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the structure’s performance such as locomotion, vestibular-occular 
refl ex (VOR), eye blink conditioning (Boyden et al., 2004; De Zeeuw 
and Yeo, 2005) and fear conditioning (Scelfo et al., 2008); 3, precise 
cell-type specifi c targeting, permitting interventional analysis of 
the circuit (e.g. Oberdick et al., 1990; Smeyne et al., 1995; Bahn 
et al., 1997; Barski et al., 2000; Aller et al., 2003; Wulff et al., 2007, 
2009; Gajendran et al., 2009; Nakanishi, 2009); 4, techniques that 
enable specifi c cerebellar cell types to be reversibly modulated on 
a fast time scale in vivo (e.g. Tervo and Karpova, 2007; Wulff et al., 
2007; Luo et al., 2008; Arenkiel and Ehlers, 2009). These techniques 
allow dynamic analysis of individual circuit components and how 
they relate to, or produce behaviour. Here we discuss our work on 
how two precise interventions within the circuit, one a permanent 
ablation of inhibitory synaptic input onto Purkinje cells, the other 
a selective fast reversible augmentation of the same inhibitory input 
have given complimentary insights into the function of molecu-
lar layer interneuron (MLI)-Purkinje cell synapses. Both strategies 
involved the same protein, the γ2 subunit of the GABA

A
 receptor 

(Pritchett et al., 1989).

CIRCUITRY OF THE CEREBELLAR CORTEX
Conserved in its essential organization throughout the 550 million 
years of vertebrate evolution, from fi sh through to humans, the 
cerebellar cortex is a folded sheet of microcircuitry reiterated on 
a vast scale (Eccles et al., 1967a; Apps and Garwicz, 2005; Grillner 

INTRODUCTION
“It seems likely that the cerebellum may be the fi rst fragment of the 
higher levels of the nervous system to be understood in principle, 
all the way from peripheral input to peripheral output”. So stated 
John Eccles in a Review Lecture at a Physiological Society meet-
ing in the early 1970s (Eccles, 1973). At that time it was already 
known that the cerebellum was necessary for motor control and 
produces and stores motor memories. The question was how. Eccles 
expected the “cerebellar problem” to soon be solved; after all, it was 
considered the simplest part of the higher brain. During the 1960s, 
Eccles and collaborators had given Cajal’s famous cerebellar circuit 
life and colour. They investigated the transmitters and polarity of 
the synapses, providing a view that has not changed fundamen-
tally to this day and was captured in the slogan: “the cerebellum 
as a neuronal machine” (Figure 1A, Eccles et al., 1967a; Ito, 2006). 
Anticipating “systems biology”, mathematicians such as Albus and 
Marr were captivated, and provided models that continue to guide 
investigations (Marr, 1969; Albus, 1971). Although Eccles’ prophecy 
has not been fulfi lled, reaching an understanding of how neuro-
nal circuits work and what they compute remains a fundamental 
aim of neuroscience, perhaps even the most fundamental. For the 
cerebellum we remain in an excellent position to achieve this aim 
(Hansel et al., 2001; Linden, 2003; Nakanishi, 2009). The prosper-
ous circumstances include: 1, the accurate, almost fully known cir-
cuit map (Grillner et al., 2005); 2, quantifi able behavioural tests for 

Studying cerebellar circuits by remote control of selected 
neuronal types with GABAA receptors

William Wisden1*, Andrew J. Murray 2, Christina McClure2 and Peer Wulff 2*

1 Division of Cell and Molecular Biology, Imperial College London, London, UK
2 Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

Although GABAA receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer 
interneurons (MLIs) has been studied intensely at the cellular level, it has remained unclear 
how this inhibition regulates cerebellum-dependent behaviour. We have implemented two 
complementary approaches to investigate the function of the MLI-Purkinje cell synapse on 
the behavioural level. In the fi rst approach we permanently disrupted inhibitory fast synaptic 
transmission at the synapse by genetically removing the postsynaptic GABAA receptors from 
Purkinje cells (PC-Δγ2 mice). We found that chronic disruption of the MLI-Purkinje cell synapse 
strongly impaired cerebellar learning of the vestibular occular refl ex (VOR), presumably by 
disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline 
VOR refl ex was only mildly affected; indeed PC-Δγ2 mice show no ataxia or gait abnormalities, 
suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks 
or that the system compensates for its loss. To investigate the latter possibility we developed an 
alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to 
rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice). Minutes 
after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor 
abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapses to real time 
motor control. The cell-type selective permanent knockout of synaptic GABAergic input and 
the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing 
both strategies gives a fuller view.

Keywords: γ-aminobutyric acid type A receptor, zolpidem, β-carboline, purkinje cell, memory consolidation

Edited by:

Jochen C. Meier, Max Delbrück Center 
for Molecular Medicine, Germany

Reviewed by:

Thomas Mittmann, Johannes 
Gutenberg University Mainz, Germany
Bernhard Lüscher, Pennsylvania State 
University, USA

*Correspondence:

William Wisden, Division of Cell and 
Molecular Biology, Department of Life 
Sciences, Imperial College London, 
South Kensington, 
London SW7 2AZ, UK. 
e-mail: w.wisden@imperial.ac.uk; 
Peer Wulff, Institute of Medical 
Sciences, University of Aberdeen, 
Foresterhill, Aberdeen AB25 2ZD, UK. 
e-mail: p.wulff@abdn.ac.uk



Frontiers in Molecular Neuroscience www.frontiersin.org December 2009 | Volume 2 | Article 29 | 2

Wisden et al. Manipulating inhibition on Purkinje cells

et al., 2005; Rokni et al., 2008). The same circuitry in different areas 
of the cerebellum probably computes similar operations linked 
to different parts of, for example, the neocortex (Ito, 2008). The 
conservation implies that there has been a selection pressure to 
maintain a core neural computation performed by this confi gu-
ration of circuitry (Devor, 2000; Bell, 2002; Paulin, 2005). This 
core function is still not understood, but it probably measures or 
predicts time intervals and serves motor control, perception and 
cognition (Ohyama et al., 2003; Apps and Garwicz, 2005; De Zeeuw 
and Yeo, 2005; Paulin, 2005; Bastian, 2006; Ito, 2008; Rokni et al., 
2008); in mammals, a notably similar and developmentally related 
cerebellar-like circuit, with analogous cell types, occurs in the dorsal 
cochlear nucleus of the hearing system (Devor, 2000). Specialized 
parts of the cerebellar cortex receive specifi c peripheral inputs and 
participate in defi ned behaviours e.g. the fl occulus contributes to 
vestibular function and compensatory eye movements, and vermal 
lobules V-VI (an area of convergence of acoustic and nociceptive 
stimuli) to fear conditioning (Sacchetti et al., 2002; Gittis and du 
Lac, 2006). Purkinje cells form the only output from the cerebellar 
cortex, projecting to the deep cerebellar (DCN) or vestibular nuclei 
(VN) (Figure 1A). Thus all other cerebellar cortical synapses and 
cell types must exist with the sole aim of modifying, directly or 
indirectly, Purkinje cell output to the DCN and VN (Figure 1A; 

Pugh and Raman, 2009). Why are all these cortical components 
needed? Purkinje cells are spontaneously active at around 50 action 
potentials/second in the absence of synaptic input (Hausser and 
Clark, 1997; Raman and Bean, 1997; Pugh and Raman, 2009), so 
their inhibition or excitation by the surrounding cortical microcir-
cuitry modifi es either their fi ring rate or, for a given frequency, the 
temporal pattern of Purkinje cell action potentials (spikes).

INHIBITION ONTO PURKINJE CELLS
A clear feature from the static description of the circuit in Figure 1A 
is the dominance of inhibition: the majority of the cortex uses 
 inhibitory synapses and GABA

A
 receptors (Eccles, 1973; Brickley 

et al., 1996; Wisden et al., 1996; Vicini et al., 2001; Fritschy and 
Panzanelli, 2006); and the Purkinje cells themselves are inhibi-
tory (GABAergic). In the adult circuit, molecular layer interneu-
rons (MLIs) (stellate and basket cells) control Purkinje cells by 
feed- forward inhibition (Eccles et al., 1967b; Mittmann et al., 
2005; Smith and Otis, 2005; Santamaria et al., 2007; Barmack and 
Yakhnitsa, 2008). Basket cells specialize in innervating the Purkinje 
cell soma and lower one third of the dendritic tree; stellate cells 
innervate the outer two thirds of the Purkinje cell dendritic tree. In 
the developing mouse cerebellum subsets of Purkinje cells receive 
another inhibitory input via Purkinje cell axon collaterals (Watt 
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FIGURE 1 | The cerebellar circuitry and the interventions at the 

MLI-Purkinje cell synapses. Excitatory cells are shown in red, inhibitory cells 
are shown in blue. (A) All cells in the cortex are inhibitory apart from granule 
cells (Gr) which give rise to parallel fi bres (PF), and unipolar brush cells (not 
shown). The cerebellar cortex receives excitatory input via mossy fi bres (MF) 
and climbing fi bres (CF). The only output of the cortex is via Purkinje cells (PC), 
which project to the deep cerebellar nuclei (DCN) and vestibular nuclei (VN). The 

activity of Purkinje cells is under inhibitory control from molecular layer basket 
and stellate cells (BC/SC) through α1βγ2 subunit containing GABAA receptors. 
Basket/stellate cells mutually inhibit each other and are coupled by gap junctions 
(zig-zag line). Diagram adapted from Grillner et al. (2005). (B) and (C) show the 
MLI-Purkinje cell synapse after chronic disruption in PC-Δγ2 mice (B) and during 
rapid enhancement with zolpidem in PC-γ2-swap mice (C). GC, Golgi cell; IO, 
inferior olive; PN/VG, pontine nuclei and vestibular ganglion.



Frontiers in Molecular Neuroscience www.frontiersin.org December 2009 | Volume 2 | Article 29 | 3

Wisden et al. Manipulating inhibition on Purkinje cells

et al., 2009). However, these Purkinje-Purkinje contacts are not 
common in adult mice (Watt et al., 2009). The cortical cerebellar 
circuit has a precise geometry, lattice like, with the Purkinje cell 
dendritic tree fl attened out into a plane; and the innervations onto 
the Purkinje cell dendritic tree arriving orthogonal to this (Eccles 
et al., 1967a; Rokni et al., 2008). Each stellate/basket cell inner-
vates (in the cat) about 20–50 Purkinje cells (Eccles et al.,1967a); 
the stellate/basket cells inhibit each other, and are coupled by gap 
junctions (Mann-Metzer and Yarom 1999; Mittmann et al., 2005). 
Adult Purkinje cells fi re complex spikes in response to glutamater-
gic climbing fi bre activity, and simple spikes (conventional action 
potentials) that refl ect the integration of intrinsic pacemaker activ-
ity with glutamatergic and GABAergic synaptic inputs from parallel 
fi bres and MLIs respectively (Pugh and Raman, 2009).

FEED-FORWARD INHIBITION AND PLASTICITY
Feed-forward inhibition emerges when inhibitory interneurons 
and their target cells receive common excitatory input (Smith 
and Otis, 2005): in the cerebellar cortex, parallel fi bres excite 
Purkinje cells and stellate/basket cells (MLIs), and these in turn 
inhibit Purkinje cells (Figure 1A); this happens fast, about 1 ms 
after Purkinje cells are activated (Mittmann et al., 2005). The main 
role of feed- forward inhibition could be to sharpen up (reduce) the 
time window in which excitatory postsynaptic potentials onto the 
Purkinje cells summate to reach spike threshold, a way of coinci-
dence detection of separate parallel fi bre inputs (Mittmann et al., 
2005). Previous studies on cerebellar learning have emphasized 
the role of glutamatergic excitation for plasticity and learning in 
the cerebellar cortex, e.g. long term potentiation (LTP) and long 
term depression (LTD) at the parallel fi bre to Purkinje cell synapse. 
However, MLIs also display plasticity both at the input and out-
put level (Kano et al., 1992; Jorntell and Ekerot, 2002; Duguid and 
Smart, 2004; Liu and Lachamp, 2006; Mittmann and Hausser, 2007; 
Scelfo et al., 2008; Lachamp et al., 2009). Some forms of plasticity at 
MLI-Purkinje cell synapses are expressed post-synaptically or have 
a postsynaptic component in their mechanism (Kano et al., 1992; 
Duguid and Smart, 2004; Mittmann and Hausser, 2007); others 
are expressed presynaptically (Liu and Lachamp, 2006; Scelfo et al., 
2008; Lachamp et al., 2009). Indeed, the strength of MLI-Purkinje 
cell synapses increases after fear conditioning because of enhanced 
GABA release (Scelfo et al., 2008); this happens in parallel with LTP 
at the parallel fi bre-Purkinje cell synapse (Scelfo et al., 2008). The 
potentiation of the MLI-Purkinje cell synapses may balance the 
LTP of the excitatory terminal in a form of scaling to preserve a 
narrow time window for coincidence detection of parallel fi bre 
inputs. However, for lack of a suitably specifi c method, it has only 
recently become possible to study the function of the stellate/basket 
cell inhibitory network on the whole animal level.

REMOVAL OF SYNAPTIC GABAA RECEPTORS FROM PURKINJE CELLS 
REVEALS THAT FAST FEED-FORWARD INHIBITION OF PURKINJE CELLS 
CONTRIBUTES TO CEREBELLAR LEARNING
To understand how a system works, and in addition to simply 
observing it, one can break, inhibit or activate a component and 
then see how the system behaves, or in the words of a recent column 
in Nature: “most sciences are in the habit of poking that which 
they study to gauge its response” (Nature 458, p1077, 2009 – an 

 editorial). Loss of function gene mutations, whether spontaneous 
or engineered, have given, and continue to give, essential informa-
tion about the roles of a protein in the organism. Thus to investigate 
how MLIs contribute to cerebellum-regulated behaviour, our fi rst 
approach was to disrupt selectively the GABA-gated chloride chan-
nel, the GABA

A
 receptor, responsible for conferring fast inhibition 

onto Purkinje cells. Most GABA
A
 receptors are complexes of α, β 

and γ2 subunits (Schofi eld et al., 1987; Pritchett et al., 1989; Seeburg 
et al., 1990; Luddens and Wisden, 1991; Rudolph and Mohler, 2004; 
Mohler, 2006; Goetz et al., 2007; Olsen and Sieghart, 2009); Purkinje 
cells express α1β2β3γ2-type GABA

A
 receptors (Laurie et al., 1992; 

Persohn et al., 1992; Pirker et al., 2000; Vicini et al., 2001; Fritschy 
et al., 2006). The subunits assemble as a pentamer, with the chloride 
channel at the centre. Although GABA

A
 receptors will form as lower 

conductance (12–15 pS) αβ complexes, the γ2 subunit enables a 
high single channel conductance (25–30 pS) and, importantly, is 
essential to target the receptor complex to the postsynaptic mem-
brane (Lorez et al., 2000; Schweizer et al., 2003; Tretter and Moss, 
2008). Mice with a γ2 gene knockout in every cell die in the fi rst 
postnatal week, underscoring the importance of this subunit for 
neuronal function (Gunther et al., 1995). By crossing the L7Cre 
line, which has Cre recombinase restrictively expressed in Purkinje 
cells (Barski et al., 2000), with a line containing a fl oxed γ2 (gabrg2) 
allele (Wulff et al., 2007), we made mice (PC-Δγ2) where the GABA

A
 

receptor γ2 subunit was selectively removed from Purkinje cells 
(Wulff et al., 2007, 2009). This produced a Purkinje cell-selective 
loss of fast GABA

A
 receptor-mediated inhibitory postsynaptic cur-

rents (IPSCs), and thus the functional removal of stellate and basket 
cells from the cerebellar cortex (Figure 1B). When tested for motor 
performance, PC-Δγ2 mice showed no ataxia or gait abnormali-
ties and no impairment in the rotarod test (Wulff et al., 2007). To 
test for cerebellar function at a higher resolution, we analysed the 
VOR. The VOR is a cerebellum-dependent refl ex needed to stabilize 
the retinal image despite head motion by transforming vestibular 
input (from semicircular canals) into occulomotor output (eye 
muscle contraction), so that the eyes rotate to counteract the head 
movement (Boyden et al., 2004; Broussard and Kassardjian, 2004; 
De Zeeuw and Yeo, 2005).

The criteria which quantitatively assess the VOR are (i) gain, 
defi ned as eye velocity/head velocity (to avoid retinal slip, a gain 
of one is needed) and (ii), phase, defi ned as time shift in degrees 
between stimulus and eye velocity (to avoid retinal slip, 0° phase 
difference is needed) (Boyden et al., 2004). The VOR requires the 
fl occulus, a specialized region of the cerebellar cortex, and the asso-
ciated vestibular nuclei (“VN” in Figure 1; Ito, 2006). In agreement 
with the absence of clear motor impairments (see above), PC-Δγ2 
mice had only mild abnormalities when tested for baseline VOR 
performance, suggesting that some compensation took place in 
the system (Wulff et al., 2007, 2009). However, the fl occulus is also 
needed for VOR adaptation, a form of cerebellar learning (Boyden 
et al., 2004; Broussard and Kassardjian, 2004; De Zeeuw and Yeo, 
2005; Gittis and du Lac, 2006; Ito, 2006). Unlike baseline VOR, 
any adaptations in the VOR need vision (via the accessory visual 
system, which signals errors – retinal slip – via climbing fi bres to 
the Purkinje cells and stellate/basket cells). When a drum (visual 
stimulus), which surrounds the rotating platform with the head-
restrained mouse, rotates in or against the direction of the platform, 
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the baseline VOR will lead to a retinal slip (Boyden et al., 2004). An 
error signal is transmitted by the climbing fi bres (De Zeeuw and Yeo, 
2005). After repeated trials, the VOR system learns to compensate by 
moving the eyes at a different speed. If for example, the surrounding 
drum (visual stimulus) moves repeatedly in the same direction as 
the head, the VOR system needs to slow down or even cancel the 
eye movements that would normally occur in the opposite direc-
tion (this is termed “gain down” adaptation) (Boyden et al., 2004). 
This adaptation can go to extremes: when the drum is rotated with 
higher velocity but in the same direction as the head, the direction 
of the eye movements becomes completely reversed (phase shift by 
180°). When we assessed cerebellar learning (VOR adaptation) in 
PC-Δγ2 mice, we found that PC-Δγ2 mice showed a near normal 
capacity for gain-decrease adaptation when tested right after the 
training session, but a profound lack of memory consolidation 
when measurements were resumed the next day (Wulff et al., 2009). 
The degree of gain reduction (savings) carried forward from the 
previous day’s learning was signifi cantly smaller in PC-Δγ2 mice. 
The same prominent differences were observed in the consolida-
tion of phase changes. Indeed phase adaptation was more broadly 
affected in PC-Δγ2 mice and also included strong defi cits dur-
ing acquisition. Thus, PC-Δγ2 mice were entirely unable to learn 
VOR phase reversal (i.e. to move their eyes in the same direction 
as the head instead of the opposite direction) (Wulff et al., 2009). 
Accordingly, some “resonance” or ongoing activity of feed forward-
inhibition onto Purkinje cells is needed after or during learning 
for the memory to consolidate (see also Attwell et al., 2002; Cooke 
et al., 2004; Kassardjian et al., 2005). As the presynaptic form of 
plasticity at MLI-Purkinje cell synapses, due to enhanced GABA 
release (Scelfo et al., 2008; Lachamp et al., 2009), may be preserved 
in the PC-Δγ2 mice, we cannot rule out that this plasticity contrib-
utes to residual learning by dynamically regulating tonic inhibition. 
Certainly, PC-Δγ2 Purkinje cells receive inhibitory input from both 
metabotropic GABA

B
 receptors (coupled to G proteins and second 

messengers) and extrasynaptic low conductance αβ GABA
A
 recep-

tors (Wulff et al., 2009). These forms of inhibition are probably 
too slow to precisely organize the simple spike intervals needed 
for motor learning.

Since Purkinje cells are the only output of the cerebellar cortex, 
any behavioural defi cits in PC-Δγ2 mice must come from altered 
Purkinje cell activity. Extracellular recordings of Purkinje cell 
activity in the fl occulus of PC-Δγ2 and control mice showed that 
the temporal patterns of Purkinje cell simple spike activity were 
changed in PC-Δγ2 mice. Simple spike activity was much more 
regular in PC-Δγ2 mice (Wulff et al., 2009). This is consistent with 
in vitro data: if Purkinje cells in acute slices are bathed in GABA

A
 

receptor blockers, the cells fi re action potentials with more regular-
ity (Hausser and Clark, 1997); without the inhibition, the regular 
“clockwork” pacemaker dominates. Other parameters of Purkinje 
cell activity such as simple spike fi ring frequency, phase modula-
tion or modulation amplitude during optokinetic stimulation were 
not changed in PC-Δγ2 mice. In summary we found that chronic 
disruption of the MLI-Purkinje cell synapse leads to changes in the 
temporal pattern of Purkinje cell simple spike activity and defi cits in 
the consolidation of motor memories. We hypothesize that the MLIs 
shape temporal activity patterns of Purkinje cells under conditions 
of increased excitatory plasticity (Wulff et al., 2009). Ultimately, 

VOR-based motor memories become stored in the VN (Kassardjian 
et al., 2005; Gittis and du Lac, 2006; Shutoh et al., 2006). The course 
of motor memory transfer from the cerebellar cortex to the VN is 
likely to correspond to the consolidation phase; during this time, 
the Purkinje cells must contribute to plastic changes in the VN by 
precise temporal interaction with the excitatory mossy fi bre input 
onto the same cells (Nelson et al., 2003, 2005; Pugh and Raman, 
2009). So from our studies on the PC-Δγ2 mice, we hypothesized 
that the precise spacing of the Purkinje cell action potentials would 
specify the plastic changes during the transfer from the cortex to the 
VN; in PC-Δγ2 mice the temporal control over Purkinje cell simple 
spike activity is impaired so that memory cannot be consolidated 
(transferred from cortex to the VN). Indeed, many believe that it is 
the fi ne scale patterning of Purkinje cell action potentials, combined 
with pauses in spike trains, that is crucial for information transfer 
to the deep cerebellar and VN (Walter et al., 2006; De Schutter and 
Steuber, 2009). The PC-Δγ2 mice, with their imposed regularity in 
Purkinje cell spike fi ring and failure to consolidate VOR adaptation, 
support this view.

REVERSIBLE APPROACHES
A potential problem in the subtractive analysis of brain function 
is compensation (Lomber, 1999; Wulff and Wisden, 2005; Marder 
and Goaillard, 2006). Quite often genetic knockouts produce clear 
effects (e.g. no consolidation of VOR adaptation in PC-Δγ2 mice, 
changes in regularity of Purkinje cell fi ring; Wulff et al., 2009). 
However, if no effect is seen (e.g. no change in rotarod or baseline 
VOR performance), it is possible that either the component is genu-
inely not important for that particular task or that its loss has been 
compensated for (e.g. Brickley et al., 2001; Figure 2). For example, 
a knockout of the α6δ-GABA

A
 receptor that provides extrasynaptic 

tonic inhibition in cerebellar granule cells leads to transcriptional 
upregulation of three K2P potassium channel genes (TASK-1, 
TASK-3 and THIK-2) encoding leak conductances (Brickley 
et al., 2001; Aller and Wisden, 2008). The raised K+  conductance 
 prevents the cells undergoing any change in excitability (Brickley 
et al., 2001). Two alternative solutions to the same problem of 
maintaining granule cells in a certain range of excitability can be 
provided by either GABA

A
 receptors or K+ leak channels. Parallel 

X

outputoutput

lesion

FIGURE 2 | Compensatory changes in an abstract biological network. 

Blue lines indicate inhibitory interactions, red lines indicate excitatory 
interactions. Shown are an intact network (left side) and the same network 
after ablation of one of its nodes. Lesioning one element causes the rest of 
the system to compensate for the loss. Some interactions are lost (orange 
dashed lines) and some new interactions emerge (green lines), so that the 
fi nal output is unchanged. Adapted from Greenspan (2001).



Frontiers in Molecular Neuroscience www.frontiersin.org December 2009 | Volume 2 | Article 29 | 5

Wisden et al. Manipulating inhibition on Purkinje cells

the entire population of Purkinje cells. Light at 1 mW mm−2 can 
illuminate, through an optical fi bre, a volume of 0.56 mm3 in the 
mouse hypothalamus; this is the volume of a typical hypothalamic 
nucleus (Adamantidis et al., 2007). Thus, with current optical tech-
nology, we would not be able to easily infl uence many Purkinje 
cells in vivo with light. Thus for our particular system we decided 
to build in unique pharmacological sensors into Purkinje cells, 
such that we could add a ligand into the blood (or orally), that 
would then cross the blood brain barrier and infl uence the activ-
ity of only Purkinje cells and no other cell type. Such a method of 
remotely controlling Purkinje cells would have to work reasonably 
fast (effects within minutes of drug administration) and wear off 
within an hour or so.

Various ingenious ligand-receptor systems have been applied to 
selectively inhibit neuronal subtypes in vivo: these include the alla-
tostatin system (Tan et al., 2006, 2008), a 5HT1A-receptor system 
(Tsetsenis et al., 2007), and the ivermectin-gated Cl− channel system 
(Lerchner et al., 2007). Additionally, there is the promising metabo-
tropic clozapine-N-oxide-hM(4)D receptor system, which has so 
far been published only using in vitro applications (Armbruster 
et al., 2007; Nichols and Roth, 2009). All of these systems rely on 
the ectopic expression of receptors or ligand-gated channels in the 
target neurons, and then giving a ligand which can only work on 
cells expressing the receptor (Wulff and Wisden, 2005; Arenkiel and 
Ehlers, 2009). The allatostatin method consists of a Drosophila pep-
tide-7TM metabotropic receptor pair which promotes opening of 
GIRK K+ channels. Given that the peptide does not cross the blood 
brain barrier or easily diffuse within neuronal tissue, it has to be 
pumped in to the relevant brain area at high concentrations. This 
method has been used successfully to study inhibitory V1 neurons 
in mouse spinal cord (Gosgnach et al., 2006; Tan et al., 2006) and 
to selectively silence somatostatin (Sst)-expressing neurons in the 
preBötzinger complex (Tan et al. 2008). By contrast, the 5HT1A 
system has a water soluble agonist (8-OH-DPAT) that can be given 
systemically and this receptor also promotes opening of GIRK K+  
cells, inhibiting neurons reversibly with very good kinetics; on the 
other hand, a 5HT1A receptor knockout mouse background has 
to be used, which could cause potential complications. The “5HT 
method” was applied successfully to inhibit selectively hippocampal 
dentate granule cells and the central nucleus of the amygdala in vivo 
and to probe how this affected anxiety-related behaviours (Tsetsenis 
et al., 2007). Thus, if expressed selectively in Purkinje cells, trigger-
ing either the allatostatin or 5HT1A ligand-receptor systems would 
probably mimic G-protein-coupled GABA

B
 receptor activation. So 

these systems would be potentially useful to explore how metabo-
tropic inhibition onto Purkinje cells infl uences motor memory 
consolidation. At the other end of the timescale, the Caenorhabdtis 
elegans ivermectin-gated Cl− channel system, whose α and β subu-
nits are encoded in the same gene superfamily as the GABA

A
 recep-

tor, effectively silences neurons for periods lasting around 8 h, but 
has slow onset kinetics (Lerchner et al., 2007). So although this 
method will aid certain types of experiment, it would not have been 
appropriate for studying the acute modulation of MLI-Purkinje 
cell synapses. Nevertheless, because the α and β subunits must 
co-express to assemble a functional ivermectin receptor, this does 
give the possibility of applying intersectional genetics to get more 
selective cell-type targeting (Luan and White, 2007).

solutions to neural network operations also appear in other circuits 
(Marder and Goaillard, 2006). How do we decide if there is really 
no defi cit in a knockout or if there has been compensation? For 
example, in our PC-Δγ2 mice, is fast inhibition onto Purkinje cells 
genuinely not used to coordinate in real time e.g. motor perform-
ance, and is only used for memory formation? Or can the system 
develop without this inhibition and generate another solution? 
Indeed, we found that there is an apparent adaptive change in the 
PC-Δγ2 Purkinje cells: the ablation of GABAergic synaptic input 
onto Purkinje cells was accompanied by a reduction in parallel 
fi bre-evoked excitatory responses (Wulff et al., 2009). This could 
arise either from an altered postsynaptic AMPA receptor function 
or from an alteration in presynaptic release.

The earlier during development we interfere with a system and 
the longer this interference persists, the larger the probability that 
the system compensates. Thus we wanted a method for fast (min-
utes in our case) and reversible modulation of the MLI-Purkinje 
cell synapse at any chosen time point. Such an approach would also 
allow us to investigate “when” and for “how long” the synapse is 
required in a particular process. We have temporal control. These 
thoughts are not new: reversibly inactivating whole brain parts by 
cooling (e.g. Eccles applied this for the cerebellum (Eccles et al., 
1975)) or infusion of anesthetics or GABA

A
 receptor agonists and 

glutamate receptor antagonists into the cerebellum has been used 
frequently (Lomber, 1999; Attwell et al., 2002; Nagao and Kitazawa, 
2003; Cooke et al., 2004; Shutoh et al., 2006). Reversible approaches 
revealed a transfer of memory from cortex to deep cerebellar nuclei: 
inactivating the cerebellar cortex with muscimol at different times 
after eyeblink conditioning defi ned a consolidation time window of 
1–2 h post training (Attwell et al., 2002; Cooke et al., 2004). Similar 
experiments with reversible inactivation have been carried out for 
VOR adaptation (Kassardjian et al., 2005).

USING GENETICS TO ENDOW NEURONAL SUBTYPES WITH 
UNIQUE SENSORS
These pharmacological approaches described above reveal what the 
regions in the cerebellar system do and when. Francis Crick encour-
aged molecular biologists to go one step beyond this and develop 
cell type-selective genetic techniques to turn neuronal subtypes 
on or off with fast (milliseconds) and relatively fast (seconds to 
minutes) timescales by “remote control” (Crick, 1999). The fi rst 
methods for activating neurons by remote control used light, either 
to activate a retinal like transduction machinery heterologously 
expressed (Zemelman et al., 2002) or photo-uncageable capsaicin 
that activates a ligand-gated ion channel (TRPV1), again heter-
ologoulsy experessed (Zemelman et al., 2003 – this paper, in its 
title, appears to have the fi rst use of the phrase “remote control” 
in this context). Just a short while after the introduction of these 
clever methods came the introduction of the light-activated chan-
nel rhodopsins (see Boyden et al., 2005 and Han et al., 2009a,b; 
Sohal et al., 2009). The extremely easy applicability of the channel 
rhodopsin system in diverse animals and circuit settings has been 
a phenomenal breakthrough and captured the imagination of the 
neuroscience community (O’Connor et al., 2009; Scanziani and 
Hausser, 2009). Light activation has the advantage of high tem-
poral precision (milliseconds) and the potential to deliver specifi c 
patterns of stimuli. But we were interested in remote control of 
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ALLOSTERIC MODULATION OF GABAA RECEPTORS AS A TOOL 
TO MODULATE SELECTED INHIBITORY SYNAPSES
Given our focus on understaning how GABAergic synapses  regulate 
the cerebellar circuit through precisely timed fast inhibition, the 
obvious and natural strategy for us was to take advantage of drugs 
which allosterically and selectively modulate GABA

A
 receptors 

(Schoch et al., 1985; Luddens and Wisden, 1991; Korpi et al., 
1997; Rudolph and Mohler, 2004; Goetz et al., 2007; Olsen and 
Sieghart, 2009). Many drugs bind at sites on the GABA

A
 receptor 

distinct from the GABA-binding site; these drugs change the shape 
of the receptor oligomer so that the effi cacy of GABA at opening 
the channel is either increased (positive allosteric agonists, e.g., 
diazepam or zolpidem) or decreased (negative allosteric agonists, 
e.g., the β-carboline, DMCM) (Korpi et al., 1997; Mohler, 2006; 
Hanson and Czajkowski, 2008; Olsen and Sieghart, 2009). Allosteric 
modulation of GABA

A
 receptors is a very powerful way to modulate 

neuronal circuit function, as attested by the universal clinical use 
of such drugs as benzodiazpeines, steroids and propofol (Yentis 
et al., 2004). In the extreme case, by prolonging the duration of 
GABA-mediated IPSCs, propofol induces full anesthesisa (loss of 
consciousness); but changing the IPSC kinetics can profoundly alter 
most aspects of brain function. If we could make these drugs work 
at specifi c cell types (or more accurately at specifi c GABAergic syn-
apses), without affecting other cell types, this would be an effective 
way to explore how an isolated neuronal pathway contributes to a 
behaviour. Thus we and our colleagues developed a method for fast 
reversible modulation of selected GABAergic synapses and applied 
it to the specifi c modulation with zolpidem of the stellate/basket 
cell inhibitory inputs to Purkinje cells (Figures 1C and 3; Wulff 
et al., 2007). Before we explain this method, we fi rst describe the 
“benzodiazepine site”.

Depending on the ligand, the “benzodiazepine site” can medi-
ate different allosteric effects. These drugs require αβγ2-type 
receptors (Pritchett et al., 1989; Seeburg et al., 1990); the drug-
binding site resides between the α and γ2 subunits (Sigel, 2002; 
Sancar et al., 2007). It is important to emphasise the modulator 
aspect of the benzodiazepine site. This is not the same site where 
GABA binds the receptor; and furthermore, the benzodiazepines 
and related drugs will not alter Cl− gating unless GABA is also 
present as well. So the drugs modulate active GABAergic synapses, 
and also extrasynaptic GABA

A
 receptors (if GABA is also present 

outside the synapse). Benzodiazepine antagonists like fl umazenil 
(Ro 15-1788), which bind at the same site as the agonists, inhibit 
the effects of both agonists (positive allosteric modulators) and 
inverse agonists (negative allosteric modulators); this property, 
for example, makes fl umazenil useful for diagnosing and treating 
benzodiazepine intoxication e.g. for treating prolonged sedation 
with benzodiazepines in the intensive care unit (Korpi et al., 1997; 
Yentis et al., 2004). The amino acids contributing to the bind-
ing sites of the benzodiazepines and similar drugs, found at the 
interface between the α and γ2 subunits, have been studied in 
detail (Wieland et al., 1992; Sigel, 2002; Sancar et al., 2007; Hanson 
and Czajkowski, 2008; Olsen and Sieghart, 2009). The best known 
is histidine at position 101 in the α1, α2, α3 and α5 subunits; 
mutating this histidine to arginine produces αβγ2 GABA

A
 recep-

tors insensitive to most benzodiazepine ligands without changing 
any other property of the receptor (Wieland et al., 1992). Placing 
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Purkinje cell-specific zolpidem/DMCM sensitivity
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FIGURE 3 | The strategy for bi-directional modulation of selected 

GABAergic synapses. (A) shows the wild-type situation with a 
phenylalanine (F) at position 77 in the γ2 subunit of the GABAA receptor. 
Zolpidem/DMCM binding occurs at the interface of the α and the γ2 subunits 
and is widely distributed throughout the brain (indicated in grey in the cartoon 
of a horizontal brain section). In a fi rst step (B) we have changed the 
phenylalanine at position 77 to isoleucine (I) by homologous recombination in 
mouse embryonic stem cells. In these mice zolpidem/DMCM binding is 
abolished. In the last step (C) we have reintroduced the drug-sensitive wild-
type γ2 subunit under the control of the Purkinje cell-specifi c L7 promoter to 
selectively restore zolpidem/DMCM-sensitivity by a Cre-mediated Purkinje 
cell-specifi c swap of γ2 subunits (PC-γ2-swap mice). In these mice 
expression of zolpidem/DMCM-sensitive GABAA receptors is restricted to 
Purkinje cells of the cerebellum (grey). Note the difference to wild-type mice 
in (A), which show drug binding throughout the cerebellar cortex. In Purkinje 
cells zolpidem (red trace) and DMCM (blue trace) now selectively enhance or 
reduce, respectively, GABAA receptor-mediated inhibitory post synaptic 
currents, illustrated by the artifi cial traces on the right (GABA alone: black 
trace). All other neurons in the brain are insensitive to these drugs 
(left traces).
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this mutation into the α subunit genes in mice (knock-in mice) 
allowed the multiple actions of benzodiazepine ligands on the 
whole animal (sedation, hypnosis, anxyiolysis, muscle relaxing) 
to be explained in terms of particular GABA

A
 receptor subtypes 

(Rudolph et al., 1999; Crestani et al., 2000; McKernan et al., 2000; 
Rudolph and Mohler, 2004).

As well as amino acid residues on the α subunits, key side chains 
that form or infl uence the benzodiazepine binding pocket are found 
in the γ2 subunit: replacing phenylalanine (F) by isoleucine (I) 
at position 77 of γ2 abolishes binding of zolpidem, DMCM and 
fl umazenil in αβγ2 complexes (Buhr et al., 1997; Wingrove et al., 
1997; Cope et al., 2004; Ogris et al., 2004). Zolpidem modulates 
GABA’s action at three main types of GABA

A
 receptor (α1βγ2 – 

comprising 43% of receptors in the brain, α2βγ2 – 18% of recep-
tors, and α3βγ2 – 17% of receptors, where the β can be one of 
three variants); together, these α1−α3 receptors account for 78% 
of the total number of brain GABA

A
 receptors, i.e. the majority of 

GABA
A
 receptors will be sensitive to zolpidem modulation in the 

brain (McKernan and Whiting, 1996). Of these three receptor types, 
the most abundant and widely expressed in the brain, α1β2/3γ2, 
has the highest affi nity for zolpidem, with an inhibition constant 
(K

i
) of 20 nM (Niddam et al., 1987; Pritchett et al., 1989; Wisden 

et al., 1992; Duncan et al., 1995). At higher concentrations, zolpi-
dem modulates receptors, and thus circuits, containing α2βγ2 and 
α3βγ2 receptors (K

i
 = 400 nM).

The γ2 subunit gene is widely expressed (Persohn et al., 1992; 
Wisden et al., 1992; Pirker et al., 2000), and contributes to most 
GABA

A
 receptors (see above), and therefore most circuit func-

tions in the brain. We reasoned that by engineering all neurons 
to express a γ2I77 gene (encoding zolpidem-insensitive recep-
tors) and then reintroducing a zolpidem sensitive γ2F77 subunit 
back into selected cell types, we could explore the function of a 
variety of brain circuits by selectively manipulating the GABA 
input onto selected cell types. By homologous recombination 
at the γ2 subunit gene locus we made knock-in mice (γ2I77lox) 
such that all neuronal types had GABA

A
 receptors insensitive to 

zolpidem (Figure 3), as assessed by behavioural, electrophysi-
ological and pharmacological assays (Cope et al., 2004, 2005; 
Ogris et al., 2004). Normally, zolpidem is an effective hypnotic 
and induces sleep, presumably by enhancing GABA

A
 receptor 

inhibition in sleep regulatory areas (Crestani et al., 2000). Thus 
on a rotarod task, normal mice when given zolpidem fall off the 
rod from a mixture of ataxia and sedation (Cope et al., 2004); 
however, γ2I77 mice showed no impairment even after high doses 
of zolpidem (Cope et al., 2004). As expected from recombinant 
studies (Buhr et al., 1997; Wingrove et al., 1997), the I77 muta-
tion did not infl uence GABA’s action at its receptor: in γ2I77 
mice, mIPSCs from hippocampal and cerebellar neurons had 
normal rise times, amplitudes and decay kinetics (Cope et al., 
2004, 2005; Wulff et al., 2007). We then arranged it by a cell 
type-specifi c genetic swap of the γ2 subunit gene, that only cer-
ebellar Purkinje cells expressed the zolpidem-sensitive γ2F77 
subunit, whereas all other neurons in the brain expressed the 
insensitive γ2I77 subunit. In other words, only GABA

A
 receptors 

on Purkinje cells were sensitive to zolpidem – these mice were 
termed PC-γ2-swap (Figures 1C and 3). We could thus rapidly 
modulate a class of synapses (MLI-Purkinje cell synapses) in 

isolation from all other synapses in the brain to analyse their 
relevance for cerebellar tasks. Several minutes after intraperito-
neal injection of zolpidem, PC-γ2-swap mice became ataxic and 
showed strong impairments in the rotarod and horizontal beam 
motor tasks. Thus rapid intervention at the MLI-Purkinje cell 
synapse revealed the involvement of MLIs in the control of real-
time motor coordination. Accordingly, the chronic disruption of 
the MLI-Purkinje cell synapse in PC-Δγ2 mice must have induced 
compensatory mechanisms (Wulff et al., 2007).

BIDIRECTIONAL MODULATION OF GABAergic SYNAPSES
The opposite of inhibition, activation, is also important for 
understanding how specifi c neuronal cell types contribute to an 
 animal’s behaviour and/or perception or the function of a circuit 
(e.g. Boyden et al., 2005; Lima and Miesenböck, 2005; O’Connor 
et al., 2009; Zimmermann et al., 2009). In mice, cell type- specifi c 
activation in vivo can be done with light-activated channels 
(Adamantidis et al., 2007; O’Connor et al., 2009), capsaicin-acti-
vated TRPV1 channels (Arenkiel et al., 2008) and a synthetically 
evolved Gq-coupled metabotropic receptor (hM3Dq) activated 
by the otherwise inert ligand clozapine-N-oxide (Alexander et al., 
2009; Nichols and Roth, 2009). Bidirectional modulation allows the 
exploration of a wider range of function (or potential function) of 
a particular cell type (or synaptic input). Ideally both approaches 
should be applied to the same cell. This can be done with light 
by co-expressing in neurons the genes coding for the blue light-
activated cation channelrhodopsin-2 and the yellow light-driven 
chloride pump halorhodopsin (NpHR), and illuminating the cells 
with light pulses (Han and Boyden, 2007; Zhang et al., 2007; Han 
et al., 2009a; Scanziani and Hausser, 2009; Sohal et al., 2009). By 
delivering precisely timed blue and yellow light pulses, this enables 
the details of neural coding (e.g. spike timing) to be explored, a 
process termed “informational lesioning” by Han et al. (2009a) (see 
also Sohal et al., 2009).

Manipulating GABA
A
 receptors with allosteric modulators also 

permits a bidirectional modulation (Figure 3). The mutation of 
the γ2 subunit that abolishes zolpidem binding also removes the 
β-carboline binding site (e.g. DMCM) (Buhr et al., 1997; Wingrove 
et al., 1997): we have shown that GABA

A
 receptors in γ2I77 mice 

are about 1000-fold less sensitive to DMCM (Ogris et al., 2004). As 
DMCM is an inverse agonist at the benzodiazepine binding site, it 
decreases the effectiveness with which GABA opens the receptor 
and/or speeds the rate of channel deactivation. This means that 
DMCM is an excitatory agent; it decreases inhibition. In wild-type 
(γ2F77) mice DMCM (at low doses) causes severe seizures within 
minutes of an i.p. injection (Leppa et al., 2005). However, γ2I77 
mice can receive high doses of DMCM without behavioural effects; 
at extremely high doses, there are still no seizures or neurological 
defects (e.g. ataxia), but some mild anxiolytic effects, most likely 
caused by another (undefi ned) GABA

A
 receptor binding site or 

subtype (Leppa et al., 2005). An example of DMCM’s utility or 
application with the γ2I77/F77 system could be as follows: after fear 
conditioning, the MLI-Purkinje cell synapses undergo long-term 
potentiation (Scelfo et al., 2008); we predict that selectively decreas-
ing the strength at these synapses using DMCM in PC-γ2-swap mice 
would either undermine learning if given during acquisition, or 
disrupt consolidation if given directly after acquisition.
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ADVANTAGES AND DISADVANTAGES OF THE GABAA RECEPTOR SYSTEM 
TO CONTROL NEURAL ACTIVITY CELL-TYPE SELECTIVELY

(1) As demonstrated by their continuing wide and  successful 
 clinical use, drugs that allosterically modulate GABA

A
 recep-

tors have a well-proven effectiveness in modulating all aspects 
of central nervous system function, from pain perception 
through to arousal and cognition (Korpi et al., 1997; Yentis 
et al., 2004; Mohler, 2006).

(2) Since zolpidem works on all α1, α2, α3, β, γ2 subunit con-
taining GABA

A
 receptors (it is selective for α1βγ2 receptors 

at low nM concentrations, but in the low µM range it modu-
lates in addition α2βγ2 and α3βγ2 receptors), we can target 
many types of GABAergic synapses in the brain.

(3) Because the GABA
A
 receptor is an ion channel, there are no 

complications with multiple second messenger pathways 
having different effects depending on cell type, or even in the 
same cell type.

(4) GABAergic circuit operations can be modulated bi-
 directionally with zolpidem (increase in amplitude and 
prolonged decay of inhibitory postsynaptic currents) and 
DMCM (decrease in amplitude and faster decay of inhibi-
tory postsynaptic currents). The effect of both drugs can 
be, in principle, rapidly terminated with fl umazenil, as this 
drug is an antagonist of the benzodiazepine binding site 
and blocks the actions of agonist benzodiazepine drugs if 
simultaneously present (Lauven et al., 1985). Indeed, the 
behavioural effects produced by zolpidem in PC-γ2–swap 
mice were blocked by pre-administration of fl umazenil 
(Wulff et al., 2007).

(5) All drugs are water-soluble molecules and cross the blood 
brain barrier. Systemic drug applications (i.p. injections) 
work well for zolpidem, DMCM and fl umazenil. For our 
cerebellar experiments targeting Purkinje cells, no surgery 
or catheters were needed – but for other situation or brain 
regions/nuclei the drugs could be given more locally using 
catheters. After i.p. injection, drug effects are produced 
within several minutes – the half life of zolpidem after i.p. 
injection in rodents is about 20 min (Benavides et al., 1988).

(6) Manipulations with these drugs can modulate the inhibi-
tory synapses on a widely distributed population of neu-
rons (e.g. Purkinje cells, subtypes of hippocampal and 
neocortical interneurons). With current technology, light 
delivered through optical cables could only reach few 
cells. Admittedly, activating even a few cells with light can 
produce defi ned outputs: for the hypothalamus a whole 
nucleus can be light activated to produce a change in arou-
sal (Adamantidis et al., 2007), or dopaminergic cells in the 
ventral tegmental area can be selectively light- stimulated 
to cause changes in behavioural conditioning (Tsai et al., 
2009). Indeed, inducing 14 action potentials (APs) in a 
single neuron using conventional microstimulation in 
rat barrel somatosensory cortex is detected by the animal 
(Houweling and Brecht, 2008). But some situations may 
require manipulating many more cells. Han et al. (2009a) 
suggest that tiling the brain with arrays of LED- or laser-
coupled optical fi bres will solve this problem.

(7) Altering fast GABAergic input with GABA
A
 modulators 

uses the endogenous transmitter pathways, and differs in 
its effects from sudden activation (e.g. with light) or total 
silencing. We are thus modulating the natural “rhythm” of 
GABAergic communication at the synapse, which is a more 
subtle approach.

(8) The temporal resolution of our pharmacological manipula-
tion is unsuited to probing events on the millisecond range, 
and it could not be used to deliver precise patterns of stimuli, 
but drug manipulations of selected cell types with zolpidem 
and DMCM are suited for reversibly manipulating neuronal 
activity during periods of a few minutes to hours to study 
processes like learning, which may require many repetitions 
over minutes to hours so that biochemical/structural chan-
ges can occur at the relevant synapses. Extended continuous 
modulation of this process by inhibition with zolpidem or 
excitation with DMCM may be useful.

(9) Because of the requirement for the γ2I77 background, 
selective manipulation with zolpidem can only be done 
in transgenic mice; it cannot, unlike the simple ligand-
G-protein-coupled receptor systems such as the allatostatin 
or the hM3Dq receptors (Tan et al., 2006; Alexander et al., 
2009) or light-activated channels and pumps (Boyden et al., 
2005; Han et al., 2009a,b), be applied in diverse species. We 
are, however, currently developing a viral and a “γ2 switch 
mouse” system that will make the “zolpidem system” more 
accessible in the mouse.

CONCLUSIONS
One of the most enjoyable aspects of researching the brain is that 
so many methods and approaches can be used to study it (Wulff 
and Wisden, 2005; Arenkiel and Ehlers, 2009; O’Connor et al., 
2009; Scanziani and Hausser, 2009). There is no “one size fi ts all” 
solution for the problem of which particular technique to use 
for investigating circuits. For the cerebellar system, we have used 
two complementary genetic approaches to investigate how MLIs 
regulate Purkinje cells and contribute to cerebellum-dependent 
behaviour at the whole animal level. Whereas chronic disruption 
of the stellate/basket cell to Purkinje cell synapse (PC-Δγ2 mice) 
did not produce any obvious defi cits in motor coordination (Wulff 
et al., 2007, 2009), remote control of Purkinje cells by a revers-
ible and selective enhancement of GABAergic transmission at the 
same synapse (PC-γ2-swap mice) following i.p. administration 
of a drug, zolpidem, revealed the involvement of interneurons in 
on-line motor control (Wulff et al., 2007). These results suggest 
that the circuit can compensate for the loss of MLIs despite their 
genuine involvement in motor coordination. Extended analysis of 
PC-Δγ2 mice, however, showed that MLI are indispensable for a 
different cerebellar task: motor learning (Wulff et al., 2009). By 
combining these two approaches we were thus able to delineate 
dispensable contributions and indispensable requirements of MLIs 
depending on the behavioural context. Reversible modulation of 
selected GABAergic synapses can now be applied to analyse the 
time window in which MLI activity is required for cerebellar learn-
ing. Modulating the inhibitory drive onto distributed populations 
of selected cell types with zolpidem could also assist the study of 
other neural circuits.
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