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The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive
control. It has been implicated in a diversity of functions, from reward processing and performance moni-
toring to the execution of control and action selection. Here, we propose that this diversity can be understood
in terms of a single underlying function: allocation of control based on an evaluation of the expected value of
control (EVC).We present a normativemodel of EVC that integrates three critical factors: the expected payoff
from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in
terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether,
where and howmuch control to allocate. We then consider how the EVCmodel can explain the diverse array
of findings concerning dACC function.
The dorsal anterior cingulate cortex (dACC), spanning the cingu-

late gyrus and sulcus from the plane of the anterior commissure

to the genu of the corpus callosum (Figure 1), is one of the most

heavily studied regions of the brain and yet remains one of the

least clearly understood. Although there has recently been an ex-

plosion of research on the role of dACC in cognition and

behavior, this has led to a proliferation of diverging theories con-

cerning its function. The dACC has been proposed to play a key

role in pain processing, performance monitoring, value encod-

ing, decision making, emotion, learning, and motivation. A pre-

cise and coherent account of dACC function seems as elusive

now as it did in the earliest days of theory development.

Two opposing tendencies appear to have slowed progress

toward an integrated understanding of dACC function. One

has been to base theoretical analyses on too narrow a subset

of empirical findings, while another has been to embrace a

wide range of empirical findings but to reduce them to a single

basic computation at the cost of oversimplifying dACC function.

Here, we propose an integrative account of dACC function that

strives to avoid these pitfalls.

We build on one observation which appears to be widely and

consistently agreed upon: that dACC is engaged by tasks that

demand cognitive control. Broadly, this can be defined as the

set of mechanisms required to pursue a goal, especially when

distraction and/or strong (e.g., habitual) competing responses

must be overcome. Numerous meta-analyses of the neuroimag-

ing literature have confirmed the dACC’s involvement in control-

demanding tasks (Nee et al., 2007; Niendam et al., 2012; Ridder-

inkhof et al., 2004; Shackman et al., 2011), and these have been

supplemented by evidence of a causal relationship between

dACC and cognitive control. For instance, using diffusion tensor

imaging (DTI), Metzler-Baddeley and colleagues (2012) showed

that older adults with lower white matter integrity in the anterior

cingulum bundle (the white matter bundle projecting to/from

dACC) performed more poorly on control-demanding tasks.

Despite the strong consensus that dACC is involved in cogni-

tive control, there is little agreement about the specific func-
tion(s) it subserves. Here, we synthesize a number of existing

proposals concerning the role of dACC into a single theoretical

account and show how this can be reconciled with empirical

findings concerning dACC function. Specifically, we propose

that the dACC integrates information about the reward and costs

that can be expected from a control-demanding task, in order to

estimate a quantity we refer to as the expected value of control

(EVC). Put simply, EVC represents the net value associated

with allocating control to a given task. We propose that dACC

estimates this quantity in order to determine whether it is worth

investing control in a task, how much should be invested and,

when several potential tasks are in contention, which is the

most worthwhile. We assume that this information is used to

select among competing tasks and allocate the appropriate

amount of control to performance of the one selected. This pro-

posal ascribes to dACC a specific decision making function

regarding the allocation of control that is distinct from other con-

trol-related functions, such as the valuative ones that provide

input to the decision and the regulative ones responsible for

executing it; these are presumed to be subserved by other neural

mechanisms.

We begin by establishing some foundational points concern-

ing cognitive control and its constituent functions that are neces-

sary for framing the EVC theory and our consideration of dACC.

We then introduce the basic elements of the EVC theory. Finally,

we review key findings and existing theoretical proposals from

the dACC literature, relating these to the EVC theory.

The Computational Basis of Cognitive Control
Processes that demand control are often distinguished from

automatic processes, which involve associations that are suffi-

ciently strong as to be resistant to distraction or interference

(Botvinick and Cohen, 2013; Cohen et al., 1990; Norman and

Shallice, 1986; Posner and Snyder, 1975; Shiffrin and Schneider,

1977). A classic illustration of the distinction between controlled

and automatic processing is provided by the Stroop task. Partic-

ipants are shown a color word and asked to name the color of the
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Figure 1. Anatomy and Connectivity of the Dorsal Anterior Cingulate Cortex (dACC)
(A and B) Cytoarchitectonic subdivisions of human (A) and macaque (B) medial prefrontal cortices. The cingulate sulcus (cgs) has been opened up in both. dACC
typically refers to areas 24a–d and the dorsal extent of area 32 (320 in A, 32(s) in B). Panel (A) focuses specifically on paracingulate regions of the medial surface,
and the color-coding reflects Vogt et al. (2004) four-region model. The region referred to as human dACC throughout the main text is the anterior portion of mid-
cingulate cortex (aMCC), encompassing an area Picard and Strick (1996) referred to as the rostral cingulate zone (RCZ).
(C) Cortical projections to regions of dACC (left; areas 24a–b in yellow, areas 24c–d in orange) and more posterior regions of dorsomedial PFC (right; supple-
mentary and primary motor cortices in pink and purple, respectively) in the macaque (cf. panel B). Relative to the more posterior regions, projections to dACC are
much more widespread and include regions of orbital and rostrolateral PFC, temporal and parietal cortices, and insula.
(D and E) Patterns of resting-state functional connectivity estimated in human (D) andmacaque (E) brains using fMRI. The colors in panel (D) label seven networks
within which activity between the regions (of a given color) is highly correlated at rest. Under this parcellation scheme, regions of dACC span the frontoparietal
network (orange; often referred to as the ‘‘control’’ network) and the ventral attention network (violet). (E) Parcellation of resting-state connectivity networks
focused on the connectivity of cingulate cortex regions-of-interest with the rest of the brain. Patterns of connectivity for the ‘‘executive’’ network (shown in red)
and the ‘‘attention-orienting’’ network (dark blue), particularly within lateral PFC, suggest potential homologs with human frontoparietal and ventral attention
networks. However, exact boundaries and homologies between dACC across species remain ambiguous (see, e.g., Cole et al., 2009).
(A) Reprinted from Palomero-Gallagher et al. (2009) by permission of John Wiley and Sons; (B) and (C) reprinted from Morecraft et al. (2012), copyright (2012),
modified with permission from Elsevier; (D) cortical and striatal connectivity reprinted from Yeo et al. (2011) and Choi et al. (2012), respectively, with permission
from The American Physiological Society; (E) reprinted from Hutchison et al. (2012), by permission of Oxford University Press.
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font in which it is displayed. When the two dimensions disagree

(e.g., ‘‘GREEN’’ written in red text), participants find it harder to

name the color than when the two agree (e.g., ‘‘RED’’ written in

red text). However, this interference effect does not occur

when the task is, instead, to simply read the word. This differ-

ence between task conditions is explained by assuming that

word reading is automatic (allowing the word to be processed

even when the task is color naming), whereas color naming is

controlled (preventing the color from being processed unless

the task is to do so). This explanation is reinforced by the obser-

vation that, when presented with a conflict stimulus in the
218 Neuron 79, July 24, 2013 ª2013 Elsevier Inc.
absence of a specific task instruction, people invariably read

the word, illustrating the automatic, or ‘‘default,’’ nature of verbal

responses to words. Verbally responding to the color requires an

instruction and/or intention to do so, at least in the presence of

conflicting word information.

A Simple Model of Cognitive Control

A computational model of the mechanisms underlying the

Stroop task is shown in Figure 2A (Cohen et al., 1990). Themodel

takes the form of a neural network, with units encoding stimulus

features projecting forward to intermediate (associative) units,

and then to output units representing verbal responses. The



Figure 2. The Expected Value of Control (EVC) model applied to the Stroop task
(A) Amodel of the Stroop task illustrating the threemajor components of cognitive control: specification, regulation, andmonitoring. Thickness of the connections
indicate the strength of the pathway, and size of the units denotes the amplitude of the signal along each processing pathway. The figure also illustrates how the
model can be extended to include conflict monitoring that, in turn, can be used to specify the strength of the control signal needed to support processing in the
task-relevant pathway. Note that the model ascribes to dACC roles in monitoring and specification, and to the lPFC a role in regulation.
(B) The EVC model. Control signal specification involves choosing a control signal that maximizes EVC. For illustration, we diagram here the dimensions of
specification relevant to performing the Stroop color-naming task (illustrated in A). The objective is to select a control signal that maximizes the EVC. This, in turn,
requires comparison of signals that differ in their identity (here, activation of theword-reading versus color-naming control units) and their intensity (represented in
the figure by meters). In both cases, the EVC estimation takes into account both the costs of each candidate signal and its expected payoffs and expected
outcomes (arrow weights indicate transition probabilities). Although identity and intensity are segregated here for the purposes of illustration, they are fully in-
tegrated in the EVC estimation as specified in Equation 1 and likely reflect the operation of a common set of mechanisms (see ‘‘Default Override’’ section).
Moreover, unlike specifying the intensity of a given control signal (right), the process of specifying control signal identities (left) does not require mutual exclusivity
(i.e., multiple control signal identity-intensity pairings can be simultaneously specified as a single array).
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automaticity of the response to words is captured by strong

connection weights along the pathway from word identity to ver-

bal response. These also make it the default response (i.e., the

response generated in the absence of any instruction). However,

without any additional apparatus, themodel would not be able to

respond to the color of a conflict stimulus. To address this, the

model also includes a set of control units that represent the cur-

rent task. When the unit representing the color naming task is

active, this provides top-down support for units in the pathway

from color to verbal response, priming these units and thereby

permitting a response to the color even when there is conflicting

information arriving along the word pathway. Thus, in this

context, color naming can be considered to be a controlled pro-

cess to the extent that a correct response to the color depends

on activation of the color naming task unit.

Themodel shown in Figure 2A also includes a unit that serves a

‘‘conflict monitoring’’ function, responding to coactivation of the

network’s response units (see Botvinick et al., 2001). Such con-

flict is an indicator of inadequate control. For example, if the co-

lor naming task unit is insufficiently activated, then activation of

the response to the color will be weaker and compete less effec-

tively with activation of the response to a conflicting word, allow-
ing the latter to become more active. This coactivation will have

two potentially adverse consequences for behavior. At best it will

slow responding, since the correct response unit must overcome

inhibitory competition from the incorrect one. At worst it will pro-

duce an error. These dangers can be ameliorated by increasing

the activity of the color naming task unit. Thus, conflict serves as

an indicator of the need for additional allocation of control.

Three Component Functions of Cognitive Control

This simple model of the Stroop task and conflict monitoring is of

course not intended as a comprehensivemodel of cognitive con-

trol. However, the architecture of the model illustrates three core

component functions of cognitive control (Figure 2A).

Regulation. The sine qua non feature of control is its capacity

to govern or influence lower level information-processing mech-

anisms, a function we refer to as regulation. In the language of

engineering, activity of a task unit represents a control signal,

which determines the parameters for more basic processes (in

this case, the sensitivity of the associative units in the corre-

sponding pathway). Note that this signal has two defining char-

acteristics: its identity and its intensity (the strength of the signal,

both in literal terms—e.g., level of activation of the task unit—and

in terms of its impact on information processing). Control signals
Neuron 79, July 24, 2013 ª2013 Elsevier Inc. 219
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can determine a wide range of processing parameters, including

thresholds and/or biases for responding (governing speed-accu-

racy tradeoffs; Bogacz et al., 2006; Wiecki and Frank, 2013),

templates for attention or memory search (Desimone and Dun-

can, 1995; Olivers et al., 2011; Polyn et al., 2009), and modula-

tors of emotion (Johns et al., 2008; McClure et al., 2006). In

each case, a distinction can be made between signal identity

(the parameter targeted) and signal intensity (the degree towhich

the parameter is displaced from its default value).

Specification. In order for regulation to occur, a critical step is

for an appropriate control signal to be chosen: Control requires a

decision on which, if any, controlled task(s) should be under-

taken, and on how intensively it (or they) should be pursued.

We refer to this decision-making function as control signal spec-

ification, which must determine the identity and intensity of the

desired control signal(s). In principle, it is possible to specify

more than one identity-intensity pairing, and thereby more than

one task (see Figure 2). However, in practice there are strict ca-

pacity constraints on control, and thus in this Reviewwe focus on

the simplest and most common circumstance, involving specifi-

cation of a single identity-intensity pairing (i.e., a single control

demanding task). Importantly, control signal specification should

be distinguished from regulation which consists of implementing

the specified control signal so as to actually effect the changes in

information processing required for the task. This distinction

between specification (the decision process) and regulation

(that mediates its effects) is central to the EVC theory. While

both are essential components of the control system, the EVC

theory ascribes to dACC a role in specification but not regulation,

as we discuss below.

Monitoring. In order to specify the appropriate control signal

and deploy regulative functions in an adaptive manner, the sys-

tem must have access to information about current circum-

stances and how well it is serving task demands. Detecting and

evaluating these requires a monitoring mechanism. The con-

flict-detection component in the Stroop model provides one

example of suchamonitoring function andhow it canguide spec-

ification: the occurrence of response conflict indicates that insuf-

ficient control is beingallocated to thecurrent task (seeBotvinick,

2007; Botvinick et al., 2001, 2004). In this instance, conflict indi-

cates the need to re-specify control signal intensity. However,

conflict is just one among many signals that can indicate the

need to adjust intensity. Others include response delays, errors,

negative feedback, and the sensation of pain. These signals all

carry information about performance within a task and how to

specify control signal intensity. Monitoringmust also consider in-

formation relevant to the specification of control signal identity;

that is, to task choice. Such information can come from external

sources (e.g., explicit instructions, cues indicating new opportu-

nities for reward, or the sudden appearance of a threat) or internal

ones (e.g., diminishing payoffs from the current task indicating it

is no longer worth performing, recollection of another task that

needs to be performed, etc.). In all of these cases, monitoring

must be responsive to, but should bedistinguished from, the sen-

sory and valuative processes that represent the actual informa-

tion relevant to specification. Thus, just as we distinguish

between specification and regulation on the efferent side of

control, we distinguish between monitoring and valuation on
220 Neuron 79, July 24, 2013 ª2013 Elsevier Inc.
the afferent side. In each case, the EVC theory ascribes to

dACC a role in the former, but not the latter.

Optimization, Motivation, and the Cost of Cognitive

Control

Early research on control focused on regulative and monitoring

mechanisms, but growing attention is being paid to the problem

of control-signal specification. Work in this area has been driven

increasingly by ideas from research on reward-based decision

making and reinforcement learning. One emerging trend has

involved reframing control-signal specification as an optimiza-

tion problem, shaped by learning or planning mechanisms that

serve to maximize long-term expected reward (Bogacz et al.,

2006; Dayan, 2012; Hazy et al., 2007; O’Reilly and Frank, 2006;

Todd et al., 2008; Yu et al., 2009). Under this view, cognitive con-

trol can be defined as the set of mechanisms responsible for

configuring behavior in order to maximize the attainment of

reward. This definition accords well with the definition of control

in other fields, most notably control theory in engineering. From

this perspective, cognitive control can be viewed not only as

adaptive, but also as motivated.

An emphasis on motivation also aligns with the ubiquitous

observation that the exertion of cognitive control carries an

inherent subjective cost. From the earliest definitions, controlled

processing was described as effortful, and like physical effort,

mental effort is assumed tocarry intrinsicdisutility. That is, people

spontaneously seek to minimize it. Recent empirical work bears

out this assumption, linking effort specifically to the exertion of

cognitive control (Kool andBotvinick, 2012; Kool et al., 2010). Hu-

man decision makers show a bias against tasks demanding top-

downcontrol, andwithin certain bounds theywill delay task goals

or even forego reward in order to avoid such tasks (Dixon and

Christoff, 2012; Kool et al., 2010; Westbrook et al., 2013). These

effects imply an intrinsic ‘‘cost of control,’’ which scales with the

intensity of the control required to perform the task (Dixon and

Christoff, 2012; Kool et al., 2010). These ideas, combined with

the idea that control signals are specified based on the reward

potential of the task they support, suggest that the allocation of

control is driven by a cost-benefit analysis, weighing potential

payoffs against attendant costs, including those inherently asso-

ciated with the exertion of control itself.

The Neural Substrates of Cognitive Control

Previous work has established links between components of the

Stroopmodel and specific neural structures involved in cognitive

control. In particular, lateral prefrontal cortex (lPFC) together with

associated structures (e.g., basal ganglia andbrainstemdopami-

nergic nuclei) have been proposed to implement the regulative

component of the model (Braver and Cohen, 2000; Cohen and

Servan-Schreiber, 1992; Frank et al., 2001; Miller and Cohen,

2001), while dACC has been proposed to implement the moni-

toring component (Botvinick, 2007; Botvinick et al., 2001; Botvi-

nick et al., 2004). According to this mapping, the key step of

control-signal specification arises in the communication from

dACC to lPFC (Botvinick et al., 2001; Kerns et al., 2004). That

is, the model assigns to the dACC responsibility for monitoring

and specification, evaluating current demands for control and

using the relevant information to decide how to allocate control.

The specified control signals are then implemented by lPFC and

associated structures, which are assumed to be responsible for
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the regulative function of control—that is, actually effecting the

changes in processing required to perform the task. The EVC

model elaborates this proposal, structuring it in a normative

description of how both the identity and the intensity of

control signals are determined and placing new emphasis on

optimization (i.e., reward maximization) in understanding the

relationship, within dACC, betweenmonitoring and specification.

Control-Signal Specification Based on the Expected
Value of Control
Theoperation of cognitive control, aswehave characterized it, in-

volves deciding what control signal should be selected (i.e., its

identity) andhowvigorously this control signal shouldbeengaged

(i.e., its intensity) (Figure2B).Wepropose that thebrainmakes this

two-part decision in a rational or normative manner to maximize

expected future reward. To make this idea precise, we will ex-

press the choice ofwhat and howmuch to control in formal terms,

borrowing approaches from reinforcement learning and optimal

control theory to analogous problems of motor action selection.

We begin by defining a control signal to be an array variable

with two components: identity (e.g., ‘‘respond to color’’ or

‘‘respond to word’’) and intensity. Determining the expected

value of each control signal requires integration over two sources

of value-related information. First, it must consider the overall

payoff that can be expected from engaging a given control

signal, taking into account both positive and negative outcomes

that could result from performing the corresponding task. Sec-

ond, as discussed above, it must take into account the fact

that there is an intrinsic cost to engaging control itself, which

scales with the intensity of the signal required. Taken together,

these two components determine what we will refer to as the ex-

pected value of control (EVC), which can be formalized as follows

(see also Figures 2B, 4A, and 4B):

EVCðsignal; stateÞ=
"X

i

Prðoutcomeijsignal; stateÞ

, ValueðoutcomeiÞ
#
� CostðsignalÞ

(Equation 1)

As indicated by the arguments on the left-hand side, the EVC is

a function of two variables, signal and state. Signal refers to a

specific control signal (e.g., designating a particular task repre-

sentation and its intensity). State refers to the current situation,

spanning both environmental conditions and internal factors

(e.g., motivational state, task difficulty, etc.). On the right-hand

side, outcomes refer to subsequent states that result from the

application of a particular control signal in the context of the cur-

rent state, each with a particular probability (Pr); for example, the

occurrence of a correct response or of an error. Since outcomes

are themselves states, the terms ‘‘state’’ and ‘‘outcome’’ in

Equation 1 can also be thought of as ‘‘current state’’ and ‘‘future

state.’’ The Value of an outcome is defined recursively as follows:

ValueðoutcomeÞ= ImmediateRewardðoutcomeÞ
+gmaxi½EVCðsignali;outcomeÞ�

(Equation 2)
where ImmediateReward can be either positive or negative (for

example, in the case of an error, monetary loss or pain; the

term ‘‘reward’’ is borrowed from reinforcement learning models

but can be understood more colloquially as ‘‘worth’’). Note that

the maximization of EVC in the final term is over all feasible con-

trol signals (indexed by i), with outcome serving in place of the

current state. The estimation of outcome value thus folds in the

EVC of control signals implemented in future states. The param-

eter g is a discount factor, between zero and one, controlling how

much the current decision weighs future rewards relative tomore

immediate ones. The significance of this final term is that it links

outcome value (and thus the EVC) not only to immediate reward,

but also to predictable future events and their associated

reward.

The final term in Equation 1 captures the intrinsic cost of

control, which is presumed to be a monotonic function of con-

trol-signal intensity (although for a richer model, see Kool and

Botvinick, 2012). In sum, Equation 1 says that the EVC of any

candidate control signal is the sum of its anticipated payoffs

(weighted by their respective probabilities) minus the inherent

cost of the signal (a function of its intensity).

Control-signal specification involves the identification of a

combination of signal identity and intensity (or set of these, as

noted above) that will yield the greatest value. We propose that

the control system accomplishes this by comparing the EVC

across a set of candidate control signals, and seeking the opti-

mum:

signal�)maxi½EVCðsignali; stateÞ� (Equation 3)

Once it has been specified, the optimal control signal (signal*)

is implemented and maintained by mechanisms responsible for

the regulative component of control, which guide information

processing in the service of task performance. This continues

until a change in the current state—detected through moni-

toring—indicates that the previously specified control signal is

no longer optimal (either in terms of identity or intensity), and a

new signal* should be specified.

An EVC Model of Dorsal Anterior Cingulate Function
Drawing upon the theoretical constructs laid out above, we sug-

gest that dACC function can be understood in terms of moni-

toring and control-signal specification. Specifically, we propose

that the dACC monitors control-relevant information, using this

to estimate the EVC of candidate control signals, selecting an

optimum from among these, and outputting the result to other

structures that are directly responsible for the regulative function

of control (such as lPFC). Critically, we propose that the dACC’s

output serves to specify both the identity and intensity dimen-

sions of the optimal control signal. Thus, the dACC influences

both the specific content of control (e.g., what tasks should be

performed or parameters should be adjusted) and also, by way

of intensity, the balance between controlled and automatic pro-

cessing, taking into account the inherent cost of a control signal

of the specified intensity.

The EVC model shares elements both with our own and other

theories concerning the mechanisms underlying cognitive con-

trol and action selection, as we shall emphasize. The value of
Neuron 79, July 24, 2013 ª2013 Elsevier Inc. 221
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the EVC model lies not in the novelty of its individual ingredients,

but in its explicit formalization of these ingredients in a way that

allows for their integration within a single coherent framework.

The theory helps synthesize central concepts in theories of

cognitive control—the distinction between controlled and auto-

matic processing, and the relationship between the monitoring

and specification functions of control, the relevance of both iden-

tity and intensity in control signal specification, and the costs of

control—into an overarching account that is mechanistically

explicit, computationally coherent, and that does justice to the

wide array of findings that have been reported concerning

dACC function.

Monitoring Functions of the dACC: Supporting the
Calculation of EVC
Estimates of EVC require two key pieces of information: the cur-

rent state (i.e., information concerning current task demands,

processing capacity, and motivational state) and the value of

potential outcomes that may occur given each candidate control

signal, taking into account their likelihood of occurrence and

anticipated worth.

The EVC model proposes that dACC monitors such present-

state and outcome-value information, garnered from other re-

gions (such as orbitofrontal, ventromedial prefrontal, and insular

cortex), as a basis for computing and maximizing the EVC. A

range of empirical evidence is consistent with the idea that

dACC is responsive to each of these two types of information.

dACC and the Monitoring of State Information

Computing the intensity and the identity of the optimal control

signal requires different types of information about present state.

For example, the presence of conflict may indicate the need to

increase the intensity of the control signal, whereas an unex-

pected environmental cue may indicate the need to change the

identity of the control signal (e.g., to perform a more rewarding

task). The evidence strongly suggests that dACC is sensitive to

state information that serves both of these needs.

State information relevant to control signal intensity: conflict

monitoring. As noted above, conflict can provide important

information about the demands of the current task and the inten-

sity of control that should be allocated. Increasing control inten-

sity will generally improve performance. However, specifying the

optimal control-signal must also take into account the cost of

control, which also increases with intensity (Equation 1). That

is, control signals should be just strong enough to accomplish

task objectives but no stronger (Figure 4). Given this, it is critical

to determine the control demands of a task. Explicit outcomes

provide one source of such information (e.g., feedback concern-

ing performance); however, such information is not always avail-

able. Conflicts that arise during processing represent a source of

internally available information useful for this purpose. As illus-

trated by the Stroop model, conflict during processing can pro-

vide an indication of the need to allocate additional control, much

as an overt error would do. In fact, conflict can sometimes serve

as an earlier, and potentially more sensitive, signal of the need for

control than explicit error feedback (Yeung et al., 2004).

Both empirical and computational modeling work strongly

support the role of dACC in conflict monitoring. The first imaging

study of the Stroop task (Pardo et al., 1990) reported dACC
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activity in response to conflict stimuli. A number of subsequent

studies provided additional evidence that dACC activity is spe-

cifically associated with the presence of conflict in processing

(Carter et al., 1998, 2000) and that it can be dissociated from

the regulative functions of control (Botvinick et al., 1999; Egner

and Hirsch, 2005a, 2005b; Kerns, 2006; Kerns et al., 2004;

MacDonald et al., 2000; however, see Figure 3 and the section

‘‘Interactions with lPFC and Subcortical Structures Involved in

Regulation’’). These studies focused on tasks that involved con-

flict among competing responses, using classic paradigms such

as the Stroop task, Simon task, and Eriksen flanker task (see

meta-analyses in Laird et al., 2005; Nee et al., 2007; Ridderinkhof

et al., 2004). However, subsequent studies have extended the

association between dACC and conflict processing to a much

wider range of tasks, showing that it is also sensitive to con-

flicts that arise in perceptual discriminations (Ho et al., 2009;

Krebs et al., 2012; Woolgar et al., 2011), language processing

(Barch et al., 2000; Snyder et al., 2011), value-based decisions

(Blair et al., 2006; Marsh et al., 2007; Pochon et al., 2008), moral

judgments (Greene et al., 2004), social judgment (Cunningham

et al., 2004), memory retrieval (Guerin and Miller, 2011), and

strategy selection (Venkatraman et al., 2009).

The majority of evidence linking dACC to conflict monitoring

has come from human neuroimaging studies. However, two

recent studies have used direct neuronal recordings to test this

relationship. In one study (Sheth et al., 2012), patients awaiting

cingulotomy performed a Stroop-like interference task. fMRI

identified conflict-related activity in a dACC region targeted for

surgical resection. During the surgery itself, single-unit recording

within the same region revealed firing-rate responses to conflict,

providing unusually direct evidence for dACC involvement in

conflict monitoring (Figure 3).

Another study provided evidence for neuronal responses to

conflict in the macaque (Amemori and Graybiel, 2012). In this

experiment, monkeys made choices between receiving a small

reward or a larger one paired with an aversive stimulus (air puff

to the eye). Neuronal responses in pregenual ACC—a region

potentially homologous to conflict-associated regions of human

dACC (see Figure 1E; Hutchison et al., 2012)—tracked the sub-

jective similarity of a given set of option values (and thus decision

conflict). Variation in decision conflict accounted for variance in

the firing rate of neurons in this area independently of reward,

air puff magnitude, overall expected utility, or response time.

Computational modeling work has provided convergent sup-

port for the idea that dACC activity is responsive to the degree

of conflict elicited by the task (Botvinick et al., 2001). Models

of conflict monitoring have accounted not only for task condi-

tions that elicit dACC activity, but also the dynamics of that

activity (Cockburn and Frank, 2011; Yeung et al., 2004).

The idea that conflict monitoring provides an internal index of

task difficulty is also consistent with the ubiquitous observation

that dACC activity is closely associated with the cognitive

demands of a task (Botvinick, 2007; Duncan, 2010; Nachev

et al., 2007; Paus et al., 1998; Venkatraman and Huettel, 2012).

This includes demands that are increased by responses that

are sequential or depend on complex rule structure versus sim-

ple and isolated ones (e.g., Kouneiher et al., 2009; Shima and

Tanji, 1998); novel versus familiar or habitual responses (e.g.,



Figure 3. The Relationship of Conflict Adaptation Effects in Human dACC to Control Monitoring versus Specification
(A) Measuring from single units in human dACC, Sheth et al. (2012) found a parametric effect of current trial conflict (example neuron shown), an effect that has
been widely reported in neuroimaging studies (see ‘‘dACC and the Monitoring of State Information’’ section). Left and right sides of this figure plot firing rate
changes aligned to stimulus and response onsets, respectively. Note that this effect alone can be indicative of either monitoring of demands and/or specification
of different intensities of control accordingly.
(B) Left: this group also found evidence of conflict adaptation (Gratton et al., 1992), with high-conflict (incongruent) trials requiring greater control, and therefore
exhibiting longer RTs, when following a low-conflict (congruent) trial (cI) than when following another incongruent trial (iI). Right: this behavioral effect was
abolished after these individuals underwent cingulotomy.
(C) Previous fMRI studies have tied sequential adjustment effects to a particular pattern of responses in dACC: greater activity on cI than iI trials. This pattern has
been observed in numerous experiments using different tasks andmanipulations, including Botvinick et al., 1999 (left), Carter et al., 2000 (center), and Kerns et al.,
2004 (right). It has been interpreted as reflecting amonitoring function, since greater dACC activity was observed under conditions of high conflict but low control.
(D) Strikingly, single unit recording data from Sheth et al. (2012) show the opposite pattern, with higher firing rates on iI than cI trials, a pattern consistent with
control-signal specification. The presence of both monitoring and specification signals in dACC is consistent with the EVC theory. Determining why one function
manifests in fMRI and the other in single-unit recording presents an important challenge for further research, and the EVC model may be of use in guiding such
investigations.
(A), (B), and (D) reprinted by permission from Macmillan Publishers Ltd: Nature, Sheth et al. (2012), copyright (2012). (C) (Left) reprinted by permission from
Macmillan Publishers Ltd:Nature, Botvinick et al. (1999), copyright (1999); (center) fromCarter et al. (2000), copyright (2000) National Academy of Sciences, USA;
(right) from Kerns et al. (2004), with permission from AAAS.
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Procyk et al., 2000); larger versus smaller option sets (e.g., Barch

et al., 2000; Marsh et al., 2007; Snyder et al., 2011); the accumu-

lation of evidence over the course of making a decision (e.g.,

Gluth et al., 2012; Landmann et al., 2007); or the requirement

for internally generated responses versus externally cued/
guided ones (e.g., Fleming et al., 2012; Shima and Tanji, 1998;

Walton et al., 2004).

Despite the wealth of evidence that dACC is responsive

to conflicts in processing, this idea has not been without con-

troversy (Cole et al., 2009; Ito et al., 2003; Mansouri et al.,
Neuron 79, July 24, 2013 ª2013 Elsevier Inc. 223
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2009; Nachev, 2011; Nakamura et al., 2005). Early debates

focused on whether dACC is responsive to conflict versus

explicit failures in performance (i.e., errors) and/or negative feed-

back. There now seems to be general consensus that, consistent

with the EVCmodel, dACC is responsive to both (e.g., Nee et al.,

2011). However, recently it has been suggested that dACC activ-

ity reflects ‘‘time-on-task’’ irrespective of conflict, errors, or even

error likelihood (Grinband et al., 2011b) and that it is more closely

tied to task maintenance or attention that endures over the

course of even simple tasks. However, the theoretical analyses

that have led to this conclusion have been challenged (Brown,

2011; Yeung et al., 2011; see also Grinband et al., 2011a).

Furthermore, we note that their interpretation of dACC function,

more closely aligned with the regulative component of control, is

difficult to square with much of the literature we will review in the

remaining sections. For instance, it fails to account for dACC

responses to the value of outcomes or for conditions in which

dACC activity is uncorrelated, or even negatively correlated

with, RT (e.g., Cavanagh et al., 2011; Gluth et al., 2012; Guerin

and Miller, 2011; Sheth et al., 2012; van Maanen et al., 2011).

In contrast, while the EVC model predicts that dACC responses

reflecting its monitoring function may correlate with RT, it also

predicts conditions under which this should not necessarily

occur, as discussed further below.

State Information Relevant to Control Signal Identity. So far,

our consideration has focused on state information relevant to

deciding how much control to allocate; that is, the specification

of control signal intensity. However, knowledge concerning the

current situation or state is equally important for deciding which

task(s) to pursue, that is, the specification of control signal iden-

tity. The dACC sits in an ideal location for gathering such state

information (Morecraft et al., 2012; Shackman et al., 2011;

Weston, 2012; Figure 1C). Inputs from cortical areas associated

with high-level perception give it immediate access to informa-

tion about external task cues, and inputs from structures such

as the amygdala and insula give it access to information about

motivational states that may favor particular lines of behavior.

Although the impact of such inputs on dACC activity has

been relatively little studied, the information they carry would

be of obvious relevance to selection among control signal iden-

tities. Consistent with this, dACC appears to differentiate repre-

sentations of signal identity, including representations of

response rules (Dixon and Christoff, 2012; Durstewitz et al.,

2010; Johnston et al., 2007; Matsuzaka et al., 2012; Womels-

dorf et al., 2010), task sets (Forstmann et al., 2006; Haynes

et al., 2007), and specific actions (Hampton and O’Doherty,

2007; Isomura et al., 2003; for reviews see Morecraft and Tanji,

2009; Rushworth et al., 2004; Sakai, 2008). Taken together,

such findings support the idea that the dACC registers state in-

formation directly relevant to the specification of control-signal

identity.

dACC Monitoring of Outcome Information. Estimation of the

EVC requires not only information about the present state, but

also information about potential outcomes and, critically, the

positive or negative value associated with those outcomes. In or-

der to be sensitive to such information, the dACC should register

both the anticipated value of outcomes ahead of their occur-

rence and their value when they actually occur.
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Negative-Valued Outcomes. Numerous neuroimaging findings

have demonstrated dACC responses to negative outcomes.

These range from the most concrete, such as pain (reviewed in

Shackman et al., 2011), errors in task performance (e.g., Brown

and Braver, 2005; Holroyd and Coles, 2002), monetary loss (Blair

et al., 2006; Kahnt et al., 2009; Liu et al., 2011), and the presen-

tation of threatening stimuli (e.g., Mobbs et al., 2010), to more

abstract outcomes such as social rejection (Eisenberger and Lie-

berman, 2004; Kawamoto et al., 2012), a loss by a favored sports

team (Cikara et al., 2011), pain experienced by another individual

(Botvinick et al., 2005; Lamm et al., 2011), and even the hypo-

thetical death of strangers (Shenhav and Greene, 2010). These

findings are paralleled by direct neuronal recordings in non-

human species, which have demonstrated responses in dACC

to errors (Amiez et al., 2005; Ito et al., 2003; Niki and Watanabe,

1979; Totah et al., 2009), losses or less-than-anticipated gains

(Ito et al., 2003; Kennerley et al., 2011), and cues predictive of

aversive outcomes (Gabriel and Orona, 1982; Amemori and

Graybiel, 2012).

Conflict, in addition to its role in signaling task difficulty, may

itself constitute an aversive outcome (Botvinick, 2007; Fritz and

Dreisbach, 2013; Hirsh et al., 2012). Amemori and Graybiel

(2012) provided evidence in support of this assertion, showing

that patterns of activity for ACC neurons that coded positively

for conflict functionally clustered with those that coded for

magnitude of punishment.

Positive-Valued Outcomes. There is also a growing accumula-

tion of findings indicating that dACC is responsive to positive

outcomes. Direct neuronal recordings have consistently identi-

fied responses to rewarding events, often among units interdig-

itated with those responsive to negative outcomes. This includes

neurons responsive to the magnitude and probability of reward,

including to hypothetical reward (for a recent review see Wallis

and Kennerley, 2011). Human neuroimaging studies have also

provided evidence for reward-related signals in dACC (Knutson

et al., 2005; Kouneiher et al., 2009; meta-analysis in Bartra et al.,

2013).

Control Relevance of Outcome Value. A simple interpretation

of the findings above might be that dACC responds to the value

of any event. However, the EVC model makes a more specific

claim: dACC should be selectively responsive to the value of

events that are relevant to the allocation of control. To engage

dACC, a valenced event need not necessarily pertain to the

current task, but it should pertain to some potential control-

demanding task that could currently be executed. Although

this prediction has not been well-tested in the literature, there

is evidence that dACC is more sensitive to outcomes when

they are tied to actions, or stimuli that demand an action, than

when they are only tied to nonimperative stimuli (for reviews

see Rangel and Hare, 2010; Rushworth et al., 2011; Wallis and

Kennerley, 2011). Furthermore, there is evidence that dACC

responses to outcomes diminish when there is a decline in

demand for control. For example, fMRI studies have shown

that dACC engagement falls progressively with extended prac-

tice on a cognitive task (Chein and Schneider, 2005, 2012). Simi-

larly, feedback-related dACC activity is observed in tasks that

require subjects to search for the correct response from a set

of options, but is diminished when they are allowed to repeat
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the correct response a number of times before outcome con-

tingencies change (reviewed in Khamassi et al., 2010). Land-

mann and colleagues (2007) found the same pattern of dACC

activity in a task for which participants had to progressively

discover the correct sequence of button presses, also through

trial and error (see also Procyk et al., 2000). They showed that

dACC activity was greater during search than after discovery

of the correct sequence, and that during search it correlated

with the amount of information carried by feedback at each

step of the current sequence (e.g., whether positive feedback

was being given for a correct response that had just been

discovered, which elicited strong dACC activity, or to a part of

the sequence that had already been solved, which elicited

weaker dACC activity).

Note that, insofar as the dACC takes account of control-rele-

vant outcome information in estimating EVC, it should therefore

predict subsequent shifts in control based on such information.

There is robust evidence for such a link, as will be discussed

below.

Reward-Prediction Error Signals. As articulated in Equation 2,

the value term in the EVC expression refers not only to the imme-

diate reward associated with an outcome, but also to the

expected future reward. This is important, because it allows

control-signal specification to be based on delayed outcomes.

Readers familiar with reinforcement learning will recognize this

particular formulation of value from that context (Sutton and

Barto, 1998). In reinforcement learning models, estimates of

state value are typically shaped not directly by raw representa-

tions of reward, but instead by reward-prediction errors (PE), sig-

nals indicating the extent to which experienced outcomes are

better or worse than expected.

A number of findings indicate the occurrence of PE signals in

the dACC. The earliest evidence came from EEG recordings

demonstrating an event related potential (ERP) with a frontome-

dial source that occurs in response to negative outcomes. This

was dubbed the feedback-related negativity (FRN; Miltner

et al., 1997), referring to its occurrence in response to negative

feedback such as the indication of an error in task performance

or a monetary loss following a gamble (Gehring and Willoughby,

2002). Critically, the FRN has been found to be sensitive to

the expectations established by local context (Holroyd et al.,

2004a; Jessup et al., 2010; Nieuwenhuis et al., 2005b). For

example, in a gambling task, when the range of outcomes is

from negative to neutral, the FRN is observed for losses but

not neutral outcomes. However, when outcomes range from

neutral to positive, the FRN is now observed for neutral out-

comes, but not gains. Thus, expectations established by context

dictate whether the FRN is elicited by a neutral outcome (see

also Jessup et al., 2010). This provides strong evidence that

the FRN reflects a PE, rather than a direct representation of

absolute reward. Although the source of the FRN has not been

definitively localized to dACC, neuroimaging studies have

demonstrated activity in dACC under conditions that mimic

those in which the FRN is observed (Holroyd et al., 2004b).

The FRN is closely related to another commonly observed

ERP, the error related negativity (ERN). This occurs following

errors in speeded response trials even when explicit feedback

is not provided. There is direct evidence that the ERN has its
source in the dACC: Simultaneous recording of EEG and fMRI

has shown that the magnitude of the ERN correlates with the

BOLD signal from dACC on a trial-by-trial basis (Debener et al.,

2005). As suggested earlier, direct neuronal recordings from

regions of dACC have also revealed error-related responses in

humans (Wang et al., 2005), monkeys (Emeric et al., 2008; Ito

et al., 2003), and rats (Narayanan and Laubach, 2008) (however,

see Cole et al., 2009 for discussion of homology). One influential

interpretation of the ERN is that it reflects negative PEs (associ-

ated with the commission of an error) that are used to drive

learning in the service of improving action selection (Holroyd

and Coles, 2002). The EVC model is consistent with this hypoth-

esis. However, it has been proposed that the ERN can also

reflect post-response conflict, under conditions in which error

information is not immediately available (Yeung et al., 2004). In

this context, the ERN may reflect the role of dACC in conflict

monitoring and control-signal specification, as discussed above.

In addition to these EEG findings, evidence for positive and

negative PEs in dACC has been found with both direct neuronal

recordings (Kennerley et al., 2011; Matsumoto et al., 2007; Qui-

lodran et al., 2008) and fMRI (Amiez et al., 2012; Kahnt et al.,

2011). Interestingly, this has suggested that dACC can also

respond to PEs in an unsigned manner—that is, comparably to

both positive and negative PEs. This has been shown through

direct neuronal recordings (Bryden et al., 2011; Hayden et al.,

2011a) and is consistent with EEG and fMRI studies showing

elevated dACC activity in response to surprising outcomes

(Cavanagh et al., 2012; Landmann et al., 2007; Nee et al.,

2011; Wessel et al., 2012) and, more generally, following unan-

ticipated shifts in task contingencies (Alexander and Brown,

2011; Behrens et al., 2007; Bland and Schaefer, 2011). These

observations have inspired a recent model of dACC function

by Alexander and Brown (2011), which suggests that dACC

stores predicted associations between stimuli and response-

outcome (RO) conjunctions, and signals any violations of these

predicted S-RO relationships. Although this proposal is poten-

tially compatible with the EVC model, the latter makes more

direct contact with data concerning the consequences of sur-

prise signaling, as we discuss further on.

Specification Function of the dACC: Maximizing
the Expected Value of Control
The EVC model proposes that information provided by moni-

toring is used to determine when and how control signals should

be adjusted in order to maximize the opportunity for reward, by

specifying the optimal control-signal identity and intensity. While

the mechanisms implementing specification along each of these

dimensions may be tightly coupled or even the same, different

circumstancesmay rely differentially upon these two dimensions

of specification. For example, switching between two control-

demanding tasks would rely more heavily on selecting signal

identity, while responding to increasing demands of the current

task by augmenting control would rely more heavily on adjust-

ments of intensity (Figure 2B).

The literature provides evidence that dACC is engaged in both

types of specification, thoughmost studies have focused on only

one or the other. Accordingly, most theories have tended to

ascribe to dACC a role in either task selection (identity
Neuron 79, July 24, 2013 ª2013 Elsevier Inc. 225
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specification) or modulation of control (intensity specification).

The EVC model integrates these accounts, proposing that they

refer to different dimensions of the same function. Accordingly,

dACC should be responsive to circumstances that engage either

or both. In the two sections that follow, we review the literature

concerning the association of dACC with each of these two di-

mensions of control specification.

Specification of Control Signal Identity

Among the earliest theories of dACC function were ones that

proposed a role in action selection (Devinsky et al., 1995; Matsu-

moto et al., 2003; Rangel andHare, 2010; Rushworth et al., 2007;

Rushworth et al., 2004). More recent theories have elaborated

this idea to include task selection (Holroyd and Yeung, 2012;

Kouneiher et al., 2009; O’Reilly, 2010). These are commensurate

with the role of dACC in the specification of control signal identity

proposed by the EVCmodel. Some evidence for this comes from

studies showing dACC selectivity for different control signal

identities, including rules and task sets. However, the EVCmodel

also requires that control signals be specified based on their

expected value. This predicts that the dACC should exhibit

responses that are both selective for a particular line of behavior

and sensitive to the value of outcomes associated with that

behavior. This prediction is consistent with the findings of several

recent studies.

For example, when monkeys were required to choose

between targets in a visual saccade task, overlapping popula-

tions of dACC neurons were found to encode the value

and direction of the saccade chosen on a given trial (Cai and

Padoa-Schioppa, 2012; Hayden and Platt, 2010). Kaping and

colleagues (2011) demonstrated similar effects in a task involving

covert shifts of visual attention, rather than explicit eye move-

ments. In their study, a colored fixation cue at the start of each

trial indicated which of two subsequently presented colored

visual stimuli should be attended. The monkeys were then

rewarded if they correctly reported whether the stimulus with

the corresponding color rotated clockwise or counterclockwise.

The amount of reward earned by a correct response was

signaled by the color of the initial fixation cue. As in previous

studies, overlapping neuronal populations in rostral dACC were

found to encode the target of the attentional shifts and the value

of those targets, independently of any overt saccade used to

report movement direction.

These findings are consistent with a role for dACC in speci-

fying control signal identity based on its expected value. How-

ever, an alternative interpretation is possible: they could instead

reflect the state and/or outcome monitoring functions of dACC

without reflecting a role in specification. Weighing against this

more restrictive interpretation is the observation that activity of

dACC neurons in the studies described above typically antici-

pated switches between actions and/or tasks (though see Cai

and Padoa-Schioppa, 2012). Similarly, Womelsdorf and col-

leagues (2010) have shown that local field potentials (LFPs) in

the theta band observed within macaque dACC could discrimi-

nate which of two stimulus-response mapping rules (pro- versus

anti-saccade) would be used prior to appearance of the stim-

ulus. Furthermore, this rule selectivity was absent prior to error

trials, consistent with the hypothesis that activity in dACC was

required to specify the identity of the task-appropriate control
226 Neuron 79, July 24, 2013 ª2013 Elsevier Inc.
signal. Interestingly, when rule-selective activity reemerged prior

to a correct trial following an error, the selectivity was seen earlier

than on correct trials that followed a previous correct one (see

also Johnston et al., 2007). A subsequent study from this group

used a similar task to provide causal support for this control

specification role (Phillips et al., 2011). They found that stimu-

lating dACC during the response preparation period significantly

facilitated antisaccade performance (accelerating responses

without increasing error rate), but had a less consistent influence

on prosaccade performance, a complement to the impairments

(slowing) previously found in human dACC lesion patients per-

forming an antisaccade task (Gaymard et al., 1998).

Additional evidence consistent with identity specification

comes from one of the most comprehensive analyses to date

of human patients with focal brain lesions (Gläscher et al.,

2012). This study combined data from four different set-shifting

tasks into a single ‘‘cognitive control factor’’ and found that the

poorest performance along this factor was associated with

lesions in rostral dACC. These findings are consistent with a

causal role for dACC in specifying control identities. It is also

consistent with its role in specifying the intensity of those control

signals.

Specification of Control Signal Intensity

Motivation. A role in specifying control intensity is consistent

with the earliest observations regarding dACC function, which

ascribed to it a function in ‘‘motivation,’’ driven in part by the

observation that medial frontal damage can lead to gross deficits

in motivated behavior (e.g., abulia; see Holroyd and Yeung,

2012). More recent proposals have suggested that dACC moti-

vates or ‘energizes’ action or task engagement based on current

incentives (Holroyd and Yeung, 2012; Kouneiher et al., 2009;

Stuss and Alexander, 2007). In support of this, circumscribed

lesions that encompass dACC produce longer overall reaction

times (e.g., Alexander et al., 2007; Fellows and Farah, 2005),

and higher false alarm rates (e.g., Løvstad et al., 2012; Tsuchida

and Fellows, 2009). These are consistent with a role for dACC in

specifying control intensity.

Adaptive Adjustments in Control Intensity. Beyond this broad

relationship to motivation, the EVC model makes the more spe-

cific proposal that the dACC is responsible for adjusting the

intensity of control adaptively based on task demands. That is,

not only must the control system determine what task is best

to perform, but also the amount of control that must be allocated

to that task so as to optimize EVC. This follows from the assump-

tion that control is costly, as discussed earlier (see Figure 4).

There is longstanding evidence for adaptive adjustments in con-

trol in the behavioral literature, for example changes in the

speed-accuracy tradeoff observed following errors in simple

decision tasks (see Danielmeier and Ullsperger, 2011). Gratton

et al. (1992) suggested that such adaptive adjustments extend

to the allocation of attention, showing that the response to an

incongruent stimulus is faster when it follows another incon-

gruent stimulus than when it follows a congruent one. This was

interpreted as evidence of an enhancement of attention to the

task-relevant dimension in response to the interference pro-

duced by a prior incongruent one.

In computational work, Botvinick et al. (2001) demonstrated

that the behavioral effects described above could be explained



Figure 4. The Influence of Incentives and
Task Difficulty on Control Allocation and
dACC Activity
The EVC model predicts shifts in control intensity
in response to changes in task incentives (A) and in
task difficulty (B). In each case, control intensity is
specified based on a maximization of the EVC
(blue curves). As indicated in Equations 1 and 2,
the EVC depends, in turn, on both the expected
payoffs and costs for candidate control signals
(see also Figure 2B). Payoffs (green curves) can
vary with signal intensity due to resulting changes
in task performance. For example, a stronger
control signal might yield more accurate perfor-
mance, and therefore greater payoffs. However,
the inherent cost of control (red curves) also rises
with control signal intensity.
(A) An increase in task incentives affects the payoff
curve. Here, we consider a laboratory scenario in
which monetary reward for each correct response
shifts from a lower amount (dashed green curve) to
a higher amount (solid). When integrated with cost
information (red curve), this results in a shift in the
EVC function (dashed blue curve to solid blue
curve), and a resulting shift in the signal intensity
that maximizes the EVC (dashed to solid black
arrow).
(B) An increase in task difficulty reduces the
expected payoff for any given control signal
intensity (shift from dashed to solid green curve). In

the present scenario this is due to a reduction in the probability, for any given signal intensity, of a correct response. The shift in the payoff curve, when integrated
with cost (red curve), again yields a change in the EVC function (dashed to solid blue) and a shift in the EVC-maximizing control signal intensity (dashed to solid
black arrow).
(C and D) Kouneiher and colleagues (2009) found that dACC activity tracked both of these EVC-relevant variables. They had participants perform a letter
discrimination task and showed that dACC activity increased with the overall incentive level for the current block (C), whether or not the higher incentive was
available for the current trial (Standard trials did not offer additional incentives for correct performance but Bonus trials did). They also found that dACC was
modulated by the difficulty of a given trial (D); Default trials always had the same response mapping, obviating any additional letter discrimination, Task trials
required using a letter discrimination rule based on the letter color, and this color-rule mapping was either stable throughout the session (Baseline/Contextual) or
varied by block (Episodic). See the ‘‘dACC and the Cost of Cognitive Control’’ and ‘‘The Cascade of Control‘‘ sections for additional details. (C) and (D) reprinted
by permission from Macmillan Publishers Ltd: Nature Neuroscience, Kouneiher et al. (2009), copyright (2009).
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by a mechanism that monitors conflict elicited by lapses in per-

formance and/or interference and uses this to adjust the intensity

of the task-relevant control signals in order to maintain task per-

formance. However, the EVCmodel makes a stronger claim: that

such adjustments serve to optimize the allocation of control. A

modest, but growing corpus of work has begun to address this

stronger claim and its relation to dACC function.

Optimization of Control Intensity. The most extensive analyses

of control optimization have focused on simple two-alternative

choice tasks, such as those used to demonstrate adaptive

changes in the speed-accuracy tradeoff mentioned above.

Such tasks have been modeled extensively using simple accu-

mulator models, in which the intensity of the control signal influ-

ences two parameters of the decision process: the decision

threshold and initial bias. Together, these determine the

speed-accuracy tradeoff. Botvinick et al. (2001) showed that

monitoring response conflict in such models and using this to

adjust the intensity of the control signal accurately accounted

for adaptive changes in the speed-accuracy tradeoff observed

in behavior. In that model, the intensity of the control signal

determined the decision threshold. More recently, formal ana-

lyses by Bogacz et al. (2006) have shown that there is an optimal

threshold (i.e., speed-accuracy tradeoff) that maximizes reward

rate for a given set of task conditions, and similarly for initial bias.

Furthermore, behavioral studies show that participants adapt
their behavior to changes in task conditions in ways that often

approximate adoption of the optimal threshold and bias (re-

viewed in Cohen and Holmes, 2013). While most work address-

ing optimality of control has focused on adjustments of threshold

and/or bias in simple two-alternative forced-choice tasks, at

least one theoretical effort has addressed the optimal allocation

of attention in a conflict task. Yu et al. (2009) determined the

optimal strength with which attention should be allocated to

the target stimulus in the Erisken flanker task. They showed

that this could be approximated by within-trial adjustments in

the strength of attention based on conflict monitoring, and that

this in turn accurately reproduced the dynamics of attentional

allocation observed in the task.

Role of dACC in Adaptive Adjustments of Control Intensity.

The findings of these theoretical and behavioral studies are

consistent with the idea that the intensity of the control signal

is adjusted to maximize EVC. The EVC model proposes that

dACC mediates these adjustments, by monitoring for the condi-

tions that require them, and specifying the necessary adjust-

ments for others systems responsible for implementing them.

This makes two predictions: first, that dACC should be respon-

sive to conditions indicating the need to adjust control intensity;

and, second, that it should be associated with the engagement

of neural systems responsible for implementing these adjust-

ments (i.e., the regulative function of control).
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There is extensive evidence in support of the first prediction,

indicating that dACC is responsive to conditions requiring ad-

justments of threshold and/or response bias, such as increases

in time pressure and changes in prior probabilities (Bogacz et al.,

2010; Forstmann et al., 2008, 2010; Ivanoff et al., 2008; Mulder

et al., 2012; van Maanen et al., 2011); as well as conditions

requiring changes in the degree of attention, such as the cases

of processing conflict described earlier.

There is also evidence in support of the second prediction.

Several studies have shown that dACC interacts directly with

structures proposed to implement changes of threshold, such

as the subthalamic nucleus (Aron et al., 2007; Aron and Poldrack,

2006; Cavanagh et al., 2011; Jahfari et al., 2011; Wiecki and

Frank, 2013), as well as those thought to influence response

biases, such as dorsal striatum (Bogacz et al., 2010; Jahfari

et al., 2011; Wiecki and Frank, 2013). There is also evidence

that dACC is associated with adjustments in the strength of

attention in conflict tasks. Several human neuroimaging studies

have demonstrated a direct association between dACC re-

sponses to conflict on one trial, and subsequent increases in

the activity of regions thought to be responsible for regulating

attention and corresponding improvements in performance on

the next trial (e.g., Cavanagh et al., 2009; Kerns, 2006; Kerns

et al., 2004; King et al., 2010; MacDonald et al., 2000). In a recent

study, Danielmeier and colleagues (2011) used a variant of the

Simon task to study the relationship of dACC responses to con-

flict, performance, and activity in stimulus-specific regions of

visual cortex. As had previously been found, dACC activity asso-

ciatedwith errors predicted response slowing on the subsequent

trial. Critically, however, it also predicted the degree to which

activity increased in task-relevant and decreased in task-irrele-

vant processing regions, consistent with an increase in the con-

trol signal following errors. EEG studies have provided similar

evidence, linking indicators of dACC responses (such as the

ERN) to sequential adjustments in behavior following conflict

and/or errors (Crottaz-Herbette and Menon, 2006; Forster

et al., 2011). Such effects can also be found within a given trial.

For example, Sohn et al. (2007) found that when participants

were explicitly informed about the amount of conflict likely to

arise on a given trial of a problem-solving task, anticipatory

dACC activity predicted how efficiently conflict was resolved

on that trial (see also Aarts et al., 2008). Finally, studies in

nonhuman species have also provided evidence that responses

in dACC predict changes in the amount of attention subse-

quently paid to a given stimulus or task dimension (Bryden

et al., 2011; Narayanan and Laubach, 2008; Totah et al., 2009).

These studies provide convergent evidence for a correlation of

responses in dACC with subsequent changes in performance

and task-specific neural activity indicative of adjustments in

the intensity of control. Sheth et al. (2012) provided evidence

that dACC contributes causally to these adjustments. Patients

about to undergo cingulotomy were studied using both fMRI

and intracranial recordings while performing a conflict task. Pre-

operatively, participants exhibited the standard conflict adapta-

tion effects in both behavior (e.g., faster RTs on high-conflict

trials that followed a high-conflict versus a low-conflict trial;

Figure 3B, left) and neuronal activity (differential dACC firing

rates for this same contrast; though see Figures 3C and 3D for
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discussion of a surprising divergence from previous neuroi-

maging findings). Importantly, following cingulotomy this adap-

tation effect was no longer apparent, consistent with a causal

role for this region in adaptively influencing control intensities

(Figure 3B, right).

Attention for Learning. Another context in which the dACC

appears to play a role in specifying control intensity relates to

its responses to surprising events. Research demonstrating

unsigned PE signals in dACC has highlighted a potential connec-

tion with the Pearce-Hall model of learning, in which surprising

outcomes trigger an intensification of attention that in turn facil-

itates learning. To test this, Bryden and colleagues (2011) had

rats poke their nose into a port to receive an odor instructing

them where to obtain a reward, and found that rats were faster

to poke their nose into this port on trials that followed a surprising

outcome (increases or decreases from expected reward). Criti-

cally, they found that responses in dACC to surprise on the pre-

ceding trial predicted the degree towhich the animal hastened or

slowed this orienting response on the trial that followed. Also

consistent with an ‘‘attention for learning’’ account, Behrens

and colleagues (2007) showed that dACC responses to changes

in task contingencies—specifically, to their volatility, which

reflects the expected frequency of surprise—were associated

with more robust learning. Such findings, and the attention-for-

learning account overall, are consistent with the EVC model of

dACC, insofar as the signals driving top-down attention and/or

increases in learning rates may be considered as control signals.

Default Override

Thus far, we have treated the specification of identity and inten-

sity separately. In reality, however, the identity and intensity of

the control signal must be jointly specified (see Figure 2). For

example, to perform color naming in the Stroop task, the control

system must specify both the identity of the control signal (the

color naming task), as well as the intensity needed to overcome

any conflict from the word. Such circumstances are representa-

tive of a broader class of conditions often described as default

override. In general, this refers to situations in which the task to

be performed is less automatic than the default behavior in

that circumstance; that is, the behavior that would normally

occur in absence of control and is the source of conflict. Under

such circumstances, adequate control is needed to override

the default response, and execute the specified task (see, e.g.,

Shah and Oppenheimer, 2008).

Some of the earliest neuroimaging studies of cognitive control

established a role for dACC in overriding default behavior (e.g.,

Paus et al., 1993). The dACC’s involvement in overriding defaults

has been seen not only when the participant is explicitly in-

structed to perform the nondefault behavior, but also when they

voluntarily make a choice that runs counter to current task- or

context-defined defaults, including choices to go against gain

versus loss frames (De Martino et al., 2006), against the status

quo (Fleming et al., 2010), against Pavlovian response-outcome

associations (Cavanagh et al., 2013), or against a group decision

(Tomlin et al., 2013). Three additional circumstances that involve

default override, and that have begun to attract considerable

attention, are exploration, foraging, and intertemporal choice.

Exploration. This refers to behavior that favors information

gathering with the prospect that this will yield greater future
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reward, over the pursuit of behavior with known and usuallymore

immediate reward (i.e., exploitation). People generally exhibit a

strong bias toward the pursuit of more immediate reward, so

exploitation can be considered the default. Choosing to explore

therefore requires overriding this default, and thus allocating

control. Accordingly, the EVC model predicts that exploration

should engage dACC (for related accounts, see Aston-Jones

and Cohen, 2005; Khamassi et al., 2010). This prediction was

borne out in a study carried out by Daw et al. (2006). Participants

chose among four options providing probabilistic reward that

varied gradually over time. Initially they sampled the different op-

tions (exploration) to determine which currently provided the

greatest mean payoff, after which they repeatedly selected

that one (exploitation) until it began to decline in value, or they

suspected others may have increased in value. At that point,

they chose to sample the other options again (exploration). De-

cisions to explore were associated with increased dACC activity.

This association between dACC and exploratory behavior has

been replicated in humans (Amiez et al., 2012; Cavanagh et al.,

2012) and also demonstrated in monkeys (Procyk et al., 2000;

Quilodran et al., 2008) and rodents (Karlsson et al., 2012).

Foraging. Like exploration, foraging involves searching for an

alternative source of reward. However, in this case it typically

involves an initial cost and is also usually driven by knowledge

of the reward structure of the environment (whereas exploration

is directed at acquiring such knowledge). Nevertheless, like

exploration, foraging involves overriding current pursuit of

more immediate reward to pursue an alternative that promises

greater future reward, and thus relies on the allocation of control.

Accordingly, the EVC model predicts that foraging should also

engage the dACC. This prediction is supported by a number

of studies. For instance, Kolling et al. (2012) had participants

make a series of choices between pairs of options that yielded

probabilistic payoffs with known means. However, before each

choice, participants were given the opportunity to switch the

pair of options in front of them to a different pair that could yield

higher average reward, but at a cost for the switch. This was

designed to be analogous to situations in which an animal’s

decision to forage carries a near term cost but a potential long-

term benefit. Activity in dACC was found to closely track the

extent to which the mean value of the alternative options was

greater than that of the current options, and to correlate with

the decision to switch option sets in such cases (see also Boor-

man et al., 2013; Rushworth et al., 2012;Wunderlich et al., 2009).

This is consistent with the EVCmodel, which predicts that dACC

should track the value of control-demanding behavior and its se-

lection over the current default. Animal studies have provided

convergent findings. For example, Hayden et al. (2011b) found

that macaque dACC neurons also track the value of foraging,

and Li et al. (2012) found that dACC-lesioned rats forage for

food substantially less than nonlesioned animals, while

continuing to engage normally in other habitual or automatic

behavior.

Intertemporal Choice. Finally, it is worth noting that, insofar as

both exploration and foraging involve the comparative evaluation

of longer term versus immediate payoffs, they both involve

intertemporal choice. One universally observed finding in the

literature on intertemporal choice is that people (like all other
species) exhibit a strong immediacy bias. That is, they favor re-

wards that are immediate, even when later ones are worth

considerably more. In this respect, behavior associated with

immediate reward can be considered the default behavior in

general, and thus should require control to be overcome. Consis-

tent with this view, neuroimaging studies of intertemporal

choice, beyond those focused on exploration or foraging, sug-

gest that patient behavior (i.e., choices for longer term over

immediate reward) rely on neural mechanisms associated with

cognitive control (Figner et al., 2010; McClure et al., 2007;

McClure et al., 2004), including the dACC. In these cases, as in

general, the EVC model proposes that the role of dACC is to

determine the EVC of the control-demanding behavior, and

specify the control signal needed to pursue it. This assumes

that it has access to information about the value of the options

in contention that is represented in other structures, such as

ventral regions of mPFC (Floresco et al., 2008; Haber and Knut-

son, 2010; Prévost et al., 2010; Rangel and Hare, 2010; Rush-

worth et al., 2011).

dACC and the Cost of Cognitive Control
The expected value of a control-demanding behavior depends

not only on the reward it promises, but also on the expenditures

needed to procure that reward; that is, it depends on the cost of

control (Cost(signal) in Equation 1). As reviewed earlier, behav-

ioral evidence supports the idea that the exertion of control is

associated with subjective disutility manifest as the avoidance

of control-demanding tasks (Kool and Botvinick, 2012; Kool

et al., 2010). The EVC model proposes that the dACC registers

the costs of control in a manner that is proportional to the inten-

sity of control and that it specifies control signals in a way that is

sensitive to such costs. This proposal generates several predic-

tions concerning dACC function and its relation to behavior.

Costs of Control and Control Intensity

First, and most simply, the dACC should be sensitive to

demands for control and/or to the intensity of the current control

signal. As reviewed in the preceding sections, there is abundant

evidence in support of this prediction. Second, the dACC should

encode the exertion of control as costly. Evidence consistent

with this idea has come from several recent studies. For

example, Botvinick and colleagues (2009a) found that, during

performance of a cognitively demanding task, a greater

dACC response predicted decreased subsequent responses in

nucleus accumbens to monetary reward, interpreted as ‘‘pay-

ment’’ for the task. This effect is consistent with cognitive effort

discounting; that is, a reduction in the subjective value attached

to a reward based on cognitive costs borne to attain it. Other

studies have shown that dACC responses to such costs predict

subsequent decisions about control. In one, Magno and col-

leagues (2006) presented participants with a series of attention-

ally demanding search arrays and, for each array, gave them the

choice to identify the presence or absence of a target or to indi-

cate that they would like to forgo the search on that trial. They

found that dACC activity was highest on trials the participant

actively chose to forgo rather than engage for potential reward

(or loss). Similarly, McGuire and Botvinick (2010) found that the

degree to which performance of a cognitively demanding task

engaged dACC predicted the extent to which that same task
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would later be avoided. Collectively, these findings are consis-

tent not only with dACC encoding of control costs, but also

with a role for dACC in cost-sensitive control signal specification.

Figure 4 illustrates how the optimal control signal intensity pre-

dicted by the EVC model is determined by the relationships of

control costs and payoffs to control signal intensity. These rela-

tionships determine the function relating EVC to intensity, and

the optimum occurs at a point where the slope of that function

is zero. Under plausible assumptions about the shape of the

payoff and cost functions (see Kool and Botvinick, 2012), the

optimal control signal intensity will rise with the magnitude of

task incentives (see Figures 4A and 4B). This predicts that

dACC activity should grow both with task difficulty and with

the stakes associated with task performance. This dual effect

was reported by Kouneiher and colleagues (2009), who had par-

ticipants perform a series of trials in which a colored letter cued

them to perform a letter discrimination task or to simply press a

single key unrelated to letter identity (‘‘default’’ trials). Each trial

was also cued with whether or not a correct response would

carry a monetary bonus, and the value of these bonuses differed

by trial block. The authors found that dACC activity increased

with the difficulty of the trial as well as with the average stakes

for the trial block (regardless of whether a bonus was available

on a particular trial; see Figures 4C and 4D).

Control Signal Intensity and Willingness to Pay

The prediction of a monotonic relationship between control-

signal intensity and the cost of control means that the output

of the dACC can be interpreted in either of two ways: as directly

reflecting the specified intensity of the current control signal, or

as indirectly reflecting the cost that has been licensed for this

control signal. The latter follows from the assumption of the

EVC model that the dACC specifies the optimal control signal;

accordingly, its intensity should indicate the amount of control

that was determined to be ‘‘worth’’ the expected payoff. This

relationship between intensity and cost can be understood by

analogy to the economic concept known as willingness-to-pay,

which refers to the amount worth trading for a good. Recent

work has characterized orbitofrontal cortex as carrying a willing-

ness-to-pay signal during economic choice (Levy and Glimcher,

2012; Padoa-Schioppa, 2011; Plassmann et al., 2007). The EVC

theory suggests that the output of dACC can be thought of as a

willingness-to-pay signal in the currency of cognitive control.

Thinking of dACC output in these terms provides another

way of understanding impairments of cognition and behavior

following medial frontal damage. As discussed above, this is

commonly associated with acquired apathy or an inability/lack

of energy to perform willed actions, as well as subtler deficits

such as response slowing, perseverative errors, and failures to

speed or slow current trial performance based on information

from the previous trial (e.g., Stuss, 2011; Stuss and Alexander,

2007). All of these may reflect a failure to specify the required

‘‘willingness-to-pay’’ for initiating effortful control, particularly

when the incentives for doing so are minimal.

Other Forms of Costs

In considering the costs of executing controlled behavior, we

have focused on the cost of control itself, but this reflects only

one possible cost that must be factored into computing EVC.

Other costs—such as any physical effort involved—are equally
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relevant. The EVC model predicts that dACC should be respon-

sive to such costs as well. There is an abundance of evidence

that dACC is responsive to the physical effort required by an

action and revises its estimate of expected reward downward

in order to reflect the cost of exerting this effort (e.g., Croxson

et al., 2009; Hillman and Bilkey, 2010, 2012; Walton et al.,

2007). Neurons in dACC have been found to track the effort

demands of a prospective action, whether this involves lever

presses (Kennerley et al., 2011; Kennerley et al., 2009) or phys-

ical obstacles that need to be overcome along a path (Cowen

et al., 2012; Hillman and Bilkey, 2010). The same has been found

in human neuroimaging studies when varying, for instance, how

many visuomotor targets would need to be detected on a task

(Croxson et al., 2009) or how much force needs to be exerted

on a handgrip (Prévost et al., 2010). As with cognitive demands,

the dACC also signals the degree to which these motor require-

ments reduce the value of an action. That is, dACC activity sig-

nals the overall value of potential actions.

The Cascade of Control: dACC in Relation to Other
Control-Related Structures
The proposal that dACC integrates information relevant to eval-

uating EVC places it at the heart of a broader network of sys-

tems that support control-demanding behaviors. Specifically,

it places it at the juncture between structures involved in valua-

tion from which it receives input, and structures responsible for

regulation to which it provides its output. Importantly, the EVC

model makes a clear distinction between these functions and

those of monitoring and control signal specification that the

dACC is proposed to subserve. Nevertheless, the full span of

control functions is likely to reflect a continuous cascade of pro-

cessing, from valuation to monitoring and estimation of EVC, to

control signal specification and finally regulation. Thus, in prac-

tice it may be difficult to dissociate these individual functions. It

is not surprising, therefore, that structures commonly associ-

ated with valuation and regulation have been found to coacti-

vate and/or share structural and functional connectivity with

dACC (Figure 1; Beckmann et al., 2009; Haber and Knutson,

2010; Morecraft et al., 2012; Power and Petersen, 2013; Seeley

et al., 2007; Touroutoglou et al., 2012; Vincent et al., 2008; Yeo

et al., 2011). In fact, finding evidence for dissociations of func-

tion among these structures has been something of a challenge

for this area of research. In this section, we review the literature

addressing such efforts, and what it has to say about the divi-

sion of labor between dACC and other structures that have

been implicated in valuation and the implementation of cognitive

control.

Interactions with Insula, Ventral PFC, Striatal, and

Midbrain Structures Involved in Valuation

The EVC model makes a fundamental distinction between the

primary representation of value—whether of internal signals or

external ones—and the monitoring of these for use in estimating

the EVC of candidate control signals. The model proposes that

dACC subserves the latter, while it assumes that the primary rep-

resentation of value is subserved by other structures that project

to dACC, including other cortical areas (e.g., insula, amygdala,

and ventral/medial regions of PFC) and subcortical ones (e.g.,

basal ganglia and dopaminergic midbrain structures).
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Insula and Detection of Affective Salience. One of the regions

most commonly coactivated with dACC is the anterior insula,

and these two regions share robust reciprocal connections.

While some have suggested that the insula might take part in a

regulative role in maintaining task sets (Dosenbach et al.,

2006), others have proposed that the interaction between insula

and dACC may reflect a sequential process of registering moti-

vationally salient stimuli that engender adaptive adjustments of

processing. On this account, the insula supports representations

of affective/motivational significance. These are then conveyed

to the dACC in order to appropriately modify processing to influ-

ence internal autonomic states as well as changes in overt

behavior, including emotional expressions (Bush et al., 2000;

Craig, 2009; Medford and Critchley, 2010; Shackman et al.,

2011; Singer et al., 2009; Ullsperger et al., 2010). The dACC

can also register the extent to which these affective/autonomic

states interfere with ongoing task performance and therefore

require additional cognitive control. This division of labor is sup-

ported by differences in the patterns of connectivity of insula and

dACC with other regions, and evidence that the insula is more

consistently tied to the conscious experience of emotion while

the dACC is more closely tied to overt responses to emotion-

eliciting stimuli. These observations have led Craig (2002,

2009) to refer to the insula and dACC as ‘‘limbic sensory’’ and

‘‘limbic motor’’ cortices, respectively.

This division of labor between primary valuation and adaptive

responding is generally consistent with the EVC model. How-

ever, the model distinguishes between the function of dACC in

specifying adaptations, and their implementation by other struc-

tures that actually regulate processing. The model also asserts

that the dACC’s involvement should be specific to adaptations

that involve controlled but not automatic responses. This in-

cludes situations in which automatic responses to emotionally

salient events must be overridden or overcome.

Ventral PFC, Amygdala, Striatum, Midbrain, and Valuation. In

addition to inputs from the insula, the dACC also receives exten-

sive inputs from OFC/vmPFC, the amygdala, and the dopami-

nergic midbrain. Along with the striatum, these are all areas

that have been consistently implicated in the representation of

value and/or prediction error signals. Thus, inputs from these

areas are consistent with the state and outcome monitoring

functions of dACC proposed by the EVC model. Furthermore,

the dACC projects to both ventral and dorsomedial regions of

the striatum (Choi et al., 2012; Haber and Knutson, 2010). As

noted earlier, fMRI evidence implicates the dACC in modulating

reward signals in ventral striatum, effectively deducting the cost

of cognitive control.

Interactions with lPFC and Subcortical Structures

Involved in Regulation

The EVC model also distinguishes sharply between control-

signal specification and direct regulation of information pro-

cessing. Specifically, the model proposes that the dACC is

responsible for the decision process—evaluating EVC and using

this to specify the optimal control signal—while the specified

control signal itself is implemented in other structures that are

responsible for the top-down regulation of processing. At the

broadest level, a distinction can be made between two kinds

of regulative functions: One type that identifies and supports
the execution of specific tasks, and is subserved primarily by

cortical structures together with parts of the basal ganglia; and

another that sets processing parameters more broadly by global

modulation of processing and is subserved primarily by subcor-

tical structures.

lPFC and task-specific regulation. Perhaps the structure

most commonly associated with cognitive control is lPFC. A

widely held view of lPFC function is that it supports the active

maintenance of task representations that bias processing in

pathways of posterior cortex responsible for executing specific

control-demanding tasks, consistent with a regulative function

in control (see Figure 2A; Miller and Cohen, 2001). Thus, accord-

ing to the EVC model, lPFC can be seen as implementing the

control signal to support a given task, as specified by dACC.

There is a growing consensus about this distribution of functions

between dACC and lPFC (Banich, 2009; Cavanagh et al., 2009;

Holroyd and Yeung, 2012; Johnston et al., 2007; Kerns et al.,

2004; Kouneiher et al., 2009; MacDonald et al., 2000; O’Reilly,

2010; Ridderinkhof et al., 2007; Rothé et al., 2011; Venkatraman

and Huettel, 2012).

Given the close relationship between specification and regu-

lation, it is perhaps not surprising that lPFC is another region

frequently coactivated with dACC in control-demanding tasks

(Duncan, 2010; Niendam et al., 2012). For example, sustained

activity during task performance has been observed in both

dACC and lPFC. While this may reflect the role of lPFC in active

maintenance (i.e., regulation), for dACC it could reflect its role in

continuous online evaluation of interference or changes in payoff

and corresponding adjustments in control signal intensity that

drive the level of activity in lPFC. Conversely, lPFC has often

been found to track response conflict (Laird et al., 2005; Nee

et al., 2007), though this would be expected if it is responsible

for augmenting control in response to the dACC’s detection of

conflict and re-specification of control signal intensity. While

these interpretations of the findings are consistent with the divi-

sion of labor proposed by the EVC model, some investigators

have taken a different view.

One widely considered account suggests that the dACC itself

plays a regulative function in cognitive control, in addition to or

instead of the roles in monitoring and specification proposed

by the EVC model (e.g., Danielmeier et al., 2011; Dosenbach

et al., 2006; Posner et al., 1988; Power and Petersen, 2013;

Weissman et al., 2005). For example, Dosenbach and colleagues

(2008; 2006) have argued that the dACC and anterior insula

comprise a core network for task-set maintenance, responsible

for sustaining attention to a task over extended periods (see also

Holroyd and Yeung, 2012). In support of this, they analyzed

imaging data from a large number of participants performing a

diverse array of cognitive tasks. They showed that dACC and

anterior insula are the only two regions that exhibit not only

phasic responses to salient events, but also tonically increased

responses throughout task performance consistent with a main-

tenance (i.e., regulative) function (but see Sridharan et al., 2008).

Further evidence that dACC may support a regulative function

comes from studies such as that of Danielmeier and colleagues

(2011), in which dACC is shown to predict changes in attention in

the absence of lPFC involvement (although, again, this could

also be viewed as reflecting specification rather than regulation).
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The tight coupling between specification and regulation may

make it difficult to produce qualitative dissociations in responses

between dACC and lPFC. This may be especially so for findings

from methods with limited temporal resolution, such as fMRI.

One approach to this challenge is to look for quantitative biases

in effects, usingmethodswith better temporal resolution. A study

by Johnston and colleagues (2007) provided such evidence from

single-unit recordings in monkeys. The animals were trained to

fixate a cue for over a second prior to performing a pro- or anti-

saccade to a stimulus. Neurons were found in both dACC and

lPFC that, during this prestimulus preparatory period, exhibited

selectivity for the task rule that would be implemented on the

upcoming trial (as in Womelsdorf et al., 2010). Importantly, they

found that dACC task selectivity was greater and onset earlier

than lPFC immediately following a task switch, but that this rela-

tionship reversed (i.e., dACC task selectivity gradually weakened

and began later than lPFC) with more trials using the same rule

associations. This pattern would seem to be consistent with a

role for dACC in control signal specification, and for lPFC inmain-

tenance of the control signal in the service of regulation.

Another recent study has provided even finer-grained evi-

dence for a dissociation between the specification and regula-

tion functions of control. Measuring local field potentials (LFPs)

in both the dACC and lPFC of macaques, Rothé and colleagues

(2011) showed that transient increases in the high-gamma LFP

within dACC signaled salient events (errors and first correct

feedback; see also Quilodran et al., 2008), that were followed

shortly by more sustained responses in lPFC. Moreover, while

high-gamma activity was always correlated between the two

regions, the lag in activity between them was only found for

feedback during search periods and not when the animal was

allowed to repeat the behavior for the same reward. This is

consistent with the engagement of dACC in response to events

calling for a re-evaluation and specification of the control signal,

and the engagement of lPFC for the representation and mainte-

nance of that signal once specified, in the service of regulating

controlled behavior.

Despite the challenges involved, some human imaging studies

have also produced evidence for dissociations of responses in

dACC and lPFC. For example, MacDonald and colleagues

(2000) showed that dACC was more sensitive to response con-

flict and less so to the implementation of task set instructions,

whereas the reverse was true for lPFC. Furthermore, while

many studies have found that activity in dACC is consistently

associated with the occurrence of an event that triggers adaptive

responding, activity in lPFC appears to be more closely associ-

ated with the adaptations that occur after such events (e.g.,

Egner and Hirsch, 2005a, 2005b; Kerns, 2006; Kerns et al.,

2004). Additional evidence for this dissociation comes from the

study by Kouneiher and colleagues (2009), in which participants

switched between two task rules. While the authors found that

regions of dACC tracked the incentives for control, they found

that lPFC discriminated the task required for the current trial.

Furthermore, functional connectivity analyses showed that the

connectivity between dACC and lPFC varied with incentive level.

The findings above are largely consistent with the division of

labor between dACC and lPFC proposed by the EVC model,

but they are not definitive. One alternative is that topographic
232 Neuron 79, July 24, 2013 ª2013 Elsevier Inc.
dissociations exist within dACC itself, such that some subre-

gions support specification and others regulation. Consistent

with this possibility, findings both from humans (Orr and Weiss-

man, 2009) and macaques (Kaping et al., 2011) have suggested

that patterns of sustained activity can be localized to separate

regions within dACC than transient responses signaling salient

events. In both studies, a more anterior region of dACC was

associated with transient responses (consistent with monitoring

and specification), whereas a more posterior region was associ-

ated with sustained responses (consistent with regulation). How-

ever, as Kaping and colleagues point out for their findings, and

as noted above, sustained dACC responses could alterna-

tively represent continuous online evaluation of interference or

changes in payoff and/or corresponding adjustments required

in the intensity of the control signal, consistent with monitoring

and/or specification rather than regulation. Clearly, this is an

area that is in need of continued, detailed study.

Basal Ganglia and Task-Specific Regulation. There is long-

standing evidence that much of prefrontal cortex (including

lPFC) is reciprocally connected to the basal ganglia (and thal-

amus) in a series of topographically organized loops and that

these structures are commonly engaged, together with prefron-

tal cortex, in cognitive control tasks (see Figure 1D; Choi et al.,

2012; Scimeca and Badre, 2012). Frank and colleagues (Frank

et al., 2001; O’Reilly and Frank, 2006; Wiecki and Frank, 2013)

have proposed that these corticostriatal loops may serve as a

gating mechanism, regulating action implementation as well as

updating of control representations in prefrontal cortex (for

related models, also see Bogacz et al., 2010; O’Reilly et al.,

2002; Reynolds and O’Reilly, 2009; Rougier et al., 2005). A

similar gating mechanism could play an intermediary role

between the dACC’s selection of candidate control signals and

their implementation by lPFC (e.g., through dorsal striatum).

Though speculative, such a mechanismmight account for cases

in which the response latency between the two regions is longer

than expected for a direct corticocortical projection (e.g., over

100 ms in the study by Rothé and colleagues).

Subcortical Structures and Global Regulation. Thus far, our

discussion of the relationship between specification and regula-

tion has focused on circumstances in which control is respon-

sible for selecting and supporting the execution of a particular

task, but there are also instances in which control must

specify other parameters of processing—for example, response

threshold in simple decision tasks or the bias to explore rather

exploit. It has been proposed that these forms of regulation are

implemented by subcortical structures, through more global

modulatory mechanisms. Such global influences are presumed

to interact with the task-specific ones discussed above, to jointly

select a particular processing pathway (lPFC), and the parame-

ters that will apply to it (subcortical mechanisms). For the latter,

the EVC model proposes a similar division of labor as for the

former, with dACC responsible for monitoring and specification,

and the relevant subcortical structures responsible for regula-

tion. The literature is largely consistent with this prediction.

For example, Frank and colleagues (Cavanagh et al., 2011;

Frank, 2006;Wiecki and Frank, 2013) have proposed that projec-

tions from dACC to STN specify the threshold for evidence accu-

mulation before initiating a motor or cognitive response and that
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efferents from STN implement this threshold. To test this, Cava-

nagh and colleagues (2011) used scalp and intracortical EEG to

measure dACC and STN activity in patients with Parkinson’s dis-

ease while undergoing deep brain stimulation (DBS) to the STN.

On each trial, patients chose between pairs of stimuli that they

had learned to associate with either similar or different rewards

(high- and low-conflict trials, respectively). Activity in both

dACC and STN tracked the level of decision conflict for a given

choice. Furthermore, greater dACC activity associated with

high conflict trials predicted slower more accurate responses

(reflecting a higher threshold). In contrast, when DBS was

applied to STN (interfering with its function), responses on these

trials became more impulsive and error prone (reflecting lower

decision thresholds), and the relationship between dACC activity

and slower responding was lost. Taken together, these findings

provide support for the role of dACC in specifying adaptive

adjustments in threshold that are then implemented by STN.

Similarly, Aston-Jones and Cohen (2005) have proposed that

dACC is involved in monitoring behavioral outcomes and

deciding when it is appropriate to explore versus exploit, and

that this is conveyed to LC which implements the decision by

means of its broad modulatory projections to the thalamus and

neocortex. This division of labor is consistent with strong

anatomic connections from dACC to LC and is also supported

by imaging studies implicating dACC in the decision to explore,

as well as recent behavioral and psychophysiological studies

suggesting a role for LC in mediating these decisions by regu-

lating the balance between exploration and exploitation (Gilzen-

rat et al., 2010; Jepma and Nieuwenhuis, 2011; Murphy et al.,

2011; Nieuwenhuis et al., 2005a).

The projections of dACC to subcortical modulatory structures,

together with its efferents to other cortical areas, puts the dACC

in a position to specify control signals of a variety of types, and

over a variety of domains of processing, from signals required

to regulate specific tasks (e.g., in lPFC) to broader, modulatory

ones needed to influence a wide range of tasks (e.g., in STN

and LC). This centralized responsibility for specifying such

a wide range of control signals may also explain why dACC

appears to be so consistently associated with cognitive control,

andmore so than other candidate structures like lPFC (e.g., Dan-

ielmeier et al., 2011; Dosenbach et al., 2006). Insofar as most of

those other structures are responsible for regulation, they are

dedicated either to the support of specific tasks or to specific

modulatory forms of control. Accordingly, they will be engaged

only when the demands for control involve that particular regu-

lative function. In contrast, as the central hub in control specifi-

cation, the dACC would be expected to be engaged in any

circumstance demanding the specification of a control signal.

Control Hierarchies

Several recent studies have proposed that separate regions

within the lPFC might encode information pertinent to different

levels of task structure, with higher-level processes engaging

more anterior regions (Badre and D’Esposito, 2009; Koechlin

et al., 2003; though see Crittenden and Duncan, 2012; Reynolds

et al., 2012). Similar proposals have been made regarding the

organization of dACC. For example, Kouneiher and colleagues

(2009) showed that regions within dACC and pre-SMA differen-

tially encode task incentives for a block of trials versus individual
trials within a block. Furthermore, the patterns of connectivity

between dACC and lPFC were found to be modulated by moti-

vation type, with anterior regions of dACC and lPFC being

engaged by block-level incentives and more posterior regions

exhibiting a similar pattern for trial-level incentives.

Evidence that the dACC is topographically organized to repre-

sent the motivation for control at different levels of temporal

abstraction is broadly consistent with a proposal by Holroyd

and Yeung (2011, 2012), according to which the dACC is specif-

ically involved in the control of superordinate, temporally

extended, actions. This account is theoretically motivated by hi-

erarchical reinforcement learning (HRL; Botvinick et al., 2009b)

and has found support in the recent finding that prediction error

signals specifically anticipated by HRL are observed within

dACC (Ribas-Fernandes et al., 2011). A related account sug-

gests that representations within dACC may be organized by

the level of abstraction or complexity of a task (Venkatraman

and Huettel, 2012; see Nachev et al., 2008, for an analogous ac-

count). For example, Venkatraman and colleagues (2009)

showed that progressively anterior regions of dACC signaled

increasingly complex task demands, from conflicts between

specific motor actions at the posterior extent to conflicts be-

tween high-level strategies at the anterior extent. This group

has further shown that these regions within dACC show differen-

tial patterns of resting-state functional connectivity with lPFC

regions that Koechlin and colleagues (Koechlin et al., 2003; Kou-

neiher et al., 2009) have shown to be involved in regulative as-

pects of control at similarly increasing levels of temporal

abstractness (Taren et al., 2011; Venkatraman and Huettel,

2012; Venkatraman et al., 2009).

The EVC model does not speak directly to the issue of hierar-

chical organization of control. According to the EVC model, the

dACC should be engaged by control-demanding behaviors

irrespective of their level of abstractness or temporal extent,

whether these involve individual motor actions, more abstract

strategies, or temporally extended tasks. The primary determi-

nant of dACC engagement is whether the behavior involves pro-

cesses that cannot rely fully on prespecified parameters—that is,

that are not automatic. In this respect, the EVC model provides

a role for dACC in a broader range of control-demanding

behaviors than is predicted by theories linking it to more hierar-

chically organized or temporally extended behaviors. Further-

more, in addition to the idea that dACC is involved in specifying

task identity, the EVC model integrates the idea that dACC is

also involved in specifying control intensity, a function not

typically addressed by the theories discussed above.

The findings by Venkatraman et al. (2009) are intriguing in part

because they lend credence to an implicit assumption of the EVC

model: that cognitive control signals are analogous to motor

control signals and therefore undergo a similar process of opti-

mization. Anatomic studies have revealed increasingly motor-

related cytoarchitecture and patterns of connectivity as one tra-

verses dorsomedial PFC from anterior dACC to pre-SMA and

SMA (Figure 1C; Morecraft et al., 2012; Nachev et al., 2008;

Vogt et al., 2003). This suggests that, rather than supporting a

heterogeneity of functions, these regions may serve a similar

set of functions applied over a range of abstractness of control

signals. Accordingly, while we have focused on the evaluation
Neuron 79, July 24, 2013 ª2013 Elsevier Inc. 233
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of cognitive control signals in the EVC model, the same notation

has been applied in different areas of the action selection and

motor control literature. The EVC term itself generalizes what is

referred to as a Q-value in the reinforcement learning literature

(mapping the value of an action in a given state; Balleine et al.,

2008; Sutton and Barto, 1998), and previous work has already

described how the strength (i.e., vigor) of a motor action can

be weighed against the attendant physical effort costs (Niv,

2007; Niv et al., 2006).
Conclusions
The challenge of understanding the role of the dACC in cogni-

tion and behavior is daunting. The experimental evidence accu-

mulated to date contains a remarkable diversity of findings that

have lent themselves to a wide range of interpretations. Here,

we have proposed an account of dACC function that attempts

to accommodate this diversity, while at the same time organizing

it into a coherent picture. In particular, we have proposed that the

dACC leverages a wide range of information in order to estimate

the EVC, a quantity integrating the expected payoffs and costs of

candidate control signals. Based on the results of this computa-

tion, the dACC specifies both the identity and intensity of the

control signals that maximize estimated EVC. These are then im-

plemented by regulatory structures that are responsible for actu-

ally effecting the changes in information processing in the rest of

the brain required to perform the specified task(s).

The EVC model owes many of its components to previous

theoretical proposals, both from our own labs and from others.

By fitting these pieces together, and accommodating some

new ones within a single integrative account, we hope that the

EVC model provides a useful theoretical reference point for

future research. Like any model, it raises new questions along-

side the ones it attempts to answer: how is a set of candidate

control signals initially learned? How might the EVC be feasibly

(and perhaps only approximately) estimated by neural mecha-

nisms? If cognitive control is inherently costly, what exact form

does the cost function assume? And what costs might attach

to the estimation of EVC itself? Finally, how are the component

functions proposed by the model implemented and organized

within the neural architecture of the dACC? Given the fast pace

of research in this area, we feel confident that the next few years

will yield data pertinent to these questions, and to the expected

value of the EVC model itself.
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