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The Zipf distribution is an unambiguous 
target that any empirically accurate theory of 
the firm must hit. This result, taken together 
with those in (21) and (27), place important 
limits on models of firm dynamics. That is, 
(i) firm growth rates follow a Laplace distri- 
bution, (ii) the standard deviation in growth 
rates falls with initial firm size according to a 

power law, and (iii) large firms pay higher 
wages for the same job according to yet 
another power law (the so-called wage-size 
effect). Because the Zipf distribution obtains 
all the way down to the smallest sizes, it 
should be possible to derive Kesten-type pro- 
cesses and, hence, the Zipf distribution from 
a microeconomic model in which individual 

agents interact to form productive teams. Al- 

though today no analytically tractable models 
of this type exist, agent-based computational 
results have achieved significant success ac- 

cording to these criteria (28). 
The Zipf distribution may describe firm 

sizes in other countries as well, a conjecture 
that can only be tested once individual gov- 
ernments make available and in some cases 

gather for the first time-data that purport to 
be comprehensive. 
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Many central nervous system regions at all stages of life contain neural stem 
cells (NSCs). We explored how these disparate NSC pools might emerge. A 
traceable clone of human NSCs was implanted intraventricularly to allow its 
integration into cerebral germinal zones of Old World monkey fetuses. The 
NSCs distributed into two subpopulations: One contributed to corticogenesis 
by migrating along radial glia to temporally appropriate layers of the cortical 
plate and differentiating into lamina-appropriate neurons or glia; the other 
remained undifferentiated and contributed to a secondary germinal zone (the 
subventricular zone) with occasional members interspersed throughout brain 
parenchyma. An early neurogenetic program allocates the progeny of NSCs 
either immediately for organogenesis or to undifferentiated pools for later use 
in the "postdevelopmental" brain. 
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As cells with stemlike qualities have come to 
be identified within a widening range of or- 

gans [e.g., (1, 2)], new questions have arisen 
about their relevance to normal development. 
The central nervous system (CNS) may serve 
as a bellwether for insights in this field. NSCs 
have been identified in the mammalian CNS, 
including humans (3-9), at stages from fetus 
to adult in a surprisingly wide range of re- 

gions (10-13). NSCs, defined as self-renew- 

ing, propagatable primordial cells each with 
the capacity to give rise to differentiated 

progeny within all neural lineages in all re- 

gions of the neuraxis, are posited to exist in 
the embryonic and fetal ventricular germinal 
zone (VZ) where they participate in CNS 

organogenesis (5, 14, 15). Cells equally 
"stemlike" in their potential have been iden- 
tified at later stages (including old age) from 
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a variety of regions: subventricular (SVZ) 
(13-17) and ependymal (18) zones of the 
forebrain, subgranular zone of the hippocam- 
pus (6-10, 19), retina (20) and optic nerve 
(10, 11), cerebellum (12), spinal cord (21), 
and even cortical parenchyma (10, 15, 22). 
How might these observations be reconciled? 
Are such stemlike pools, particularly those 
isolated from various parenchymal regions at 

"postdevelopmental" periods, of physiologi- 
cal relevance or artifacts of experimental ma- 
nipulation (10, 11)? Do these populations 
represent the same lineage or unique pools 
(17)? Of what relevance are these cells to 
normal human CNS development and repair? 

We hypothesized that multiple stem cell 
pools, descendants of a common NSC, 
emerge during early cerebrogenesis as cells 
are used in organogenesis and concurrently 
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also set aside to establish a reservoir for 
subsequent use in homeostasis and repair. 
This could represent a developmental strate- 
gy in which plasticity is programmed into the 
CNS at the single-cell level from early stages 
of embryogenesis. 

We sought to determine how progeny of a 
single traceable clone of NSCs get segregated 
during development by using a system that 
might also lend insight into human develop- 
ment. We grafted a clone of NSCs of human 
derivation (5, 23) into the developing brains 
of fetal bonnet monkeys (Macaca radiata), 
an Old World species (Web note 1) (24). We 
asked what the fate would be of human cells 
transplanted at a time when neocortical cell 
genesis, migration, and differentiation are in- 
tensive (25-27). The primate neocortex, at 
the appropriate developmental stage, allows a 
distinction between layers of active neuron 
birth and layers where neurogenesis has been 
completed and glial cells are instead acquired 
(27) (Web note 2) (24) (Fig. 1, schematics I 
and II). One can discern experimentally the 
responses to local developmental cues simply 
by assaying the spatial segregation and pat- 
terns of differentiation of NSCs of a single 
clone in a given animal's brain after a single 
transplantation procedure. [A summary of 
simian cortical development is provided in an 
expanded legend to Fig. 1 in Web note 2 
(24)]. Under transabdominal ultrasonic guid- 
ance, bonnet monkey fetuses at 12 to 13 
weeks gestation received a single in utero 
injection of -2 X 107 clonally related undif- 
ferentiated NSCs [prelabeled with the nuclear 
marker 5-bromo-2'-deoxyuridine (BrdU)] 
into the left lateral cerebral ventricle, allow- 
ing the cells access to the VZ from which the 
cerebral cortex is derived (23). [At 12 to 13 
weeks, VZ cells normally cease giving rise to 
the neurons in layers IV to VI and begin 
contributing to neurogenesis in layers II and 
III (27) (Fig. 1, schematic I).] Pregnancy was 
allowed to continue to the completion of most 
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cortical neurogenesis at -16 to 17 weeks 
gestation (Fig. 1, schematic II), when the 
fetuses were delivered by Cesarean section 
and their brains were processed for histolog- 
ical analysis (28) (Fig. 2). Distribution of 
donor human NSCs (hNSCs) in the monkey 
brains was monitored by immunocytochemi- 
cal staining for the BrdU marker (Figs. 1 and 
3) (28). To provide further independent con- 
firmation of the cells' origin, we used, in 
parallel, antibodies against additional donor- 
specific markers, including the human-spe- 
cific nuclear mitotic antigen (NuMA) as well 

as other species-specific tags (28). The phe- 
notypes of these cells were characterized by 
immunocytochemistry (28) (Fig. 3). 

Unilaterally injected hNSCs distributed 
themselves throughout both cerebral hemi- 
spheres symmetrically and at most levels of 
the neuraxis, settling in diverse widespread 
regions of the telencephalon, principally at 
the frontal and frontoparietal levels (Fig. 3). 
Although the individual hNSCs were clonally 
related, they appeared to segregate into two 
subpopulations (Fig. 3), as follows. 

Cells in subpopulation 1 (red stars in Fig. 
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3) appeared to traverse great distances (- 1.6 
cm or -1600 times a migrating cell body 
diameter) from the periventricular germinal 
zones along host radial glial processes (Fig. 
1A) to terminate at developmentally and tem- 
porally appropriate cortical laminae and dif- 
ferentiate into several neuronal (Fig. 3, A to 
D) and glial (Fig. 3, E to G) cell types. Those 
hNSCs that migrated to the superficial neu- 
rogenic cortical layers II and III (Fig. 1A, 
schematic II) appropriately became neurons 
(Fig. 3A, arrow), identified by dual immuno- 
reactivity to antibodies to NeuN, calbindin, 
and neurofilament (Fig. 3, B to D, arrows), 
intermixed with the monkey's own neurons 
(arrowheads). The majority of the hNSC- 

derived neurons were found in cortical layers 
II and III [which, at the time of transplant, 
profited from an intensive supply of newly 
formed neurons (27, 29)]. Those hNSC-de- 
rived cells that stopped and integrated within 
the deeper cortical layers IV to VI differen- 
tiated appropriately into glial cells (Fig. 1, B 
and C, schematic II), identified by immuno- 
reactivity to glial fibrillary acidic protein 
(GFAP) (for astrocytes) or to 2',3'-cyclic 
nucleotide 3'-phosphohydrolase (CNPase) 
(for oligodendrocytes) (Fig. 3, E to G). [Glial 
cells of donor origin were also appropriately 
observed in the marginal zone (MZ, layer I) 
(Fig. 1, schematic II) and in subcortical re- 
gions. Some donor cells contributed also to 

the radial glial cell population.] 
Cells in subpopulation 2 (blue dots in Fig. 

3) were small, undifferentiated BrdU-positive 
cells lacking neuronal processes and were 
dispersed throughout the SVZ as single cells 
or small clusters intermingled with the ger- 
minal cells of the host (Fig. 3, H and I). When 
double-stained for cell type-specific anti- 
gens, these cells expressed vimentin (an im- 
mature progenitor/stem cell marker) (Fig. 31 
and inset) but were negative for all other 
markers of differentiation. The majority of 
such undifferentiated hNSC-derived cells re- 
mained within the SVZ [none in the ependy- 
ma (18)]. The SVZ has been implicated in 
postnatal and adult homeostatic mechanisms 

Fig. 3. Segregation of the 
fates of hNSCs and their 
progeny into two subpopula- anterior 
tions in the brains of devel- 
oping Old World monkeys. 
Schematics (left) and pho- 
tomicrographs (right) illus- / 
trating the distribution and 
properties of clonal hNSC- * \ 
derived cells. [Each coronal . 7 \ 
section in the schematic (I to 
III) corresponds to a coronalU 
level (I to III) in Fig. 2.] 
hNSCs [labeled with BrdU 
and implanted as per (23)] 
dispersed throughout and in- II 
tegrated into the VZ. From / 
there, clonally related hNSC-* 
derived cells pursued one of 
two fates, as shown by im- 
munocytochemical analysis 2 * ^ \ \/ 
(A to I) (28). Those donor (.*. *' 
cells that migrated outward * 
from the VZ along radial gli- 
al fibers (as per Fig. 1) into 
the developing neocortex 
constituted one pool or sub- 
population. The differentiat- 
ed phenotypes of cells in this 111 
subpopulation 1 (red stars in 
the schematic) (particularly 
in layers II and III) are pic- 
tured in panels (A) to (G). (A) \ 
An hNSC-derived BrdU-posi- 
tive cell (black nucleus, ar- 
row)-likely a neuron ac- ( 
cording to its size, morphol- 
ogy, large nucleus, and loca- 
tion-is visualized (under posterior 
Nomarski optics) intermin- 
gled with the monkey's own 
similar neurons (arrow- 
heads) in neocortical layers II and III. The neuronal identity of such 
donor-derived cells is confirmed by immunocytochemical analysis in (B) 
to (D). (B, C, and E to G) High-power photomicrographs of human 
donor-derived cells integrated into the monkey cortex double-stained 
with antibodies against BrdU and cell type-specific markers: (B) NeuN 
and (C) calbindin for neurons (arrows, donor-derived cells; arrowheads, 
host-derived cells). (E) CNPase for oligodendroglia (arrow, BrdU-positive 
black nucleus in CNPase-positive brown cell; arrowhead indicates long 
process emanating from the soma). (F and G) GFAP for astroglia [anti- 
body to Brd U revealed via fluorescein in (F); antibody to GFAP revealed 
via Texas Red in (G)]. The human origin of the cortical neurons is further 
independently confirmed in (D) where the human-specific nuclear marker 
NuMA (black nucleus) is colocalized in the same cell with neurofilament 
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(NF) immunoreactivity (brown). Progeny from this same hNSC clone 
were also allocated to a second cellular pool-subpopulation 2 [blue dots 
in the schematic and pictured in (H) and (I) (arrows)]-that remained 
mainly confined to the SVZ and stained only for an immature neural 
marker [vimentin (brown) colocalized with BrdU (black nucleus) better 
visualized in inset (arrows); arrowhead indicates host vimentin-positive 
cell]. Some members of subpopulation 2 were identified within the devel- 
oping neocortex (blue dots) intermixed with differentiated cells. (F) and (G) 
use immunofluorescence; the other immunostains use a DAB-based color 
reaction. The photomicrographs were taken from different animals as rep- 
resentative of all animals. ve, lateral cerebral ventricle; arrow, BrdU-positive 
donor-derived cell; arrowhead, BrdU-negative, host-derived cell except in (E). 
Scale bars, 30 jim [(A) to (C)]; 20 ,um [(D) to (I)]. 
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(16, 17, 30, 31) and as an ongoing source of 
cortical neurons after overt cortical develop- 
ment has ceased (32-34). A small number of 
subpopulation 2 cells, however, were present 
within the striatum and cortex, intermixed 
with the differentiated cells (Fig. 3). These 
cells may provide a local resident pool for 
self-repair and plasticity and may represent 
the stemlike cells extracted by several inves- 
tigators (10, 13, 15, 22, 35). [This observa- 
tion favors the interpretation that such report- 
ed cells are not simply the result of dediffer- 
entiation of committed progenitors, an arti- 
fact of experimental manipulation, as has 
occasionally been speculated (10, 11)]. 

Our data provide a plausible dynamic for 
how multiple, disparate stem cell populations 
are generated as part of a single strategy of NSC 
allocation. The clonal progeny of a given NSC 
segregate to yield some differentiated cells for 
organogenesis (e.g., subpopulation 1) and other 
cells (e.g., subpopulation 2) for deposition in 
secondary germinal zones (e.g., the SVZ) as a 
reservoir. The NSCs that have been isolated 
from adults are likely descendants of the same 
NSCs that contributed to embryonic and fetal 
CNS development and thus do not represent a 
unique pool. In this view, ongoing lifelong 
self-repair and plasticity are a fundamental de- 
velopmental program set in place during early 
stages of brain organogenesis. Grafted hNSCs 
appear to become integrated into the morpho- 
genetic program of the developing primate host 
brain (Figs. 1 and 3) (36). Although it was not 
technically possible in these monkeys to quan- 
tify rigorously the percentage of grafted cells 
that survived, the histological images show that 
a large number of donor-derived cells were 
present bilaterally in all recipients (37, 38). That 
hNSCs can migrate through the large expanse 
of the primate cerebrum, not merely through the 
much smaller rodent brain (5-7), suggests that 
migration may be a fundamental stem cell prop- 
erty limited only by available terrain (large or 
small). In rodents, NSCs have been shown to be 
well-suited for transplant-based approaches to 
gene therapy and/or cell replacement in diseas- 
es characterized by extensive or global abnor- 
malities (39). Our results suggest that this ap- 
proach may similarly be feasible in large pri- 
mates and possibly humans. 
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Allele-Specific Receptor-Ligand 
Interactions in Brassica 

Self-Incompatibility 
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June B. Nasrallaht 

Genetic self-incompatibility in Brassica is determined by alleles of the trans- 
membrane serine-threonine kinase SRK, which functions in the stigma epider- 
mis, and of the cysteine-rich peptide SCR, which functions in pollen. Using 
tagged versions of SRK and SCR as well as endogenous stigma and pollen 
proteins, we show that SCR binds the SRK ectodomain and that this binding is 
allele specific. Thus, SRK and SCR function as a receptor-ligand pair in the 
recognition of self pollen. Specificity in the self-incompatibility response de- 
rives from allele-specific formation of SRK-SCR complexes at the pollen-stigma 
interface. 
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In self-incompatible Brassica plants, self- 
pollinations and crosses between genetically 
related individuals are nonproductive because 
self-related pollen grains are inhibited upon 
contact with the epidermal cells of the stigma, 
a structure that caps the female reproductive 
organ. Specificity in this self-incompatibility 
(SI) response is determined by haplotypes of 
the polymorphic S locus. The self-recognition 
molecules encoded by this locus include the 
single-pass transmembrane receptor-like 
serine-threonine kinase SRK, which func- 
tions in the stigma epidermis (1-3) and be- 
comes phosphorylated upon self-pollination 
(4), and the cysteine-rich peptide SCR, which 
functions in pollen (5, 6). These two mole- 
cules are highly polymorphic, with allelic 
forms of SRK and SCR exhibiting 10 to 30% 
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forms of SRK and SCR exhibiting 10 to 30% 
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and >60% divergence, respectively (1, 5-8). 
Views of SRK as a ligand-activated receptor 
kinase and SCR as its ligand are consistent 
with the predicted molecular properties of 
these molecules and the rapidity of the SI 
response (1, 9). The SCR peptide is localized 
on the surface of pollen grains (10). During 
self-pollination, SCR is predicted to bind the 
receptor domain of its cognate SRK, thereby 
triggering an intracellular phosphorylation 
cascade that leads to inhibition of pollen hy- 
dration and germination. Specificity in the SI 
response is thought to result from haplotype- 

Fig. 1. Effect of purified 4 
recombinant SCR pro- 
tein on cross-pollen 
tube development. S6S, 
stigmas (A) and S2S2 
stigmas (B) were treat- 
ed with SCR6-myc-His6 
and pollinated with S13 
pollen (12). Addition of 
"self" SCR6-myc-His6 
triggers inhibition of 
normally compatible S73 pollen on S6S6 but not on ! 
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specific activation of SRK by SCR. Here, we 
describe experiments that demonstrate a 
physical and haplotype-specific interaction 
between SCR and the ectodomain of SRK. 

To investigate the SRK-SCR interaction, we 
generated tagged versions of the two proteins. 
Recombinant eSRK6, consisting of the ectodo- 
main of SRK6 (from the S6 haplotype) and 
carrying a COOH-terminal FLAG epitope tag, 
was expressed as a soluble secreted glycopro- 
tein in Nicotiana benthamiana leaves using the 
potato virus X expression system (11). eSRK6 
protein migrated as two molecular mass forms 
of -63 and 70 kD on SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE), which presum- 
ably reflect differential glycosylation of 
eSRK6-FLAG in Nicotiana leaves. SCR6 and 

SCRI3 (the SCRs of the S6 and S13 haplotypes, 
respectively) were expressed in bacteria as se- 
creted periplasmic proteins carrying a COOH- 
terminal myc-His6 tag (11). They exhibited ex- 
pected masses of -8 and 9 kD, respectively, 
but they migrated as doublets, possibly due to 
inefficient cleavage of the periplasmic signal 
peptide in bacteria. 

Recombinant SCR-myc-His6 was shown 
to be biologically active in pollination bioas- 
says (12). Pretreatment of stigmas with puri- 
fied "self" SCR protein (i.e., S6S6 stigmas 
with SCR6-myc-His6 or SJ3SJ3 stigmas with 
SCR13-myc-His6) mixed with pollen-coat 
protein carrier (12) caused these stigmas to 
inhibit the germination of normally compati- 
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