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Connectomes derived from volume EM imaging of the brain can generate detailed physical models
of every neuron, and simulators such as NEURON or GENESIS are designed to work with such mod-
els. In principal, combining these technologies, plus transmitter and channel models, should allow
detailed and accurate simulation of real neural circuits. Here we experiment with this combination,
using a well-studied system (motion detection in Drosophila). Since simulation requires both the
physical geometry (which we have) and the models of the synapses (which are not currently avail-
able), we built approximate synapses corresponding to their known and estimated function. Once
we did so, we reproduced direction selectivity in T4 cells, one of the main functions of this neural
circuit. This verified the basic functionality of both extraction and simulations, and provided a
biologically relevant computation we could use in further experiments. We then compared models
with different degrees of physical realism, from full detailed models down to models consisting of a
single node, to examine the tradeoff of simulation resources required versus accuracy achieved.

Our results show that much simpler models may be adequate, at least in the case of medulla
neurons in Drosophila. Such models can be easily derived from fully detailed models, and result
in simulations that are much smaller, much faster, and accurate enough for many purposes. Bi-
ologically, we show that a lumped neuron model reproduces the main motion detector operation,
confirming the result of Gruntman[1], that dendritic compution is not required for this function.

INTRODUCTION

Connectomes, maps of biological neural networks in a
computer, are derived from volume imaging of the brain
and include very detailed physical models of each neuron,
such as the portion of an extracted neuron shown in Fig.
1(a). Simulators such as NEURON[2] or GENESIS[3]
are explicitly designed to work with physical models,
and compute results that depend on physical parameters.
Driving a simulator such as NEURON with the output of
EM reconstruction should therefore be able to reproduce
the operation of biological circuits. However, straightfor-
ward attempts to do this run into several obstacles.

First, in addition to geometry, concrete numerical
models of synapse operation are required. EM recon-
struction can give synapse locations, but does not tell
how they operate (or in Drosophila, even the sign - in-
hibitory and excitory synapses look the same). Second,
the use of detailed physical models brings additional con-
cerns. The sheer number of nodes, plus the wide range
of time constants between short and long segments, cre-
ates systems of equations that are hard to solve efficiently
with numerical techniques. This not a problem unique
to biological systems - circuit networks extracted from
integrated circuits share the same concerns, and explicit
techniques to avoid this problem have been used[4].

We investigated these problems by using the results
from EM reconstruction to drive the simulator NEU-
RON, to try to reproduce a known circuit operation
- motion selectivity of the T4 cells in the medulla of
Drosophila. We ran directly into the problems described
above. First, we could not find in the literature detailed
models for the graded synapses found in this circuit.
Therefore we created analytic synapse models, tuned to

get approximately the responses shown in the literature.
Next, we found that if we used the fully detailed geomet-
rical models, then the run times of the simulator were
prohibitive. To proceed, we had to reduce the geomet-
rical complexity of the extracted neurons. On a posi-
tive note, once we added plausible synapse models to our
simplified geometrical models, we were able to reproduce
major portions of the known network function.

To examine the tradeoff of geometrical complexity ver-
sus accuracy, we compared fully detailed simulations with
several simpler models. These included both a simpler
branched model and a model with a single lumped node.
These simplified models are much smaller, much faster to
simulate, and give nearly the same results for the neurons
we consider here.

EXPERIMENTAL DESIGN

For this experiment, we chose a portion of the visual
pathway of the Drosophila fly brain, since it has both a
detailed connectome[5], and a wide variety of detailed ex-
perimental and theoretical data. In particular we decided
to try to reproduce the motion selectivity of the T4 cells.
These cells react strongly to motion in the sensitive direc-
tion, and less strongly to other stimuli, including motion
in the opposing direction, motion at right angles to the
sensitive direction, or a uniform flash across the visual
field. The T4 circuit is complex, with at least 8 differing
cell types providing input, and the operation is still not
fully understood[6][7][8][9].

The physical structure of each neuron in the network
was imported as an SWC file, generated by the recon-
struction of Takemura, et al.[5]. This network contains
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FIG. 1. Panel (a) shows a fully detailed model of a
portion of a T4 neuron, in the medulla of Drosophila (
http://emanalysis.janelia.org/Shark Viewer.php ). Panel (b)
shows (symbolically) a much simplified node model that pre-
serves the branches but deletes intermediate nodes. Panel (c)
shows the model reduced to a single node.

the full connectivity of the columnar cells of a 7 column
core, and partial reconstructions of the cells one column
further away.

Of the many pathways to T4, we chose the major ones
starting with L1, based on synapse count. These include
the excitory pathways L1→Mi1, L1→Tm3, Mi1→Tm3,
L1→Mi4, L1→Mi9, Mi1→T4, Tm3→T4, and the in-
hibitory pathways Mi4→T4 and Mi9→T4. We used all
cells of these types that were contained in the 7 column
reconstruction, resulting in 187 cells in our simulations.

For a stimulus, we applied an externally generated cur-
rent to the L1 cells to simulate their excitation in the
lamina, which was not included in the reconstruction we
used. (In theory this could be added, since reconstruc-
tions exist for the lamina as well[10].) We simulate time
varying visual patterns delays by adjusting the onset of
each L1 stimulation (Fig 2(a))

The lamina L1 cells were stimulated in 5 patterns -
a moving edge in each of the cardinal directions, and a
full field flash. Since the L1 pathway, and the T4 cells,
are thought to mediate the ‘ON’ response, we simulated
a dark to light transition at each column. To create a
moving edge, current was injected into different columns
of the lamina with different delays - see Fig 2(a). We
used an added delay of 100 ms per column. Since each
column subtends about 5◦, this corresponds to an edge
moving at 50◦ per second, near the peak response speed
for T4 cells.

For the L1 cells, whose inputs are not included, we
injected current in a pattern that gave membrane poten-
tials that approximate the response to a step function
specified in the literature[11]. We settled on a step func-
tion of current, with 0.02 nA for 10 ms, 0 nA for 5 ms, and
0.002 nA for 200 ms, as shown in Fig. 2(b). For the down-
stream synapses, since detailed models are not available,

FIG. 2. The construction of the lamina inputs in the in sil-
ico experiment. Panel (a) shows the hexagonal lattice of the
fly’s eye. The numbers show, for the case of upward motion,
when the stimulus for that column is applied. Similar pat-
terns apply to the other directions of motion. In the case of a
full-field flash, the stimulus is applied to all L1 cells simulta-
neously. Panel (b): the input that was applied to the L1 cells
to get an approximation of the known response to a leading
edge.

we constructed simplified models where the conductance
of the membrane of the target is a function of the source
synapse’s voltage level. We then adjusted these functions
to get roughly the observed responses in the simple case
of a step input to the cells concerned, where this was
known. All cell models are graded response, not spiking.

We then measured the response of each of the four sub-
types of T4 cells to each of the 5 input patterns. What
we hoped to show is that we could reproduce the main
response property of these motion sensitive cells. Each
should respond most strongly to an edge moving in its
preferred direction, and less strongly (if at all) to motion
in other directions or full-field simultaneous change in il-
lumination. We did not try to match the measured T4
response over a range of conditions, as that is a research
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project in its own right[1], but instead just show differ-
ent responses for different directions. This is sufficient for
many uses of local motion detection, since opposing mo-
tion detectors are thought to be differenced in the lobular
plate[12].

The expected mechanism for our responses is a Barlow-
Levick motion detector[13], where excitation happens be-
fore inhibition in the preferred direction, inhibition oc-
curs first in the non-preferred direction, and inhibition
and excitation occur simultaneously in the cross-direction
and uniform flash cases. The full operation of T4 is
known to be more complex[14], but the subset of neu-
rons we chose should support this computation.

In addition to our estimated synapse function, there
are several other limitations to this experiment. The sim-
ulation includes only some of the columnar cells, and no
non-columnar cells. Gap junctions were not included as
they were not readily identifiable in the EM images used
for neuron reconstruction, and hence not included in the
connectome. Also only direct chemical synapses are used
- potentially longer range interactions such as neuromod-
ulators are not modelled.

MODELS OF NEURONS

The full compartment model neurons were generated
from EM reconstructions. They are specified as a series of
segments, with 3D endpoints for each and a radius at each
end. This allows for the specification of neurons with a
full branching physical structure. The extracted struc-
ture makes no distinction between axons and dendrites.
This distinction is not relevant for insect neurons, whose
neurites typically combine both inputs and outputs on
the same branch. It also does not matter computation-
ally - in NEURON, each neurite is conventionally named
as an axon or dendrite, but computationally this is not
significant.

In the absence of detailed biochemistry, each neurite
was modeled as a passive leaky structure. This model
has a constant conductance to a resting potential, plus
variable leaky conductances (representing ion channels at
synapses) that pull the voltage up or down. This model
was chosen since this part of the insect brain consists of
nonspiking neurons. The leak equation is a specified as:

∂Vm
∂t

= −g(Vm − EL) + I (1)

where g, a conductance, tells how strongly the membrane
potential Vm is pulled towards the resting potential EL

(tyically -65 mV). In addition there may be a current I
that flows into the neuron. In our simulations this is only
used to excite the L1 neurons.

In NEURON, each neuron consists of cylindrical
branches (the NEURON literature typically calls these
soma, axons, and dendrites, though this distinction is

FIG. 3. Circuit model for a compartmentalized, passive, leaky
neuron.

not maintained in the fly). Each branch is a cylinder
with geometric values of radius and length, obtained in
our case from the SWC files. Finally, each branch is
further divided into segments (compartments), where a
soma typically has one segment and the dendrites have
n segments, where the n is determined by the time con-
stants of the branch geometry and the accuracy desired.
(See section 5.7, “Choosing a spatial grid”, in The Neu-
ron Book.)

The geometric values as specified in NEURON add
membrane capacitance C and cytoplasmic resistanceR to
each neuron. This generates a model as shown in Fig. 3.

Adding Synapses

The synaptic connection between different neurons is
a type of convolving synapse, with a synaptic depression
term based on postsynaptic neuron membrane potential.
This was not designed as an approximation of a biophys-
ical molecular model, but rather intended to roughly re-
produce the observed waveforms when combined with our
passive neurite model. The equations we used are:

∂gsyn

∂t = τg · (Vpre − EL)
∂a
∂t = τd · (Vpost − EL)
i = −g2syn · (Vpost − Esyn)− a2 · (Vpost − EL)

When a signal propagates through the synapse from
the presynaptic neuron, the postsynaptic neuron mem-
brane potential (mV) is pulled towards Esyn, which is
0 for an excitory synapse and -80 mv for an inhibitory
synapse. When the postsynaptic neuron membrane po-
tential is high (low) enough, the synaptic depression term
a grows slowly and starts to inhibit the signal propagat-
ing through the synapse[15].

When connecting neurons, the neural reconstruction
specifies only the XYZ coordinates of each pre- and post-
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synaptic partner, separately from the SWC files that de-
fine the neuron geometry. Therefore connections were
based on finding the two closest branches (one from the
presynaptic neuron, and the other from the postsynaptic
neuron) and then creating a synaptic connection between
the two branches.

The types of these synapses (inhibitory vs. excitatory)
were based on the findings from the Drosophila motion
detection visual system [5]. The excitatory neurons used
a Esyn leak value of 0 mv, while the inhibitory neurons
had a Esyn leak value of -80 mv. Our synapses from
pre- to post-synaptic neuron also required the parameters
τg and τd. We estimated these by approximating the
membrane potentials of the experimental data [9] and
the simulation results of the compartment models.

The equations in the network were solved using im-
plicit Euler iterations, the default numerical method in
NEURON. This method has first order accuracy in (∆t),
and computation time that in general is O(N3), but is
only O(N) in NEURON since it forbids loops[16]. We
recorded, for each neuron, the membrane potential as a
function of time.

Can a simpler model be used?

The models generated by EM analysis are very com-
plex (for example, a typical Tm3 neuron has 2200 seg-
ments in the medulla), and it is not clear that the full
level of physical detail is required. It is possible that
simpler models may be faster to simulate, easier to un-
derstand, and still sufficiently accurate.

Theoretical reasons simplified models might work

For sufficiently small neurons, theory suggests that
membrane potential will be nearly equal throughout the
cell, and simulating these potentials with simplified mod-
els will not sacrifice much accuracy.

We use a simple RC model to estimate time constants.
The Elmore delay[17] d of a cylinder of diameter D,
length L, resistivity ρ, and membrane capacitance Cm,
is

d =
R · C

2
=

1

2
· ρ 4L

πD2
· CmπdL = ρCm

2L2

D
(2)

For the neurons we consider here, a thin branch might
have a diameter D of 100 nm or 10−7m, and maximum
length L of 50 µm. Using typical values ρ = 1 ohm·m,
and Cm = 10−2 F/m2, we get a delay of 0.5 millisec.
For comparison, we would expect the fastest response of
this neuron to be about an order of magnitude slower, at
about 5 millisec, based on a 1000◦ per second maximum

FIG. 4. The differences of the population structure (
http://emanalysis.janelia.org/gorgonian.php )

turn rate of the fly and a 5◦ field of view of an ommitid-
ium. We would therefore expect that the neuron will be
largely isopotential and the voltage will not vary much
from point to point in the neuron.

The brain of Drosophila is divided into many smaller
compartments[18][19][20]. From the arguments above, it
is likely that most neurons are almost isopotential within
each compartment, but at least for fast signals, can have
significantly different voltages in different compartments.
Since delays depend on L2/D, not on either dimension
alone, it is possible that this condition could hold in
larger flies as well. The significance of this, if any, is
unknown.

Creating simplified models

In our first simulations, the aim was to make sure that
the network was as close to the biological network as pos-
sible. Each cell in this network was typically composed
of thousands of segments. Then, based on the analysis
above, and experiments with a single neuron (where run-
time was not prohibitive), we created simplified models
with differing degrees of abstraction. For our first re-
duced model, we combined adjacent segments from the
SWC file if there was no additional segment connecting
to the junction between them. This model still has the
branched structure of the original, but with fewer seg-
ments. Then for the simplest model, we compressed each
neuron into a single node. In this model there is only one
potential for the entire neuron, and so no possibility of
differing computation in differing dendrites. The differ-
ences in the structures of the models and the populations
can be found in Fig. 1 and Fig. 4.
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Compressed node models

We reduced the model size by identifying every node
that is not used by any synapse, and not a branch point.
Each such node can be removed and its R and C values
distributed to the adjacent nodes. In the case of DC re-
sponse only, such a transformation is in principal exact,
and no accuracy is lost. (Experimentally, of course, this
is only true to double precision accuracy, but this inac-
curacy is much smaller than other sources of error in our
system). Computationally, this reduction can be done in
time linear in the nodes deleted, by repeated use of the
Y-∆ transform. After the resistance values (grounded
and coupling) are computed, the capacitance values are
distributed as proportional to the grounded (leak) con-
ductances. This step is not exact but should be very
close. This approach preserves the branching structure
and hence allows for dendritic computation, but can re-
duce the size considerably. For one Tm3 neuron, for ex-
ample, this simplification reduced the model size from
2214 nodes to 445 nodes, an 80% reduction.

To test the accuracy of this reduction, we ran detailed
experiments with one neuron, with geometry and synapse
locations from the reconstruction. The DC solutions were
identical, as expected, within the limitations of computer
arithmetic. The transient responses were evaluated us-
ing NEURON’s AlphaSynapse model, picking a subset
of 20 synapses to fire simultaneously with a 5 ms time
constant. Errors were largest where the synapses con-
nect to the smallest diameter branches, so we picked the
smallest branch to evaluate the error. Even so the error
reached only a 0.2 mv difference between the full and the
compressed model.

For the experiments where we included all 187 neurons,
we used a similar but simpler procedure to generate the
compressed models. We removed all interior, non-branch
point nodes, and replaced each sequence of sections by
a single section of average diameter. This was done for
ease of experimentation, and we believe the error should
still be small compared to the single-point approxima-
tion below. The more accurate (but harder to compute)
model above could be used instead, if required.

The single node model

The single-node model uses the same passive leaky neu-
ron model that we used in the compartment model. Be-
cause the entire neuron is compressed into a single mode,
the circuit diagram of the node model is quite different,
as shown in Fig. 5.

We wanted our single-node neurons to have the same
total capacitance, and same leakage conductance, as the
complex models simulated earlier. Since NEURON spec-
ifies these properties per unit area, to get the totals to
agree we had to adjust the biophysical parameters of the

FIG. 5. The equivalent circuit of the node neuron.

single node neurons.
In the compartment model, both the capacitance C

and the conductance g are summed over all the branches
and segments of the neuron. Our single node model
had a very different surface area, so we adjusted the
new per-unit values to get the same totals. Specifically,
we set a new capacitance Ĉm and and a new conduc-
tance ĝ. These parameters are set by first finding the
total capacitance and conductance of the compartment
model, by multiplying the per-area values of capacitance
Cm and conductance g by the compartment’s total area
Acompartment (which is calculated by a function within
NEURON called area). Then these values were the di-
vided by single node’s area to get the same total capaci-
tance and conductance. The equation for each term fol-
lows:

Ĉm = (Cm ·Acompartment)/Anode (3)

ĝ = (g ·Acompartment)/Anode (4)

The node network used the same synapses with no
changes, since the synapses have no geometry, and hence
no area. The only difference is that the synapses no
longer connect to the two closest dendrites (since the
node model has no dendrites), but instead connect to
the middle of each node.

RUNNING THE SIMPLIFIED MODELS

We ran NEURON simulations to compare the different
models, from the full compartment model to the most
simplified point model. When comparing the full, re-
duced, and single-node model, we used one neuron sim-
ulated for 25 ms. When computing results on the whole
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FIG. 6. Response of one T4 cell (T4a-fb) in the home column
to the five different test cases - motion in the each of the four
cardinal axes, and a full field brightening. As expected from
the literature, there is a preferred direction for responses.

network we used only the reduced and single-node mod-
els, as the full model was too slow. In this case each
simulation ran for 1000 ms of simulated time for our net-
work of 187 neurons. In each experiment, we recorded
for each model the voltage as a function of time for all
neurons. We then compared the results of the different
simulations using external scripts written in MATLAB.
In addition, we timed the simulations to measure the ef-
fect of the differing levels of detail.

Our results show that for a particular T4 neuron, the
response is stronger in the preferred direction, compared
to the opposite direction, the two orthogonal directions,
or a uniform flash over the visual field. This result was
obtained with either the reduced or single node model.
See Fig. 6.

Similarly, the four different types of T4 cells, thought
to encode a particular direction, do so as expected. Again
this result was observed with both the reduced and single
node models. See Fig 7.

Comparing the different levels of detail, in Fig. 8, we
show the recorded membrane potentials from each of the
T4 cells (a neuron population in the motion detection
circuit in the Drosophila visual pathway), for the reduced
model and the simplest single-node model. The T4 cells
were chosen for display since they are at the end of the
visual pathway, and hence most likely to be affected by
changes to the network structure. As seen in Fig. 8, the
waveforms computed from the detailed model and the
node model are very similar - by eye, they are almost
indistinguishable. Fig. 9 shows the computed differences
between the membrane potential of the compartment and
the node model. Even in this case, with no consideration
whatsoever of neuron shape, the voltages differ for only
a few nodes and only by a few tenths of millvolts.

FIG. 7. Response of the 4 different T4 sub-types to a right-
to-left stimulus. The fb subtype gives the largest response,
the opposite direction (bf) the smallest response, and the two
cells with receptive fields at right angles (du and ud) give an
intermediate response.

FIG. 8. The membrane potential of the T4 neurons for both
the reduced and single-node models.

FIG. 9. The differences between the T4 neuron membrane
potential of the compartment and the node models.
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FIG. 10. The run-time differences between simulation with
the full model (200,000 nodes), the reduced model(28,000
nodes), and the node model (187 nodes). The full model
times are underestimates since we killed the simulation after
one day (roughly 105 seconds).

Simulation Times

To compare the run times of the simulations, we at-
tempted to run 10 simulations of the full compartment
model, the reduced model, and the node network. For
simplification we ran just one case, where all the L1 neu-
rons were stimulated at the beginning of the simulation.
We ran 10 simulations for a simulated time period of 100
ms, 200 ms, etc for all models. We stopped the full com-
partment simulation before it completed, after one day
of running time. Fig. 10 shows the differences in simula-
tion times. The single-node model is at least 4 orders of
magnitude faster than the full compartment model.

Comparing the node and detailed models

Based on the comparison of the compartment and the
node model, there are two important takeaways. The
first is that the efficiency of the simulations can be in-
creased by using simplified models without sacrificing
network function and dynamics. The second is that, at
least in the medulla of Drosophila, the connectivity of a
neuron is much more important than its detailed shape.
Dendritic specific compution is not needed to explain the
observed function.

Simulation experiments can require execution time
ranging from from seconds to days, depending on the
level of detail and the time span simulated. Using very
detailed models, as obtained from EM reconstructions,
while very accurate, contributes to these long run times.
Here we show, at least for the medulla of Drosophila, it
may be unnecessary to run simulation experiments on
the fully detailed compartment models. Instead, it may
be preferable to simplify the model, possibly as far as

a single node model, as the simulations will run faster
and the network dynamics are not sacrificed when mov-
ing between the two models. In neuroscience, in many
cases form leads directly to function. But in our simu-
lation experiments here, we find that the detailed form
does not lead to function; it is rather other properties of
the neuron that are important for function. In particu-
lar, the connectivity seems much more important than
the shape.

CONCLUSIONS AND FUTURE RESEARCH

It is possible to run detailed neural simulations using
the fully detailed shape models obtained from EM recon-
struction, but it is very slow. Models that are at least
somewhat simplified are needed to get practical runtimes
for circuits with a few hundred neurons.

These simulations, using plausible synapse models, can
reproduce many experimentally determined aspects of
neural computations. In particular, the main behaviors
of the motion detectors in Drosophila can be reproduced
from extracted neuron models and likely synapse signs.

A major limiting factor for neural simulation appears
to be the lack of detailed synapse models. This is not
completely clear, however, as other aspects of neural op-
eration, such as gap junctions and neuromodulators, are
also known to be missing from existing models.

It seems likely that within a single compartment of the
Drosophila brain fully geometrically detailed models are
not required. In many cases much simpler models, even
single point models, can be used with only minimal loss of
accuracy. In particular, our experiment with the T4 (the
on-pathway motion detection circuitry of Drosophila),
demonstrates that at least for this circuit, we can use
point models instead of fully distributed models with only
a minor loss of accuracy. Therefore dendritic compution
is not needed to explain this computation, confirming the
result of Gruntman et al.

For the future, reductions are shown in the paper will
likely become more important, as much larger EM recon-
structions are under way. This will presumably lead to
desires to simulate much larger portions of the fly’s brain,
including both more and larger cells. Several reasons sug-
gest that reducing the neurons to a single point will not
suffice for these larger circuits. They are both physically
larger, with larger internal time constants, plus they will
likely include spiking neurons with faster internal dy-
namics. For these larger and faster neurons we would
expect that although they could not be reduced to a sin-
gle point, reduced models will still be required to keep
simulation times practical. Our research indicates this is
feasible without undue accuracy penalty, but further ex-
periments with networks of spiking neurons would surely
be desirable.
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