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The prefrontal cortex (PFC) has long been thought to serve as an ‘executive’ that controls the
selection of actions and cognitive functions more generally. However, the mechanistic basis of this
executive function has not been clearly specified often amounting to a homunculus. This paper
reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and
neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon
existing mechanistic models of the basal ganglia (BG) and frontal systems known to play a critical role
in motor control and action selection, where the BG provide a ‘Go’ versus ‘NoGo’ modulation of
frontal action representations. In our model, the BG modulate working memory representations in
prefrontal areas to support more abstract executive functions. We have developed a computational
model of this system that is capable of developing human-like performance on working memory and
executive control tasks through trial-and-error learning. This learning is based on reinforcement
learning mechanisms associated with the midbrain dopaminergic system and its activation via the BG
and amygdala. Finally, we briefly describe various empirical tests of this framework.
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1. INTRODUCTION
There is widespread agreement that some regions of the

brain play a larger role in controlling our overall

behaviour than others with a strong consensus that the

prefrontal cortex (PFC) is a ‘central executive’ (e.g.

Baddeley 1986; Shallice 1988; Duncan 2001; Miller &

Cohen 2001; Conway et al. 2003). However, this central

executive label raises many more questions than it

answers. How does the PFC know what actions or

plans to select? How does experience influence the PFC?

How do the specific neural properties of the PFC enable

this kind of function, and how do these differ from those

in other non-executive areas? Without answers to these

kinds of questions, the notion of a central executive is

tantamount to positing a homunculus (small man) living

inside the PFC and controlling our actions.

This article reviews ongoing research attempting to

characterize the computational and neural mechanisms

by which the PFC guides cognition and behaviour. We

see these mechanisms as an evolutionary extension of

the same frontal cortical and basal ganglia (BG)

mechanisms involved in the motor control system,

which are relatively better characterized and do not

have the same degree of mysterious executive function

associated with them. In this motor domain, the BG
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modulate frontal motor representations, by providing
Go versus NoGo signals that reflect the prior reward
history of actions (Wickens 1993; Mink 1996). In the
PFC, the BG can similarly provide Go/NoGo modu-
lation controlling the maintenance of more abstract PFC
working memory representations, which in turn guide
behaviour and cognition (Frank et al. 2001; Hazy et al.
2006; O’Reilly & Frank 2006). These PFC represen-
tations include plans, goals, task-relevant sensory stimuli,
partial products of ongoing processing, etc.

We have identified six core functional demands that
collectively serve to define the fundamental nature of
prefrontal cortical function from a neuro-mechanistic
perspective. Further, whereas our initial focus was on
the mechanisms by which the BG–PFC system learns
when to update and maintain information in working
memory (Frank et al. 2001; Hazy et al. 2006; O’Reilly &
Frank 2006), here we extend the model to include an
output-gating mechanism that can determine which of a
subset among multiple parallel active representations
should be currently used to guide action selection
(similar to the model of Brown et al. 2004). Interest-
ingly, the same BG mechanisms that can drive the
selection of when to update PFC working memory
representations can also be used (in parallel circuits) to
select which of the already maintained PFC represen-
tations should be actually be used to guide behaviour.

This article has two goals to describe: (i) the latest
version of our PBWM (PFC, BG working memory)
model, including two important extensions recently
added and (ii) our ongoing attempt to model several key
working memory tasks in a single instantiation of the
This journal is q 2007 The Royal Society
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Figure 1. The 1-2-AX task. Stimuli (in boxes) are presented
one at a time in a sequence and the subject is required to press
either a left or right key (L, R; no boxes) after each stimulus.
Correct responses are the right key (R) to a target sequence of
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model. The article’s overall organization follows accor-
dingly: we first describe the PBWM computational
model and how it relates working memory with motor
control and action selection. (We see working memory
as the fundamental mechanism underlying executive
function generally.) In elucidating our model, we place
special emphasis on six key functional demands
underlying working memory. We then describe two
new extensions to the model, output gating and a
mechanism for dealing with the exploration/exploitation
trade-off in learning (Aston-Jones & Cohen 2005).
Finally, we outline a research trajectory to simulate an
increasing number of the most important task para-
digms of working memory and executive function in a
single instantiation of a comprehensive model built
around the core PBWM mechanisms.
two stimuli or a left key (L) otherwise (cue only; wrong
sequence). Target sequences are determined as follows: if the
subject last saw a 1, then the target sequence is an A followed
by an X. If a 2 was last seen, then the target is a B followed by
a Y. Distractor stimuli (e.g. 3, C, Z) may also be presented at
any point, but are to be ignored (no response). Thus, the
maintenance of the task stimuli (1 or 2) constitutes a temporal
outer-loop around multiple inner-loop memory updates
required to detect the target sequence. See text for a more
detailed explanation.
2. THE PBWM MODEL OF WORKING MEMORY
Based on our cumulative work on a wide variety of
working memory tasks, we have identified a core set of
six functional demands, enumerated below, that are
required by tasks involving working memory and
executive function. Taken together, these functional
demands provide a basic set of constraints for our
biologically based PBWM model. Regarding the
relationship between working memory and executive
function, we see the former as providing the funda-
mental process that underlies executive function
generally. Briefly, we believe it is the rapid and selective
pattern of updating of PFC stripes (largely under
control of the BG) that results in the emergent set of
phenomena we recognize as executive function. The
1-2-AX task, which is an extension of the widely
studied AX version of the continuous performance task
(AX-CPT), provides a nice demonstration for these
information-processing demands on the working
memory/executive function system.

The AX-CPT is a standard working memory task
that has been extensively studied in humans (Cohen
et al. 1997; Braver et al. 1999, submitted; Braver &
Cohen 2000; Frank & O’Reilly 2006). The subject is
presented with sequential letter stimuli (A, X, B, Y)
and is asked to detect the specific sequence of an A
followed on the very next event by an X, by pushing
the target (right) button. All other combinations (A–Y,
B–X, B–Y) should be responded to with a non-target
(left) button push. This task requires a relatively simple
form of working memory, where the prior stimulus
must be maintained over a delay until the next stimulus
appears, so that the subject can discriminate the target
from non-target sequences. This is the kind of
activation-based working memory that has often been
observed for example in electrophysiological studies of
working memory in monkeys (e.g. Fuster & Alexander
1971; Kubota & Niki 1971; Miyashita & Chang 1988;
Funahashi et al. 1989; Miller et al. 1996).

In the 1–2 extension of the AX-CPT task (1–2-AX;
figure 1; Frank et al. 2001; O’Reilly & Frank 2006), the
target sequence varies depending on prior task demand
stimuli (a 1 or 2). Specifically, if the subject last saw a 1,
then the target sequence is A–X. However, if the
subject last saw a 2, then the target sequence is B–Y.
Thus, the task demand stimuli define an outer loop of
Phil. Trans. R. Soc. B
active maintenance (maintenance of task demands)
within which there can be any number of inner loops of
active maintenance for the A–X level sequences.
(a) Six key functional demands for

working memory

Using the 1-2-AX task as a concrete example, six key
functional demands placed upon the working memory
system can be identified:

(i) Rapid updating. The working memory system
should be able to rapidly encode and maintain
new information as it occurs. In the 1-2-AX
task, as each relevant stimulus is presented, it
must be rapidly encoded in working memory.

(ii) Robust maintenance. Information that remains
relevant should be maintained in the face of the
interference from ongoing processing or other
stimulus inputs. In the 1-2-AX task, the task
demand stimuli (1 or 2) in the outer loop must
be maintained in the face of the interference
from ongoing processing of inner loop stimuli
and irrelevant distractors. Also, a specific A or B
must also be maintained for the duration of each
inner loop.

(iii) Multiple, separate working memory representations.
To maintain the outer loop stimuli (1 or 2) while
updating the inner loop stimuli (A or B), these two
sets of representations must be distinct within the
PFC (i.e. they must not be in direct mutual
competition with one another, such that only one
such representation could be active at a time).

(iv) Selective updating. Only some elements of working
memory should be updated at any given time,
while others are maintained. For example, in the
inner loop, A or B should be updated while the
task demand stimulus (1 or 2) is maintained.
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Figure 2. Illustration of active maintenance gating. When the
gate is open, sensory input can rapidly update working
memory (e.g. encoding the cue item A in the 1-2-AX task),
but when it is closed, it cannot thereby preventing other
distracting information (e.g. distractor C) from interfering
with the maintenance of previously stored information.
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Figure 3. The BG are interconnected with frontal cortex
through a series of parallel loops each of the form shown.
Working backward from the thalamus, which is bidirection-
ally excitatory with frontal cortex, the SNr (substantia nigra
pars reticulata) is tonically active and inhibiting this
excitatory circuit. When direct pathway Go neurons in dorsal
striatum fire, they inhibit the SNr and thus disinhibit frontal
cortex producing a gating-like modulation that we argue
triggers the update of working memory representations in
PFC. The indirect pathway NoGo neurons of dorsal striatum
counteract this effect by inhibiting the inhibitory GPe (globus
pallidus, external segment). The STN (subthalamic nucleus)
provides an additional dynamic background of inhibition
(NoGo) by exciting the SNr.
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(v) Independent output-gating for top-down biasing of
processing. For working memory representations
to achieve controlled processing, they must be
able to bias (control) processing elsewhere in the
brain—and at the appropriate time. For example,
whichever outer loop stimulus (1 or 2) is relevant
at a given time must bias processing in the
PFC/BG system itself, to condition responses
and working memory updates as a function of the
current target sequence.

(vi) Learning what and when to gate. Underlying all
successful working memory task performance is
the need to learn when to gate appropriately—
both gating ‘in’ for maintenance and ‘out’ for
biasing elsewhere in the processing stream. This is
a particularly challenging problem in the mainten-
ance case because the benefits of having gated
something in are typically only available later in
time (e.g. encoding the 1 task demand stimulus
only affects overt behaviour and error-feedback
later when confronted with an A–X sequence).

Earlier computational work has instantiated and
validated several aspects of this overall theory, includ-
ing the graded nature of controlled processing (Cohen
et al. 1990); the ability of PFC representations to bias
subsequent processing (Cohen & Servan-Schreiber
1992); the role of PFC in active maintenance (Braver
et al. 1995) and the ability of the BG to update PFC
working memory representations (Frank et al. 2001).
Most recently, we have been focused on elucidating the
mechanisms of the PFC/BG system, and most
specifically, how it can learn to do what it has to do
to support working memory.

The six functional demands described above have
been published previously in more basic form (Hazy
et al. 2006). Here, we modify them in a significant way
to reflect a newly recognized demand for an indepen-
dent output-gating mechanism (incorporated primarily
into demand no. 5). This new demand is necessarily
separate and distinct from the previously described
maintenance-gating mechanism (O’Reilly & Frank
2006). The motivation for such a demand and our
proposed mechanism will be elaborated upon below.

(b) Dynamic updating via basal ganglia gating

One of the main implications from the above functional
demands is that the first two functional demands (rapid
updating versus robust maintenance) are in direct
conflict with each other when viewed in terms of standard
neural processing mechanisms. This motivates the need
for a dynamic gating mechanism to switch between these
two modes of operation (Cohen et al. 1996; O’Reilly et al.
1999; Braver & Cohen 2000; O’Reilly & Munakata 2000,
Frank et al. 2001). When the gate is open, working
memory can get updated by incoming stimulus infor-
mation; when it is closed, currently active working
memory representations are robustly maintained even
in the face of potential interference as from intervening
distractor stimuli (figure 2).

A central tenet of the PBWM model is that the BG
provide the dynamic gating mechanism for information
maintainedvia sustained activation in the PFC, just as the
BG are thought to ‘gate’ action selection in the motor
Phil. Trans. R. Soc. B
areas of the frontal cortex. In the motor system, the BG
are interconnected with frontal cortex through a series of
parallel loops (figure 3). When direct pathway Go
neurons in dorsal striatum fire, they inhibit the SNr and
thus disinhibit frontal cortex producing a gating-like
modulation that triggers the ‘release’ of one action, out of
many, competing pre-activated actions. In the same
manner, we argue that the BG works with the PFC to
trigger the updating of working memory representations
in PFC. The indirect pathway NoGo neurons of dorsal
striatum counteract this effect by inhibiting the inhibitory
GPe (globus pallidus, external segment). The STN
(subthalamic nucleus) provides an additional dynamic
background of inhibition (NoGo) by exciting the SNr
(Frank (2006) for computational advantages of this
global NoGo signal for action selection). As reviewed in
Frank et al. (2001), this idea is consistent with a wide
range of empirical data and other computational models
that have been developed largely in the domain of motor
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Figure 4. Illustration of output gating showing a single outer-
loop stripe biasing (not biasing) inner loop processing. When
the gate is open, actively maintained representations in the
outer loop stripe can bias processing in the inner loop stripes,
so as to attend to the A–X target sequence, but when the
output-gate is closed, it cannot. Instead, active represen-
tations in another outer-loop stripe (not shown) might be
exerting its influence (e.g. 2—B–Y). This output-gating
process learns and functions largely independent of the
maintenance gating system (figure 2).
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control, but also for working memory as well (e.g.
Dominey et al. 1995; Houk & Wise 1995; Wickens et al.
1995; Berns & Sejnowski 1998; Cisek 2007; Houk et al.
2007). Our ideas regarding just how the PFC and BG
might accomplish this complex coordination in support
of working memory and executive function are outlined
below, along with a brief description of the specific
biologically plausible computational mechanisms that
our PBWM model uses to instantiate them. New to this
latest version of the model is the addition of an output-
gating mechanism (demand no. 5), which leverages the
same BG/PFC circuitry and Go/NoGo modulation
(Brown et al. 2004).

(i) Rapid updating occurs when direct pathway spiny
neurons in the dorsal striatum fire (Go units). Go
firing directly inhibits the substantia nigra pars
reticulata (SNr) and releases its tonic inhibition of
the thalamus. This thalamic disinhibition enables,
but does not directly cause (i.e. gates), a loop of
excitation into the corresponding PFC ‘stripe’
(see Multiple, separate working memory represen-
tations). The effect of this net excitation is to toggle
the state of bistable currents in the PFC neurons.
Striatal Go neurons in the direct pathway are in
competition (downstream in the SNr, if not
actually in the striatum; Wickens 1993; Mink
1996) with a corresponding NoGo (indirect)
pathway that promotes greater inhibition of
thalamic neurons, thereby working toblockgating.

(ii) Robust maintenance occurs via two intrinsic PFC
mechanisms: (a) recurrent excitatory connectivity
(e.g. Zipser 1991; O’Reilly et al. 1999) and (b)
bistability (Fellous et al. 1998; Durstewitz et al.
1999, 2000; Wang 1999), the latter of which is
toggled between a maintenance state and a non-
maintenance state by the Go gating signal from
the BG. (For an interesting variation on this basic
theme, see Prescott et al. (2006) for an account
that places much of the burden of active
maintenance in the motor domain (so called
behavioural persistence) in the BG themselves,
rather than in the frontal cortex as we would
emphasize. It may be that both areas serve as
substrates for active maintenance in both domains
(motor and cognitive) or it may be that the BG
play more of a role in behavioural persistence,
while the PFC is the substrate of active mainten-
ance for more cognitive (working memory)
functions. Future work will be necessary to sort
these issues out.)

(iii) Multiple, separate working representations are
possible owing to the ‘striped’ micro-anatomy of
the PFC, which is characterized by small,
relatively isolated groups of interconnected
neurons, thereby preventing undue interference
between representations in different (even
nearby) stripes (Levitt et al. 1993; Pucak et al.
1996). We think of these frontal cortical stripes as
being functionally similar to—and roughly the
same size as—the well described hypercolumns of
the visual cortex. Finally, we have estimated
elsewhere there may be on the order of 20 000
such stripes in human frontal cortex (Frank et al.
Phil. Trans. R. Soc. B
2001), with progressively fewer in lower species as
one goes backward down the phylogenetic tree.
Thus, the pure quantity of stripes present in
frontal cortex may be an important variable in
determining cognitive abilities, an idea we explore
briefly in §4.

(iv) Selective updating occurs owing to the existence of
independently updatable parallel loops of connec-
tivity through different areas of the BG and frontal
cortex (Alexander et al. 1986; Graybiel & Kimura
1995; Middleton & Strick 2000). We hypothesize
that these loops are selective to the relatively fine-
grained level of the anatomical stripes in PFC.
This stripe-based gating architecture has an
important advantage over the global nature of
a purely dopamine-based gating signal (e.g.
Braver & Cohen 2000; Rougier & O‘Reilly
2002; Tanaka 2002), which appears computa-
tionally inadequate for supporting a selective
updating function by itself.

(v) Independent output-gating for top-down biasing of
processing occurs via output-gated projections
from actively maintained representations in PFC
to relevant areas throughout the brain (figure 4),
most typically the posterior cortex, but also the
hippocampus and the PFC/BG itself (Fuster
1989; Cohen & Servan-Schreiber 1992). New
here is the recognition that access to biasing
influence should operate only when appropriate
and not at other times indiscriminately. We adopt
the hypothesis that this output gating function is
accomplished by means of the unique laminar
frontal cortical column architecture and its
specific connectivity pattern with the BG and
thalamus (Brown et al. 2004). Briefly, deep,
output-generating laminae of the PFC (particu-
larly lamina Vb) display thresholded behaviour so
that these layers do not fire until a threshold is
reached via a specific BG-gated thalamic input
signal. In effect, output-gating is the same
mechanism as the motor gating that the BG are
typically described as performing (e.g. Houk et al.
1995, 2007; Mink 1996; Gurney et al. 2001;
Frank 2005).
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Figure 5. Illustration of how BG maintenance gating of
different PFC stripes can solve the 1-2-AX task (light
colourZactive; darkZnot active). Only three stripes are
shown for clarity; we have estimated elsewhere there may
actually be on the order of 20 000 stripes in human frontal
cortex (Frank et al. 2001). (a) The 1 task is gated into an
anterior PFC stripe because a corresponding striatal stripe
fired Go. (b) The distractor C fails to fire striatal Go neurons,
so it will not be maintained; however, it does elicit transient
PFC activity. Note that the 1 persists owing to gating-induced
robust maintenance. (c) The A is gated in to a separate stripe.
(d ) A right keypress motor action is activated based on X
input plus maintained PFC context.
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(vi) Learning what and when to gate (for both mainten-

ance and output) is accomplished by a dopamine-

based reinforcement-learning mechanism that is

capable of providing temporally appropriate

learning signals to train gating update activity in

the striatal Go and NoGo synapses (Frank 2005;

O’Reilly & Frank 2006); this learning occurs in

parallel for maintenance and for output. Thus,

each striatal medium spiny neuron (MSN)

develops its own unique pattern of connection

weights enabling separate Go versus NoGo

decisions in each stripe.

Figure 5 shows how the BG-mediated selective gating

mechanism can enable basic performance of the 1-2-AX

task. When a task demand stimulus is presented (e.g. 1),

a BG gating signal (i.e. a Go signal) must be activated to

enable a particular PFC stripe to gate in and retain this

information (panel a), and no stripe (or NoGo firing)

should be activated for a distractor such as C (panel b).
A different stripe must be gated for the subsequent cue

stimulus A (panel c). When the X stimulus is presented,

the combination of this stimulus representation plus the

maintained PFC working memory representations is

sufficient to trigger a target response R (panel d ).

The need for an output-gating mechanism can be

motivated by considering a situation where a motor

plan is being formulated. For example, you might be

planning a sequence of steps (e.g. picking up a set of

plates, condiments and other items sitting on the table

after dinner) and need to figure out the best order to

execute these steps. As you are juggling the possible

orderings in your mind, you do not want to actually

execute those actions. Thus, the maintenance-gating

function is enabling the updating of different action plan
Phil. Trans. R. Soc. B
representations, while the output gates remain closed to
prevent actual actions from being executed based on
these plans. Then, once the plan is ready to execute, the
output-gating mechanism fire Go signals for each step
of the plan in order. This coordination between
maintenance and output gating can apply to more
abstract cognitive operations in addition to concrete
motor actions.

In addition, even situations that may appear to only
require output-gating often require a maintenance-
gating step as well. For example, in the motor domain
(where output gating is synonymous with motor action
gating), there are many cases where a motor plan must
first be selected and maintained even for a few hundreds
of milliseconds, and this could benefit from mainten-
ance gating. Thus, the clear implication of this overall
formulation is that both output gating and maintenance
gating apply equally well to the action selection and
working memory domains.

(c) Learning when to gate in the basal ganglia

Of all the aspects of our model that purport to
deconstruct the homunculus, learning when to gate is
clearly the most critical. For any model, either the
explicit knowledge of when to update working memory
must be programmed in by the model’s designer or,
somehow, a model must learn it on its own, relying only
on its training experience as it interacts with any
primitive built in biases and constraints (much like the
architectural and/or parametric constraints discovered
by evolution). That is, without such a learning
mechanism, our model would have to resort to some
kind of intelligent homunculus to control gating.

Our approach for simulating how the BG learn to
update task-relevant versus irrelevant working memory
information builds on prior work showing how the same
basic mechanism can bring about the learning of the
appropriate selection of motor responses. Specifically,
the BG are thought to learn to facilitate the selection of
the most appropriate response while suppressing all
other competing responses (Mink 1996). In our models,
the BG learn the distinction between good and bad
responses via changes in dopamine firing in response to
reward signals during positive and negative reinforce-
ment (Frank 2005). The net effect is that increases in
DA enhance BG Go firing and learning via simulated
D1 receptors, whereas decreases in dopamine during
negative reinforcement have the opposite effect enhan-
cing NoGo firing and learning via simulated D2
receptors. This functionality enables the BG system to
learn to discriminate between subtly different reinforce-
ment values of alternative responses (Frank 2005) and is
consistent with several lines of biological and beha-
vioural evidence (for review see Frank & O’Reilly 2006).
This direct modulation of Go versus NoGo actions in
BG can train the output-gating mechanism in our
model, which is functionally the same as a motor control
gating mechanism.

A similar logic applies to training maintenance
gating: increases in dopamine reinforce BG Go firing
to gate information into working memory that contrib-
utes to better performance at later time-steps, while
decreases in dopamine allow the model to learn that a
current working memory state is contributing to poor
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subsequent reward (unconditioned stimulus US/r). Initially,
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stimulus onset by virtue of PFC ‘bridging the gap’ (in place of a
sustained input). DA firing at stimulus onset reinforces the
firing of BG Go neurons, which drive updating in PFC.
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performance (figure 5). In this manner, the BG
eventually come to gate in information that is task-
relevant, because maintenance of this information over
time leads to adaptive behaviour and reinforced
responses. Conversely, the system learns to ignore
distracting information, because its maintenance will
interfere with that of task-relevant information and
therefore lead to poor performance. The overall PBWM
model of the role of the PFC and BG in working memory
makes a number of further predictions, several of which
have been validated empirically (Frank et al. 2007).

From a computational perspective, maintenance
gating also requires very specific mechanisms to deal
with the temporal credit assignment problem. The benefits
of having encoded a given piece of information into
prefrontal working memory are typically only available
later in time (e.g. encoding the 1 task demand stimulus
can only really help later (in terms of getting an actual
reward) when confronted with an A–X sequence). Thus,
the problem is to know which prior events were critical
for subsequent good (or bad) performance.

The firing patterns of midbrain dopamine (DA)
neurons (ventral tegmental area, VTA; substantia nigra
pars compacta, SNc; both strongly innervated by the
BG) exhibit the properties necessary to solve the
temporal credit assignment problem, because they
learn to fire for stimuli that predict subsequent rewards
(e.g. Schultz et al. 1993; Schultz 1998). This property is
illustrated in schematic form in figure 6a for a simple
Pavlovian conditioning paradigm where a stimulus
(e.g. a tone) predicts a subsequent reward. Figure 6b
shows how this predictive DA firing can reinforce BG
Go firing to gate in and subsequently maintain a
stimulus, when such maintenance leads to subsequent
reward. Specifically, the DA firing can move discretely
Phil. Trans. R. Soc. B
from the time of a reward to the onset of a stimulus that,
if maintained in the PFC, leads to the subsequent
delivery of this reward. Because this DA firing occurs at
the time when the stimulus comes on, it is well timed to
facilitate the storage of this stimulus in PFC. In our
model, this occurs by reinforcing the connections
between the stimulus and the Go gating neurons in the
striatum, which then cause updating of PFC to maintain
the stimulus.

The apparently predictive nature of the DA firing has
most often been explained in terms of the temporal
differences (TD) reinforcement learning mechanism
(Sutton 1988; Houk et al. 1995; Schultz et al. 1995;
Montague et al. 1996; Sutton & Barto 1998; Contrer-
as-Vidal & Schultz 1999; Suri et al. 2001; Joel et al.
2002). However, extensive exploration and analysis of
these models has led us to develop a somewhat different
account, which moves away from the explicit prediction
framework upon which TD is based (O’Reilly & Frank
2006; O’Reilly et al. 2007). Our alternative learning
mechanism, called PVLV (primary value and learned
value) involves two separable but interdependent
learning mechanisms, each of which is essentially a
simple delta-rule or Rescorla–Wagner mechanism
(Widrow & Hoff 1960; Rescorla & Wagner 1972).
This PVLV mechanism shares several features in
common with the model of Brown et al. (1999).

Further details of the PBWM model and PVLV
learning mechanism are beyond the scope of this paper,
but the basic results are that the resulting model can learn
complex working memory tasks, such as the 1-2-AX task
based purely on trial-and-error experience with the task.

(d) Empirical tests of the model

As previously noted, much evidence supports the role of
the PFC in active maintenance during working memory
tasks and for the existence of at least two mechanisms
(recurrent connectivity and bistability) that could
support it (e.g. Zipser 1991; Fellous et al. 1998; Wang
1999; Durstewitz et al. 2000). Bistability is of particular
empirical relevance to the PBWM model, since it
provides a viable candidate for the ‘toggling’ process
required by PBWM. In addition, considerable evidence
supports the existence of a ‘striped’ micro-anatomy in
the PFC (Levitt et al. 1993; Pucak et al. 1996).

With regard to the more novel aspects of the model,
some evidence is available to suggest that there is a
‘striped’ micro-architecture within the well-documented
striato-cortical loops, that is there may be a more finely
granular micro-anatomical functional organization
within the striatal matrix compartment (matrisomes;
Flaherty & Graybiel 1993; Holt et al. 1997) and that this
finely granular functional organization may be preserved
in the striatal projections to the pallidum (Flaherty &
Graybiel 1993). The PBWM model makes an explicit
verifiable claim that such micro-anatomical fine structure
ought to exist, another strong prediction of the model.

With regard to the issue of whether or not the BG can
specifically trigger the toggling process of active
maintenance in the PFC, a prominent feature of the
PBWM model, accumulating evidence from our group
supports this prediction in Parkinson’s patients (Frank
et al. 2004), in normals on dopaminergic agents (Frank &
O’Reilly 2006) and, most recently, in ADHD patients
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(Frank et al. 2007). These studies have also supported
the hypothesis that it is the differential effect of phasic DA
burst firing on Go and NoGo MSNs in the striatum that
is critical to learning when to gate, another important
component of the PBWM model.
3. SIMULATING MULTIPLE WORKING MEMORY
TASKS IN A SINGLE MODEL
The PBWM model is complex, as might be expected
considering the complexity of the phenomena it is meant
to explain. Nonetheless, it is still far from a complete
account and we continue to refine and extend it.
Accordingly, it makes sense to continue to look for
more and better ways to constrain the performance of
the model by subjecting it to increasingly stringent tests.
One strategy that we have employed successfully in the
past with both our hippocampal and posterior cortical
models is to apply them to a progressively wider range of
relevant phenomena. To the extent that the same basic
model can account for a progressively wider range of
data, it provides confidence that the model is capturing
some critical core elements of cognitive function. The
virtues of this general approach have been forcefully
argued by Newell (1990).

For these reasons, one of our goals is to be able to
simulate an increasingly wider range of working memory
and executive tasks using a single instantiation of the
PBWM model. This research builds upon earlier work
simulating many of the paradigmatic tasks thought to be
characteristic of working memory and executive func-
tion, including: the Stroop effect (Cohen et al. 1990;
O’Reilly & Munakata 2000; Stafford & Gurney 2007);
the AX-CPT (Braver et al. 1995); the 1-2-AX (O’Reilly&
Frank 2006); the Wisconsin card sort task (WCST;
Rougier & O‘Reilly 2002); the intradimensional/
extradimensional (ID/ED) dynamic categorization task
(O’Reilly et al. 2002); and the Eriksen flanker task
(Cohen et al. 1992; Bogacz & Cohen 2004; Yeung et al.
2004). In addition to these already modelled tasks, we
also plan to simulate additional tasks not yet modelled by
us: the ABCA/ABBA task (Miller et al. 1996); serial recall
(phonological loop; Burgess & Hitch 1999); Sternberg
task (Sternberg 1966); and the N-Back task (Braver et al.
1997). A description of each task is available in the
electronic supplementary material.

The earlier successful efforts had all used different
models of varying levels of sophistication and complex-
ity, thus motivating the current goal of consolidating the
results onto a single comprehensive model. Although
easily stated, this is far from a trivial undertaking. In the
first place, models constructed to perform one task may
have design features or parameters that work against
good performance in other tasks. Thus, even getting the
same model to perform multiple tasks independently is a
significant challenge. Obviously, the problem will only
get more difficult as one attempts to implement multiple
tasks in a single instantiation due to the additional
complication of cross-training interference.

(a) The full MT model

To simulate a progressively wider range of working
memory/executive function tasks using a single instan-
tiation of a single model, we have developed the MT
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(multitask) model, a complex environment instantiation
of the PBWM. Figure 7 shows the MT (multitask)
model, with input/output layers appearing at the top of
the network, posterior cortical ‘Hidden’ layers and PFC
layer in the middle, and BG/midbrain areas for learning
and gating of PFC at the bottom. The input/output
representations were designed to accommodate the
vagaries of each individual task in a way that achieves a
high level of surface validity.

The perceptual input representations in the MT
model (table 1) assume a high level of perceptual pre-
processing, such that different stimulus items (‘objects’)
are represented with consistent and unique activity
patterns. We encode three separate (orthogonal) stimu-
lus dimensions: object identity; colour; and size, and we
also provide three spatial locations in which a given
object may appear. The task instruction layer tell the
network what to do with the input stimuli, including the
overall task and any more specific pieces of information
that might be required (e.g. whether to do word reading
or colour naming in the Stroop task). We have also
included a subcategory of instruction inputs in the form
of the store/ignore/recall (SIR) layer, which can be used
to provide explicit working memory update signals that
are encoded in a variety of different ways in different
tasks, and may also be present via implicit timing signals
via the cerebellum (e.g. Ivry 1996; Mauk & Buonomano
2004). The outputs include both verbal and non-verbal
responses, the latter including button presses and
pointing to locations.

The PFC is bidirectionally connected to all relevant
high-level processing layers (sensory input, task hidden,
central hidden and output), and its associated BG layers
receive from all of these layers as well to provide control
over the learning and execution of the dynamic gating
signals. Note that the shown PFC/BG system has four
stripes, with each stripe representing a selectively
updatable component of working memory. More stripes
facilitate faster learning, but result in a larger, more
computationally costly model so the exact number of
stripes is a matter of pragmatic optimization in the
model (in the brain, we estimate that many thousands of
stripes are present).

When sensory inputs are presented, activation flows
throughout the network in a bidirectional manner, so
that internal posterior cortical hidden layers are affected
by both these bottom-input and maintained top-down
activations in the PFC. In the Leabra algorithm that we
use (electronic supplementary material), individual
units are modelled as point neurons, with simulated
ion channels contributing to a membrane potential,
which is in turn passed through a thresholded nonlinear
activation function to obtain a continuous instantaneous
spike rate output that is communicated to other units.
The inhibitory conductances are efficiently computed
according to a k-winners-take-all algorithm (kWTA),
which ensures that not more than some percentage
(typically between 15–25%) of units within a layer are
active at a time.

Outside of the BG system, learning occurs as a result
of both Hebbian and error-driven mechanisms, with the
error-driven learning computed in a biologically
plausible fashion based on the GeneRec learning
algorithm (O’Reilly 1996). The learning mechanisms



Table 1. Perceptual input features, organized along three
separate dimensions. Three separate locations of these
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Figure 7. Overall structure of the MT model. Similar to our other PBWM models, the input/output layers are at the top-left of
the diagram. The PFC and BG layers are at the bottom-right. The PVLV learning algorithm layers are in the lower left-hand
corner (highlighted in green/darker grey), and the full PBWM component also includes the BG (Matrix, SNrThal) and PFC on
the right hand side (highlighted in yellow/lighter grey). Depending on the particular task, single or multiple featured stimuli are
presented in one or more ‘slots’ in the Stimuli_In layer, along with task instructions in the task instruct and SIR (store, ignore,
recall) layers. Based on these inputs, plus context provided by PFC input, the hidden layer determines the correct output in
verbal or nonverbal form or both. The shown model has four ‘stripes’ reflected in the four subgroups of the PFC and Matrix
(striatal matrisomes) layers, and the four units of the SNc and SNrThal layers. SNc, substantia nigra, pars compacta; SNrThal,
abstracted layer reflecting direct and indirect pathways via substantia nigra, pars reticulata and thalamus; VTA, ventral
tegmental area; PVe, primary value (PV) excitatory, external reward; PVi, primary value inhibitory (anatomically associated
with patch/striosomes of ventral striatum); LVi, learned value (LV) inhibitory (same anatomical locus); and LVe, learned value,
excitatory (anatomically associated with the central nucleus of the amygdala).
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for the BG components (PVLV algorithm) were
described earlier.
features are provided as input to the network.
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(i) Recent progress: the task contingency-shifting paradox
in the WCST
Over several iterations of the MT model (incorporating
progressively improving versions of PBWM), various
versions have successfully replicated key results of a set of
core tasks, including the Stroop, AX-CPT and 1-2-AX,
in addition to a set of more primitive component tasks
(e.g. naming, matchingandcomparing stimulus features,
dimensions and locations) that had been included in
another earlier model—the cross task generalization
model (Rougier et al. 2005). This prior version was also
able to do a version of the WCST, using a simple direct
model of PFC gating that did not place particularly
strong learning demands on the network. In moving to
the more sophisticated current version, however, one that
places more stringent learningdemands on the model,we
found that we ran into a new computational issue when
uninstructed changes in task contingency occur as in the
WCST. This prompted a further modification to the core
PBWM model (in addition to the output-gating
mechanism described earlier).

Recall that in the WCST, subjects are required to
place cards displaying multidimensional stimuli into
piles according to which feature matches according to a
Phil. Trans. R. Soc. B
relevant dimension that is not explicitly stated. The
relevant dimension is kept constant over blocks of
several trials, but is changed periodically without any
signal—the only feedback the subject receives is whether
their most recent response was correct or incorrect. This
uncued change in environmental contingency presented
a kind of paradox for earlier versions of PBWM,
prompting the extension described below.

When task-contingencies change and the model
makes errors, this results in phasic dopamine dips,
which in our model depress Go (direct) pathway firing
in the striatum and enhance NoGo firing. In the
maintenance-gating mechanism, NoGo firing prevents
updating and causes whatever was being maintained in
the PFC working memory to continue to be maintained.
But, this is the exact opposite of what needs to happen
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Figure 8. Performance on WCST as a function of the
probability of firing an exploratory random Go when an
error has been made after a threshold number of correct
responses in a row (5), even when another stripe is already
firing Go. A greater probability of random Go firing results in
better performance consistent with the idea that this error-
driven modulation of exploratory behaviour is critical, as
predicted by models of the noradrenaline system.
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now that the model is making errors. Normally, this is not
a problem when cues are provided in the environment
since the Go/NoGo system can easily learn to use those
cues to trigger a Go (update) signal. The problem is when
the contingencies change without warning.

A potential solution to this problem comes from
mechanisms that address the exploration/exploitation
trade-off in reinforcement learning (Aston-Jones &
Cohen 2005). This trade-off arises when an agent is
faced with either continuing to exploit the strategies that
have worked well in the past or exploring new strategies
that might work better. At the point when errors are
made, this decision becomes critical: do you just need to
work harder at the current strategy or give up and try
something else? Based on a wide range of data,
Aston-Jones & Cohen (2005) argue that neural systems
in the anterior cingulate cortex (ACC) and locus
coeruleus (LC) provide a means for dealing with this
situation. Specifically, when some errors are made in the
context of overall good performance, the system
responds by working harder at the current strategy as a
result of phasic-mode noradrenaline released by the LC
in precise time-lock with subsequent motor actions
under descending control of the ACC. However, as
errors mount or are very strongly unexpected, the
system switches to a fast-tonic mode that overwhelms
extant phasic (time-locked) signals and supports greater
exploration of alternative strategies.

As a simple proxy for this set of mechanisms, the
PBWM model now triggers random BG Go firing
(causing exploration) when some threshold number of
errors have been encountered after some number of
correct responses in a row have been made (typically 5).
In addition, this random Go firing is modulated by
whether other Go firing is currently taking place. If no
other stripes are firing Go, then it is imperative that a Go
fire to drive updating. If other stripes are firing Go, then
in principle these could do appropriate updating of the
PFC and cause the network to adopt a new strategy or
rule. However, we have found that additional random
Go firing, even in this case, leads to better overall
performance in the model, in proportion to the
probability of this random Go firing occurring (figure 8).
Finally, see Frank et al. (2007) for simulations of LC
dynamics in BG models of action selection and their
potential implication for decision making in neurological
disorders such as ADHD.
4. CONCLUSION AND FUTURE MODEL
DEVELOPMENT
Although many theoretical models have been developed
purporting to explain aspects of working memory and
executive function, the mechanistic basis underlying
them has remained inadequately described, often
amounting to a homunculus. In this paper, we have
reviewed some of the progress being made by our group
and others in attempting to deconstruct this implicit
homunculus by elucidating the precise computational
and neural mechanisms underlying them, particularly
the role of the PFC and BG. We are currently applying a
comprehensive version of our PBWM model to a range
of different working memory tasks to strongly test the
cognitive neuroscience validity of the model. For
Phil. Trans. R. Soc. B
example, the model can be used to explore roles of the
individual neural systems involved by perturbing
parameters to simulate development, ageing, pharma-
cological manipulations and neurological dysfunction,
and it promises to be extensible to a broad array of other
relevant manifestations of working memory and execu-
tive function. In addition to the basic goal of simulating
all of these tasks with a single model, we think this overall
approach will facilitate the exploration of many
fundamental questions about the nature and origins of
cognitive control, and intelligence more generally. Five
of the key research directions we are currently
pursuing—or plan to pursue in the near future—are
described briefly below.

(i) Understanding the interaction between the specific
architectural features of the PBWM model and the
breadth of the training experience, as is characteristic
of human development. Perhaps, the greatest
mystery in cognitive processing is where all the
‘smarts’ come from to control the system in a task-
appropriate manner. How is it that people quickly
adapt to performing certain novel cognitive tasks,
when it can take months of highly focused training
to learn those very same tasks for monkeys? How
much of this difference is due to nature (e.g.
neuro-anatomical differences) versus nurture
(training experience). A key hypothesis to be
tested is that our model can be made to learn
complex tasks significantly faster after being pre-
trained on simpler, relevant ones, a result which
would weigh towards a nurture-heavy expla-
nation. Along another (not explicitly modelling)
vein, an interesting empirical question might be
whether one can demonstrate interspecific
differences in performance between non-human
primate species on these tasks (in addition to the
obvious differences with humans), and try to map
these to things such as the gross number of frontal
cortical stripes present in a species or differences
in organizational structure. If we are successful in
making progress towards these goals, it would
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represent a critical qualitative step forward in the
modelling of human-like intelligence.

(ii) The question of how the PFC is functionally
organized is also prominent in the literature and
remains largely unresolved. We think the path of
research described here can shed considerable
light on this issue as well. For example, how
much of the increase in cognitive capability
seen as one move up the phylogenetic tree can
be accounted for by a simple increase in the
number of frontal lobe ‘stripes’ (a largely
quantitative difference) versus how much is
driven by new organizational changes, i.e. new
functional specialization (a more qualitative
difference). We would predict that both are
probably important. Furthermore, we would
expect that new organizational changes are
probably relatively rare and that a specialized
organization in the PFC to support recursion
(as exemplified in the 1-2-AX task) is probably
limited to only a very few nesting levels given
our notoriously limited recursive abilities.
Previously, we have proposed that the
anterior–posterior (and perhaps dorsal–ventral)
axis of the PFC might be organized along a
gradient from abstract to concrete, respectively
(O’Reilly & Munakata 2000; O’Reilly et al.
2002; Wood & Grafman 2003). One particular
organizational bias suggested by the biology is
to have only the more posterior areas of PFC
connected (bidirectionally) with posterior cor-
tical areas, while more anterior PFC areas
connect only with these posterior PFC areas.
Thus, anterior PFC areas might be able to
serve as more abstract biasing inputs to more
posterior PFC areas which in turn bias more
specific processing in posterior cortex. Simi-
larly, orbitofrontal areas are thought to maintain
motivational states and reinforcement values to
bias decision making processes in BG and other
frontal regions (Frank & Claus 2006).

(iii) Understanding the human capacity for generativity
may be one of the greatest challenges facing the
field of ‘higher-level’ cognitive function. We think
that the mechanisms of the PBWM model,
and in particular its ability to exhibit limited
variable-binding functionality, may be critical
steps along the way to such an understanding.
Some preliminary work using an earlier version
of our basic model provides reason to be
optimistic regarding this overall approach. In
simulations of the cross-task generalization task
cited earlier (XT; Rougier et al. 2005), we
explored the ability of training on one set of
tasks to generalize (transfer) to other related
tasks. In general, the key to generalization in a
neural network is the formation of abstract
(e.g. categorical) representations (O’Reilly &
Munakata 2000; Munakata & O’Reilly 2003).
We think this pattern of results reflect a
general principle for why the PFC should
develop more abstract representations than
posterior cortex, and thus facilitate flexible
generalization to novel environments:
Phil. Trans. R. Soc. B
abstraction derives from the maintenance of

stable representations over time interacting

with learning mechanisms that extract com-

monalities over varying inputs.

(iv) Further development on the interactions between
output-biasing and input-maintenance gating
mechanisms in support of working memory and
executive function, along with related interactions
with the action selection/motor planning system.

For example, which compartments and/or

subsets of MSN’s in the striatum handle

input versus output gating? A related issue is

the direct role of dopamine effects in the PFC.

In brief, we think that phasic dopamine effects

may be most manifest in the BG where they
are critical for highly discriminative Go versus

NoGo learning, whereas longer lasting tonic

dopamine effects in PFC may help support

robust maintenance of working memory rep-

resentations (Durstewitz et al. 2000; Tanaka

2002; Seamans & Yang 2004). In addition,

phasic DA bursts within PFC may still be

important for dictating when to update while

the same signals within the BG modulate what
to update (Frank & O’Reilly 2006). In the

model described here, these dopaminergic

effects in PFC were abstracted and subsumed

by a simple intracellular maintenance current—

but these currents are known to depend on a

healthy level of dopamine.

(v) Exploration of the performance monitoring function
to deal with uncued (dynamic) changes in
environmental contingency, probably involving the
anterior cingulate (ACC ) and locus coeruleus
(LC ) as briefly touched on earlier. As noted in

the WCST example, uncued changes in

environmental contingency present an import-

ant challenge for which a robust understanding

is beginning to emerge. Incorporating more

sophisticated versions of these mechanisms into

the core PBWM model is another develop-
mental trajectory for our work.
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