decoder. The data were

created by shuffling the order of the trials with the same stim-

ulus label in each voxel (Averbeck et al., 2006). This shuffling

procedure removes voxel correlations that are independent of

the stimulus label. Note that since the stimuli were random im-

ages, the voxel correlations observed in the original training

data do not reflect the correlations between stimulus patches.

The trained decoder was tested with independent nonshuffled

data.
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Figure 5. Advantage of Multivoxel Pattern Decoder

(A) Performance of the multivoxel pattern decoder and retinotopic decoders.

The binary classification performance for 1 3 1 patches is plotted as a function

of eccentricity. Classification was performed using (1) a multivoxel pattern, (2)

the most responsive voxel for each patch (with the highest t value), (3) the mean

of significantly responsive voxels for each patch (p < 0.05, FDR corrected for

multiple comparisons), or (4) the mean of the significantly responsive voxels

weighted by their t values for each patch. The performance was evaluated

by cross-validation using data from the random image session. The average

performance was calculated in each 0.5� eccentricity bin (two subjects pooled;

error bars, s.d., dashed line, chance level).

(B) Effect of voxel correlation in training data. Performance is compared

between the multivoxel pattern decoders trained with the original data and

the same decoders trained with ‘‘shuffled’’ data, in which voxel correlations

were removed. The results for the multivoxel pattern decoder are the same

as those displayed in (A).
The performance with shuffled data was significantly lower

than that with the original data (two-way ANOVA, p < 0.05),

particularly at the middle range of eccentricity (Figure 5B).

The results suggest that the multivoxel pattern decoder makes

effective use of voxel correlation to achieve high decoding

performance.

Reconstruction using Individual Visual Areas
We have thus far shown the results obtained using the voxels

from V1 and V2 as the input to the decoders. We next compared

the reconstruction between individual visual areas by using the

voxels in each of V1, V2, and V3 as the input. As illustrated in

Figure 6A, reconstruction quality progressively deteriorated

along the visual cortical hierarchy. Quantitative comparison

was performed by calculating the reconstruction errors for the

images from the random image session (squared difference

between the presented and the reconstructed contrast in each

patch averaged over each entire image). Higher visual areas

showed significantly larger errors than V1 (Figure 6B; ANOVA,

Bonferroni-corrected p < 0.05 for multiple comparisons), indicat-

ing that V1 contains most reliable information for reconstructing

visual images.

Inspection of the models for these three visual areas revealed

the following differences. First, in higher areas, the selected

voxels were less localized to the retinotopic locations than in

V1 (Figure 6C). Second, the shuffling analysis on the local de-

coders showed that the performance significantly decreased

for all areas when voxel correlations were removed (Figure 6D,

1 3 1 decoders; ANOVA, p < 0.05; other scales showed similar

results). The performance difference between the original and

shuffled data was prominent in V1 but diminished in higher areas,

indicating the critical contribution of voxel correlations in V1. Fi-

nally, the difference in reconstruction error was also largest in V1

(Figure 6E; ANOVA, Bonferroni-corrected p < 0.05 for multiple

comparisons), consistent with the performance of the local

decoders. These findings suggest that the reliable information

available in V1 is represented not only in the ordered retinotopic

organization, but also in the correlated voxel patterns.

When we used all voxels from V1 to V4 together as the input to

the decoder, most of the nonzero weights were found around the

retinotopic voxels in V1, but not in the higher areas (Figure S4).

The quality of image reconstruction remained similar to that ob-

tained by V1 and V2 voxels. This preference to V1 voxels may

also be accounted for by the fine retinotopic organization and

the informative voxel correlations available in V1, from which

our decoder can effectively extract information.

Advantage of a Multiscale Reconstruction Model
We then tested the significance of the multiscale representation

by comparing the multiscale model with single-scale models

that consisted of optimally combined, single-scale image bases

(1 3 1, 1 3 2, 2 3 1, or 2 3 2; V1 and V2 voxels used as the input).

Representative examples of the reconstructed images obtained

from the figure image session are presented in Figure 7A. The re-

constructed image from the 1 3 1 scale model showed fine edges

but exhibited patchy noise. By contrast, the 2 3 2 scale model

produced a spatially blurred image. The images from the 1 3 2

and 2 3 1 scale models contained horizontally and vertically
Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc. 921
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Figure 6. Reconstruction using Individual Visual Areas

(A) Reconstructed images. Examples from the figure image session (S1, ‘‘small frame’’) are shown.

(B) Reconstruction performance with entire images. The bar graph shows reconstruction errors, averaged across all test images in the random image session (two

subjects pooled; error bars, s.d.). The dashed line indicates the chance level (1/3), which is achieved when a contrast value for each patch is randomly picked from

the uniform distribution of 0 to 1.

(C) Distribution of voxel weights. The results of the local decoders (1 3 1) for the left visual field are displayed as in Figure 4B (color scale normalized for each visual

area). Similar results were observed for the local decoders of the right visual field.

(D) Effect of voxel correlations on local decoders. Performance is compared between local decoders (1 3 1) trained with the original data and those trained with

‘‘shuffled’’ data for each visual area. Colored regions show the differences between the original and the shuffled data.

(E) Effect of correlations on reconstructed images. The distribution of difference in reconstruction error (<error with the shuffled >� < error with the original > , for

each image) is plotted for each visual area (two subjects pooled).
elongated components. The reconstructed image from the multi-

scale model appears to have balanced features of these individ-

ual scales. The reconstruction error of the multiscale model, cal-

culated with the images from the random image session, was

significantly smaller than those of the single-scale models

(Figure 7B; ANOVA, Bonferroni-corrected p < 0.05 for multiple

comparisons).

We also calculated reconstruction errors at each eccentricity

(Figure 7C). For all scales, the reconstruction error increased

with eccentricity, but the profiles were different. The error sharply
922 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
increased with eccentricity for the 1 3 1 model, while the profile

was rather flat for the 2 3 2 model. As a result, the errors for these

models were reversed at the fovea and the periphery. The 1 3 2

and 2 3 1 models showed intermediate profiles. Statistical anal-

ysis revealed a significant interaction between scale and eccen-

tricity (p < 0.05 for interaction between eccentricity and scale,

two-way ANOVA). The multiscale model exhibited an error

profile matching the minimum envelope of those for the single-

scale models. Thus, the multiscale model appears to optimally

find reliable scales at each eccentricity.
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Figure 7. Advantage of Multiscale Reconstruction Model
(A) Reconstructed images. Examples from the figure image session (S1, ‘‘small frame’’) are shown for the multi- and single-scale reconstruction models.

(B) Reconstruction performance with entire images for the multi- and single-scale models. Reconstruction errors were displayed as in Figure 6B. The results for

the 1 3 2 and 2 3 1 scales are combined.

(C) Reconstruction performance as a function of eccentricity. Patch-wise errors were averaged across all test images at each eccentricity (two subjects pooled;

error bars, s.d.; dashed line, chance level).

(D) Combination coefficients in the multiscale reconstruction model. At each patch, the combination coefficients of the overlapping local decoders were grouped

by scale and were normalized by their sum. The normalized combination coefficients were then averaged at each eccentricity for ten models generated by the

cross-validation analysis (two subjects pooled; error bars, s.d.).
Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc. 923
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The combination coefficients of the multiscale model are sum-

marized in Figure 7D. Consistent with the above observation, the

model relied on the fine- and coarse-scale decoders for the

reconstruction of the foveal and peripheral regions, respectively.

These results indicate that the optimization of combination coef-

ficients indeed found reliable local decoders at each visual field

location to achieve high reconstruction performance.

Advantage of Overlapping Multiscale Bases
The image bases of different scales were useful since the scale

of reliable decoders varied across eccentricity. However, it is

not clear whether overlapping multiple scales contributed to

the reconstruction. To address this issue, we compared the mul-

tiscale model with an ‘‘eccentricity-dependent-scale model’’, in

which the region of the same eccentricity was tiled with image

bases of a single reliable scale (Figure 8A).

We found that the reconstruction error was significantly

smaller with the multiscale model than with the eccentricity-

dependent-scale model (ANOVA, p < 0.05; Figure 8A). The

performance of the multiscale model was particularly better in

the middle to peripheral range of eccentricity (Figure 8B). This

result is in agreement with the combination coefficients shown

in Figure 7D, in which all scales had comparable values at the

middle to peripheral eccentricity.

The results shown in Figure 8 were obtained using a particular

spatial arrangement of nonoverlapping images bases, whose

predicted contrasts were simply combined without optimized

combination coefficients. We also tested modified models with

slightly different spatial arrangements, and confirmed that

the multiscale model outperformed these modified models, too

(Figure S5). Our findings indicate that the multiscale representa-

tion at single locations indeed contributed to the reconstruction.

DISCUSSION

We have shown that contrast-defined arbitrary visual images can

be reconstructed from fMRI signals of the human visual cortex

on a single trial basis. By combining the outputs of local

decoders that predicted local contrasts of multiple scales, we

were able to reconstruct a large variety of images (2100 possible

images) using only several hundred random images to train the

reconstruction model. Analyses revealed that both the multi-

voxel and the multiscale aspects of our method were essential

to achieve the high accuracy. Our automatic method for identify-

ing relevant neural signals uncovered information represented in

correlated activity patterns, going beyond mere exploitation of

known functional anatomy.

Although our primary purpose was to reconstruct visual images

from brain activity, we also performed image identification analy-

sis to quantify the accuracy (Figure 3). Analysis showed that

nearly 100% correct identification was possible with a hundred

image candidates and that >10% performance could be achieved

even with image sets of 107.4–1010.8 using 6 s block-averaged

data, and with image sets of 105.8–108.5 using 2 s single-volume

data.

Previous studies have conducted similar image identification

analyses. Thirion et al. (2006) reconstructed an image for a 3 3 3

Gabor-patch array based on the retinotopy map and obtained
924 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
41%–71% accuracy of image identification with a set of six can-

didates (we obtained >95% accuracy with a 3 3 3 patch area in

the foveal region). Kay et al. (2008) took a different approach to

image identification. Instead of performing explicit reconstruc-

tion, they constructed a receptive-field model that predicted

the brain activity patterns for all candidate images. Then, they

identified one image whose predicted brain activity pattern

was closest to the measured activity pattern. They estimated

Figure 8. Advantage of Overlapping Multiscale Bases

(A) Comparison of reconstruction performance between the multiscale model

and the ‘‘eccentricity-dependent-scale’’ model. Reconstruction errors are

shown as in Figures 6B and 7B. The configurations of image bases used for

this analysis are illustrated at the bottom. Image bases for the multiscale model

overlapped within each scale (except 1 3 1), though the figure displays only

nonoverlapping bases.

(B) Patch-wise reconstruction performance as a function of eccentricity.

Results are shown as in Figure 7C.
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that their model could achieve >10% correct identification

with image sets of 107.3–1011.3 and 103.5–1010.8, using fMRI

responses to 13 repeated presentations (= 52 s) and to a single

presentation (= 4 s), respectively. Although a direct comparison

with these previous studies is difficult, because of differences in

stimuli, the number of trials, scan parameters, etc., the remark-

ably high identification performance obtained using our model

represents the quality of reconstruction.

Decoding from Multivoxel Patterns
A major difference of our approach from the previous ones is that

we directly computed the decoding model, instead of elaborat-

ing or inverting the encoding model. In our decoding approach,

the model is optimized so as to best predict individual stimulus

parameters given a multivoxel pattern while taking into account

voxel correlations. In contrast, the encoding model is optimized

so as to predict individual voxel responses given a stimulus with-

out considering voxel correlations when estimating the model

parameters (Kay et al., 2008; Thirion et al., 2006).

Recent imaging studies suggest that there is a better combi-

nation of population responses to decode a given visual stimulus

than using a signal from the most responsive cortical location or

an averaged signal over the responsive cortical locations (Chen

et al., 2006; Kamitani and Tong, 2005). In particular, if signals

from multiple locations are correlated, a successful decoder

should optimally assign various weights, including negative

ones, to each location depending on the correlation structure

(Averbeck et al., 2006; Chen et al., 2006).

Consistent with this observation, our decoder using a multi-

voxel pattern outperformed that using a single responsive voxel

or an average of responsive voxels (Figure 5A). The shuffling of

training data, which removed voxel correlations, impaired the

decoding performance, indicating the critical role of voxel corre-

lation for constructing an optimal decoder (Figure 5B). Careful

inspection of the weight distributions in Figures 4A and S4A indi-

cates that a decoder trained with the original data uses both pos-

itive and negative weights, which are found at nearby locations,

particularly at the middle to peripheral range of eccentricity.

Additional analyses revealed that the negative weights as well

as the positive weights were distributed along the retinotopic

voxels (Figure S6A). Further, the magnitudes of negative weights

decreased after shuffling the training data (Figure S6B), suggest-

ing that negative weights served to exploit voxel correlation.

Although the study by Chen et al. (2006) suggested that neural

activity in V1 contains significant spatial correlations that can be

useful for decoding a visual stimulus, it has been unclear whether

such informative correlations are present in other areas of the

early visual cortex. Our analysis of individual areas (Figure 6)

showed that much of the information available in V1 was repre-

sented in voxel correlations, while other areas were less depen-

dent on them. Thus, our results suggest that the early visual

cortex, particularly V1, represents the visual field not just by

its ordered retinotopic mapping, but also by correlated activity

patterns.

There are many possible sources of voxel correlation, in addi-

tion to stimulus-induced correlated neural activity. As the neural

populations in nearby voxels are likely to be synaptically coupled,

correlated fMRI signals could be spontaneously induced. Nearby
voxels might also show correlations through vascular coupling. A

physiological status (e.g., cardiac and respiratory noise) and an

fMRI scanner condition (e.g., gradient coil heating) might also

cause slow fluctuations correlated among voxels. However,

they are unlikely to be major sources of the voxel correlations

contributing to the reconstruction because the decoder’s perfor-

mance was not affected by filtering out slow components from

the data (Figures S7 and S8). In addition, head motions of a sub-

ject and spatial reinterpolation during preprocessing are also

unlikely to be the source, since they cannot account for the

area-specific effects of the voxel correlations (Figures 6D and

6E). Further analysis will be necessary to understand the sources

of voxel correlations and their contribution to the reconstruction.

Multiple Scales of Visual Representation
Our multiscale reconstruction model achieved higher recon-

struction accuracy than single-scale models by combining

reliable scales at each location. The reliable scales largely

depended on eccentricity, which can be related to the receptive

field size and the cortical magnification factor. The receptive field

size of visual cortical neurons is known to increase with eccen-

tricity (Dumoulin and Wandell, 2008; Kay et al., 2008; Kraft

et al., 2005; Smith et al., 2001), and in parallel, the cortical mag-

nification factor decreases with eccentricity (Dougherty et al.,

2003; Duncan and Boynton, 2003; Engel et al., 1997). The recep-

tive-field size for the human visual cortex was estimated at about

1�–2� at 7� eccentricity, which is near the most peripheral patch

in our stimulus image, while the cortical magnification factor at

7� is about 2–3 mm/�. These estimates suggest that single voxels

(3 3 3 3 3 mm) for the peripheral representation carry retinotopic

information about more than a single peripheral patch, and thus

are not suitable for the decoding of fine-scale (1 3 1) patches,

consistent with our reconstruction results (Figure 7C). Such

eccentricity-dependent changes in the scale of visual represen-

tation may partly account for the superior reconstruction by the

multiscale model.

However, it should also be noted that the reconstruction model

did not exclusively select a single scale at each eccentricity. At

any location except the most foveal region, all scales were effec-

tively combined to improve the reconstruction accuracy (Fig-

ure 7D). Previous studies have shown variability in receptive field

size among neurons whose receptive fields overlap (De Valois

et al., 1982; Hubel and Wiesel, 1968). Even though each fMRI

voxel should contain numerous neurons with receptive fields of

various sizes, it may be possible to extract scale-specific infor-

mation by combining many voxels with a weak scale bias in

each, analogous to the extraction of orientation information

from coarse voxel sampling of cortical columns (Kamitani and

Tong, 2005).

The multiscale reconstruction may also be linked with models

of multiple spatial frequency channels. Psychophysical evidence

has suggested that the human visual system uses multiple nar-

rowly tuned spatial frequency channels to achieve broad-band

sensitivity (Campbell and Robson, 1968). Channels tuned to

a lower (higher) spatial frequency are assumed to have a larger

(smaller) receptive field (De Valois et al., 1982), and recent human

fMRI studies have reported supporting results (Dumoulin

and Wandell, 2008; Kay et al., 2008; Singh et al., 2000; Smith
Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc. 925
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et al., 2001). Although our stimulus images had a fixed spatial

frequency in the luminance domain (checkerboard pattern), the

receptive field size associated with the tuned spatial frequency

may underlie the multiscale representation. Other lines of

research have suggested multifrequency channel mechanisms

for contrast-defined patterns (Arsenault et al., 1999; Landy and

Oruc, 2002), which could also be related to the multiple scales

in our reconstruction model.

Linearity of Visual Representation
We used sequences of random images to simultaneously pres-

ent binary contrast at multiple visual field locations (Figure 1B).

This procedure is effective in measuring neural responses to lo-

calized stimuli if spatial linearity holds between presented visual

stimuli and neural responses. The principle is similar to that of the

receptive field mapping using white noise stimuli in animal elec-

trophysiology. Previous fMRI studies have used random patterns

consisting of flickering patches and showed that the amplitude

of the fMRI signal evoked by a combination of the patches equals

the sum of those evoked by each individual patch (Hansen et al.,

2004). A general linear model can be applied to identify voxels

showing significant activity in response to each patch, which

provides a cortical activation map equivalent to that obtained

by the conventional retinotopy mapping (Vanni et al., 2005).

The linearity demonstrated by these studies may underlie the

accurate decoding in our study.

However, experiments have shown that neural and behavioral

responses to a localized visual stimulus are affected by sur-

rounding stimuli. Such phenomena known as contextual effects

(Kapadia et al., 1995; Meng et al., 2005; Sasaki and Watanabe,

2004; Zipser et al., 1996) could compromise the linearity as-

sumption. However, the random patterns rarely contain specific

configurations inducing contextual effects enough to bias the

training of the local decoders. Thus, the influences from contex-

tual effects may be negligible, and predictions from local

decoders are largely based on fMRI signals corresponding to

the local state of the visual stimulus.

We also assumed linearity in the image reconstruction model.

An entire visual image was represented by a linear superposi-

tion of local image bases of multiple scales. Our approach

draws an idea from previous theoretical studies modeling visual

images by a linear summation of overcomplete basis functions

that are spatially localized with various scales (Olshausen and

Field, 1996). Our successful reconstruction supports the linear

representation model of visual images, though elaborate

models with non-linearity might further improve the reconstruc-

tion performance.

Modular Decoding and Its Applications
Our approach provides a general procedure to deal with com-

plex perceptual experience consisting of numerous possible

states by using multiple decoders as modules. If a perceptual

state can be expressed by a combination of elemental features,

a modular decoder can be trained for each feature with a small

number of data, but their combination could predict numerous

states including those that have never been experienced. Similar

modular methods have been proposed for constructing ‘‘encod-
926 Neuron 60, 915–929, December 11, 2008 ª2008 Elsevier Inc.
ing’’ models that predict brain activity induced by complex stim-

uli or mental states, too (Kay et al. 2008; Mitchell et al., 2008).

Although we focused here on the reconstruction of contrast

patterns, our approach could be extended to reconstruct visual

images defined by other features, such as color, motion, texture,

and binocular disparity. Likewise, motor functions may also be

dealt with using our approach. A large variety of motor actions

could be described by a combination of putative modules (Pog-

gio and Bizzi, 2004). Thus, the modular decoding approach may

greatly improve the flexibility of prediction, which could also ex-

pand the capacity of neural prosthetics or brain-machine inter-

faces (Donoghue, 2002; Wolpaw and McFarland, 2004).

More interesting are attempts to reconstruct subjective states

that are elicited without sensory stimulation, such as visual imag-

ery, illusions, and dreams. Several studies have suggested that

these subjective percepts occur in the early visual cortex (Koss-

lyn et al., 1995), consistent with the retinotopy map (Meng et al.,

2005; Sasaki and Watanabe, 2004; Thirion et al., 2006). Of partic-

ular interest is to examine if such subjective percepts share the

same representation as stimulus-evoked percepts (Kamitani

and Tong, 2005, 2006; Haynes and Rees, 2005). One could

address this issue by attempting to reconstruct a subjective

state using a reconstruction model trained with physical stimuli.

The combination of elemental decoders could even reveal sub-

jective states that have never been experienced with sensory

stimulation. Reconstruction performance can also be compared

among cortical areas and reconstruction models. Thus, our

approach could provide valuable insights into the complexity

of perceptual experience and its neural substrates.

EXPERIMENTAL PROCEDURES

Subjects

We first screened four subjects for head motion in preliminary scans, and two

of them (male adults with normal or corrected-to-normal visual acuity) who

showed the least head motion underwent the full experimental procedure.

The subjects gave written informed consent. The study was approved by the

Ethics Committee of ATR and National Institute for Physiological Sciences.

Visual Stimulus and Experimental Design

Visual stimuli were rear-projected onto a screen placed in the scanner bore

using a gamma-corrected LCD projector.

We had three types of experimental session to measure the fMRI responses

of the visual cortex: (1) the random image session, (2) the figure image session,

and (3) the conventional retinotopy mapping session.

In the random image session, each run contained 22 stimulus blocks. Each

stimulus block was 6 s long followed by a 6 s intervening rest period. Extra rest

periods were added at the beginning (28 s) and at the end (12 s) of each run. In

each stimulus block, an image consisting of 12 3 12 small square patches

(1.15� 3 1.15� each) was presented on a gray background with a fixation

spot. Each patch was either a flickering checkerboard (spatial frequency,

1.74 cycles/�; temporal frequency, 6 Hz) or a homogeneous gray area, with

equal probability. Each stimulus block had a different spatial arrangement

of random patches. To avoid the effects of the stimulus frame, the central

10 3 10 area was used for analysis. Twenty runs were repeated, and a total

of 440 different random patterns were presented to each subject.

In the figure image session, each run had ten stimulus blocks. Each stimulus

block was 12 s long followed by a 12 s intervening rest period. Extra rest periods

were included, as in the random image session. Stimulus images consisted of

flickering checkerboard patches as in the random image session, but formed

geometric shapes (‘‘square,’’ ‘‘small frame,’’ ‘‘large frame,’’ ‘‘plus,’’ and ‘‘X’’)

or alphabet letters (‘‘n,’’ ‘‘e,’’ ‘‘u,’’ ‘‘r,’’ and ‘‘o’’). In each run, five geometric
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shapes or five alphabets were presented, and each image was repeated twice.

Subject S1 performed four geometric-shape runs and four alphabet runs, while

S2 performed four geometric-shape runs and three alphabet runs.

In these sessions, subjects viewed the stimulus sequence while maintaining

fixation. To help subjects suppress eye blinks and firmly fixate the eyes, the

color of the fixation spot changed from white to red 2 s before each stimulus

block started. To ensure alertness, subjects were instructed to detect the color

change of the fixation (red to green, 100 ms) that occurred after a random

interval of 3–5 s from the beginning of each stimulus block.

The retinotopy mapping session followed the conventional procedure (Engel

et al., 1994; Sereno et al., 1995) using a rotating wedge and an expanding ring

of flickering checkerboard. The data were used to delineate the borders be-

tween visual cortical areas, and to identify the retinotopy map on the flattened

cortical surfaces. Note that the retinotopic mapping was only used to relate the

conventional retinotopy and the location of voxels selected by our method.

MRI Acquisition

Preliminary experiments were performed using 3.0-Tesla Siemens

MAGNETOM Allegra located at National Institute for Physiological Sciences.

MRI data for the presented results were all obtained using a 3.0-Tesla Siemens

MAGNETOM Trio A Tim scanner located at the ATR Brain Activity Imaging Cen-

ter. An interleaved T2*-weighted gradient-echo echo-planar imaging (EPI) scan

was performed to acquire functional images to cover the entire occipital lobe

(TR, 2000 ms; TE, 30 ms; flip angle, 80�; FOV, 192 3 192 mm; voxel size, 3 3

3 x 3 mm; slice gap, 0 mm; number of slices, 30). T2-weighted turbo spin

echo images were scanned to acquire high-resolution anatomical images of the

same slices used for the EPI (TR, 6000 ms; TE, 57 ms; flip angle, 90�; FOV,

192 3 192 mm; voxel size, 0.75 3 0.75 3 3.0 mm). T1-weighted magnetization-

prepared rapid-acquisition gradient-echo (MP-RAGE) fine-structural images of

the whole-head were also acquired (TR, 2250 ms; TE, 2.98 or 3.06 ms; TI,

900 ms; flipangle, 9�; field of view, 256 3 256mm; voxelsize, 1.0 3 1.0 3 1.0 mm).

MRI Data Preprocessing

The first 8 s scans of each run were discarded to avoid instability of the MRI

scanner. The acquired fMRI data underwent slice-timing correction and

three-dimensional motion correction by SPM2 (http://www.fil.ion.ucl.ac.uk/

spm). The data were then coregistered to the within-session high-resolution

anatomical image of the same slices used for EPI and subsequently to the

whole-head high-resolution anatomical image. The coregistered data were

then reinterpolated by 3 3 3 3 3 mm voxels. The retinotopy session data

were transformed to the Talairach coordinates and the visual cortical borders

were delineated on the flattened cortical surfaces using Brain Voyager 2000

(http://www.brainvoyager.com). The voxel coordinates around the gray-white

matter boundary in V1–V4 were identified and transformed back into the

original coordinates of the EPI images. After voxels of extremely low signal

amplitudes were removed, �3000 voxels were selected in V1–V4 (subject

S1, 3003 voxels; S2, 3258 voxels). Most of the reconstruction analyses were

done using V1 and V2 voxels (S1, 1396 voxels; S2, 1550 voxels). For the anal-

ysis of individual areas, the following numbers of voxels were identified: V1,

797; V2, 820; V3, 779 voxels for S1, and V1, 903; V2, 902; V3, 913 voxel for

S2. Voxels near the area border were included in both areas.

The fMRI data then underwent linear trend removal within each run. Ampli-

tude normalization relative to the mean amplitude of the first 20 s rest period in

each run was performed to minimize the baseline difference across runs. The

fMRI signals of each voxel were averaged within each stimulus block after

shifting the data by 4 s to compensate for hemodynamic delays.

Labeling of fMRI Data

Each fMRI data sample was labeled by the mean contrast values of local image

elements in the corresponding stimulus image. Local image elements were 1 3

1, 1 3 2, 2 3 1, and 2 3 2 patch areas covering the entire 10 3 10 patch area

with overlaps (a total of 361 elements; 1 3 1, 100; 1 3 2, 90; 2 3 1, 90; 2 3 2,

81). The mean contrast value of each local image element was defined

as the number of flickering patches divided by the total number of patches

(1 3 1, [0 or 1]; 1 3 2 and 2 3 1, [0, 0.5, or 1]; 2 3 2, [0, 0.25, 0.5, 0.75, or 1]).
Training of Local Decoders

Local decoders were defined to predict the mean contrast of each local image

element. They were individually trained with fMRI data and the corresponding

class labels representing the mean contrast values. Each local decoder

consisted of a multi-class classifier, which classified fMRI data samples into

the classes defined by the mean contrast values. We could use a regression

model that gives a continuous output, but we chose to use the classification

model simply because our preliminary study showed better performance

with classification than with regression.

Our classification model is based on multinomial logistic regression (Bishop,

2006), in which each contrast class has a linear discriminant function that

calculates the weighted sum of the inputs (voxel values). Its output is then

transformed into the probability for the contrast class given the inputs. The

discriminant function for contrast class k in a local decoder is expressed as,

ywk
ðrÞ=

XD

d

wd
k rd + w0

k ;

where wd
k is a weight parameter for voxel d and contrast class k, rd is the fMRI

signal of voxel d, w0
k is the bias, and D is the number of voxels. The probability

that an fMRI signal pattern r = [r1, r2, rD]T (T, transpose) belongs to the contrast

class k is defined using the softmax function,

pwðkjrÞ=
exp

�
ywk
ðrÞ
�

PK
j

exp
h
ywj
ðrÞ
i;

where K is the number of the contrast classes. The predicted contrast class for

mth local image element, Cm(r) is chosen as the contrast class with the highest

probability. Note that although the statistics terminology calls this type of

model multinomial logistic ‘‘regression’’, it performs classification rather than

regression in the sense that the output is a categorical variable.

In conventional multinomial logistic regression, the weight parameters are

determined by finding the values that maximize the likelihood function of the

weight parameters given a training data set,

pwðSjw1;/;wkÞ=
YN

n

YK

k

pwðkjrnÞsnk ;

where S represents a class label matrix whose element snk is 1 if the trial n cor-

responds to the contrast class k otherwise 0, wk is the weight vector for

contrast class k including the bias term ((D + 1) 3 vector), and N is the number

of trials.

In this study, we adopted a full-Bayesian approach to the estimation of

weight parameters (‘‘sparse logistic regression,’’ Yamashita et al., 2008). The

above likelihood function was combined with a prior distribution for each

weight to obtain the posterior distribution. Weight parameters were estimated

by taking the expectation of the posterior distribution for each weight.

The prior distribution of a weight parameter is described by a zero-mean

normal distribution with a variance, whose inverse is treated as a hyperpara-

meter,

p
�
wd

k

��ad
k

�
= N

�
0;

1

ad
k

�
;

where N represents a normal distribution, and ad
k is the hyperparameter denot-

ing the inverse of the variance, or precision, of the weight value for voxel d and

contrast class k. The hyperparameter ad
k is also treated as a random variable,

whose distribution is defined by,

p
�
ad

k

�
=

1

ad
k

:

These prior distributions are known to lead to ‘‘sparse estimation’’ in which

only a small number of parameters have nonzero values and the remaining pa-

rameters are estimated to be zero (Tipping, 2001). Thus, the prior distributions

implement the assumption that only a small number of voxels are relevant for

the decoding of each local image element. This sparseness assumption may

be validated by the fact that a spatially localized visual stimulus gives rise to

neural activity only in small regions of the early visual cortex. The sparse
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parameter estimation could avoid overfitting to noisy training data by pruning

irrelevant voxels (Bishop, 2006), and thereby help to achieve high generaliza-

tion (test) performance (Yamashita et al., 2008). The number of remaining

nonzero voxels is shown in Figure S9.

Since the direct evaluation of the posterior distribution is analytically intrac-

table, we used a variational Bayesian method to approximate the distribution.

The algorithm for the parameter estimation is described in Supplemental Data.

Combination of Local Decoders

The outputs of the local decoders were combined by a linear model of the

corresponding local image elements,

bIðxjrÞ= XM

m

lmCmðrÞfmðxÞ;

where fm(x) represents a local image element, or a basis, (fm(x) = 1 if location x

is contained in the area of the local image element, otherwise fm(x) = 0), Cm(r) is

the predicted contrast, and lm is the combination coefficient.

Combination coefficients, lm, were determined by the least square method

using a training data set. We divided training data into subgroups, and the local

contrasts for each subgroup were predicted by the decoders trained with the

other subgroups. After calculating the local contrasts, Cm(r), for all training

samples, optimal combination coefficients were obtained by finding the

non-negative values that minimize the sum of the square errors between the

presented and the reconstructed images. The final reconstruction model

was obtained by integrating the combination coefficients and the local

decoders that were retrained using all training samples.

Evaluation of Performance

The trained reconstruction model was tested with independent samples. We

performed two types of reconstruction tests. First, to obtain a quantitative

and unbiased evaluation, we conducted cross-validation analysis using the

samples in the random image session. Second, to illustrate the quality of

reconstructed images, the model obtained from the random image session

was used to reconstruct the images presented in the figure image session.

In the cross-validation analysis, the 20 runs in the random image session

were divided into ten groups (two runs per group), and the reconstruction

model was trained with nine groups and tested with the remaining group.

This procedure was repeated until all groups were tested (10-fold cross-vali-

dation). In each step of cross-validation, the training data set (nine groups,

or 18 runs) was divided into one versus eight subgroups to obtain combination

coefficients as described above. The combination coefficients and the local

decoders that were retrained using all nine groups were integrated into a

reconstruction model.

For the reconstruction of the images in the figure image session, all 20 runs in

the random image session were used as a training data set. They were divided

into one versus nine subgroups to obtain combination coefficients as

described above. The combination coefficients and the local decoders that

were retrained using all ten groups were integrated into a reconstruction

model.

SUPPLEMENTAL DATA

The Supplemental Data can be found with this article online at http://www.

neuron.org/supplemental/S0896-6273(08)00958-6.
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