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ABSTRACT

Blastocyst complementation is an emerging methodology in which human stem cells are transferred
into genetically engineered preimplantation animal embryos eventually giving rise to fully developed
human tissues and organs within the animal host for use in regenerative medicine. The ethical issues
surrounding this method have caused the National Institutes of Health to issue a moratorium on
funding for blastocyst complementation citing the potential for human cells to substantially contrib-
ute to the brain of the chimeric animal. To address this concern, we performed an in-depth review
of the neural transplantation literature to determine how the integration of human cells into the
nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread inte-
gration of human cell transplants, our review of 150 transplantation studies found no evidence sug-
gestive of humanization of the animal host, and we thus conclude that, at present, concerns over
humanization should not prevent research on blastocyst complementation to continue. We suggest
proceeding in a controlled and transparent manner, however, and include recommendations for
future research with careful consideration for how human cells may contribute to the animal host
nervous system. STEM CELLS 2019;00:1–9

SIGNIFICANCE STATEMENT

Due to a severe shortage of human organs and tissues, thousands of patients die each year due
to an inability to procure organs for transplantation. Blastocyst complementation is a methodol-
ogy that has the potential to generate large quantities of functioning human organs and tissues
but is hindered by a National Institutes of Health moratorium on funding, citing concern over
substantial human cell contribution to the brain of the animal. This review summarizes pub-
lished, peer-reviewed studies on human–animal neural transplantation and suggests that this
concern over neurological chimerism should not prevent research to continue in a controlled
and transparent manner.

INTRODUCTION

In the broadest of definitions, a chimera is “a sin-
gle biological entity that is composed of a mixing
of materials from 2 or more different organisms”
[1]. In Greek mythology, the chimera was a com-
posite organism of different body parts from
wildly divergent species. More recent variations
of the chimera can be found in North American
folklore (jackalope, hodag, Jersey Devil, etc.) as
well as in modern literature such as Margaret
Atwood’s speculative fiction Maddaddam trilogy.
Far from the mythical and bizarre, however,
chimerism—using the above definition—can
commonly be found within the human brain.
Microchimerism, the natural transfer of cells
from a fetus which can cross the placenta
and integrate within the maternal host, has

been observed within the brain of over half of
sampled women [2]. Similarly, female recipients
of bone marrow transplantation contain neural
and non-neural cells derived from the male
donor marrow [3]. Human–human neurological
chimeras have also existed as part of clinical
trials investigating the efficacy of cell-mediated
therapies for devastating neurological disorders
such as Parkinson’s disease (PD), Huntington’s
disease (HD), and spinal cord injury (SCI).

Blastocyst Complementation

Advances in mammalian gene editing, pluripo-
tent stem cell culture, and embryo micromanipu-
lation technology have culminated in attempts to
grow authentic interspecies organs through blas-
tocyst complementation (for a comprehensive
review, see [4]). This emerging methodology
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has the potential to generate whole organs and tissues comprised
entirely of cells from a single human donor (Fig. 1). To accomplish
this, embryos from one organism are genetically engineered so
that they lack functional gene(s) necessary for the development of
the tissue of interest. The organogenesis-disabled embryos
are then microinjected with healthy pluripotent stem cells
(PSCs) from a second organism and are then transferred into a
maternal surrogate. Through normal mammalian develop-
ment, the microinjected PSCs occupy the niche left by the
gene knockout and develop into a functional organ. This tech-
nique has successfully generated functioning allogeneic or xeno-
geneic pancreata in mice, rats, and pigs [5–8]. Microinjection of
human cells into the wild-type porcine embryo has also led to
human–animal chimerism across multiple organ systems, includ-
ing neural cells [7].

A primary goal of blastocyst complementation is to meet the
high-demand for human organs by producing fully functional
human tissues and organs to be well-matched and ready for
transplantation. Aside from the clinical potential of blastocyst
complementation, the procurement of healthy human tissue also
has the potential to impact the basic- and translational-sciences
through disease modeling, drug discovery, and studies of trans-
plantation biology.

Objections to Human–Animal Chimerism

A major concern echoed throughout the public response period
to the National Institutes of Health (NIH) proposed changes in
the guidelines regarding human–animal chimera research (NOT-
OD-16-128) is the “creation of human–animal beings with partly
or substantially human brains” and whether such chimeras pos-
sess “humanized” characteristics. Given the current NIH morato-
rium on funding research proposals involving human–animal
chimeras at the preimplantation embryo stage, it is difficult to
secure funding to answer the question, “Will generation of
human neural tissue within animals through blastocyst comple-
mentation produce ‘humanized’ animals?” However, we can ask

the following surrogate question: “Has biomedical research
involving transplantation of human tissue into the central ner-
vous system (CNS) of animals altered the cytoarchitecture of
the host brain resulting in an altered cognitive and behavioral
state of the animal which could be considered human-like?”

In this review, we examine the outcomes of 150 transplanta-
tion studies in 112 peer-reviewed publications in which human
cells have been targeted to the mammalian CNS (Fig. 2). These
studies, not under moratorium by NIH, range from basic- to
translational-science, and our focus is on the types of cells being
transplanted within the nonhuman mammal and the degree to
which the transplanted human cells are integrated. Although
behavioral tests to identify human-specific attributes have not
been performed in any transplant study, to date, we will also
examine whether the transplanted human cells have enhanced
the cognitive/behavioral abilities of the host to levels above
wild-type animals. Because the ethical, legal, and social implica-
tions (ELSI) of human–animal chimerism and the potential for
humanization of the animal host have been explored elsewhere
[9–11], do not discuss the ELSI issues at length. The review aims
to provide a necessary empirical foundation for those important
ELSI debates.

HUMAN–ANIMAL CHIMERISM

General Neurological Chimerism

In an attempt to provide insight into the early stages of human
neural development, several labs have transplanted clonally
expanded human neural stem cells into the brains of perinatal
mice and rats, a point at which neural development is still
occurring, translating to mid-gestation in human prenatal devel-
opment [12]. In these studies, up to 1 million cells from dissoci-
ated neurospheres were transplanted into the ventricles or
subcortical regions. In some of these animals, human cells were
observed over 1 year following transplantation [13, 14] with
integration throughout the brain and migration of human cells
along the rostral migratory stream to the olfactory bulbs
[13–16] and into the proliferative subventricular zone (SVZ)
[14]. The phenotype of the transplanted cells ranged from
immature neuronal cells weeks following transplantation [15–18]
and region-specific mature neuronal phenotypes months follow-
ing transplantation [13, 15–17]. Ourednik and colleagues were
interested in identifying the migration and differentiation poten-
tial of fetal-derived human neural stem cells following intraven-
tricular transplantation into the brains of fetal Bonnet macaque
at 12–13 gestational weeks [19]. This group observed terminal
differentiation of human cells into neurons with appropriate cor-
tical laminae that appeared to match the development of the
host. These studies have provided evidence that a single cell type
is likely to give rise to most cell types within the developing
brain.

Experiments in transplantation of neural stem/progenitor cell
(NS/PC) derived from fetal tissue [16, 20–25], ESCs [24, 26–30], or
other sources [31–33] have been published that describe survival,
neural maturation, and integration of unique cell lines. Survival
of transplanted cells was highly variable with instances of com-
plete cell rejection [27, 33], fewer than one observed trans-
planted cell per cubic mm [20, 28], or a complete doubling of
transplanted cells [21]. The transplanted cells differentiated toward
an immature neuronal phenotype early following transplantation

Figure 1. Cartoon schematic of blastocyst complementation.
Human pluripotent stem cells grown in vitro are microinjected into
genetically engineered porcine blastocysts which are then trans-
ferred to surrogate sows. The chimeric blastocysts develop to a
fetal stage in which neural stem/progenitor cells can be harvested
from the brain or to live-born animals where adult organs are pro-
cessed for transplantation into patients.
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that appeared more developed starting around 10 weeks post-
transplantation [20, 28, 31]. Primary fetal tissue isolated from the
developing cortex, thalamus, and striatum were transplanted into
adult rats and were observed up to 40 weeks following transplan-
tation and differentiated into immature or mature neurons as well
as astrocytes that were spread throughout the SVZ, rostral migra-
tory stream, and in the white matter of the corpus callosum
[17, 24, 34, 35].

More recently, the group from the Gage lab developed a
system to observe the growth and maturation of human brain-
like structures, termed organoids [36]. In this study, human ESC
derived organoids were transplanted into a cavity in the retro-
splenial cortex of immunocompromised mice. The transplanted
organoids were observed to maturate and extend axons that
integrated with the host neuronal circuitry, as measured by
optogenetics and electrophysiology. Furthermore, the organoids
were vascularized by the host and infiltrated with microglia. In a
test of spatial learning and memory, none of the transplanted
mice displayed significant alterations in behavior.

Transplantation of healthy neural cells into a nondiseased
brain has improved our knowledge of neural development, cell
migration and terminal differentiation. Although most of these
studies did not directly measure behavior of the transplanted
animals, none of the authors suggested the animals displayed
altered characteristics that could be construed as human-like.
Furthermore, none of these studies suggested an alteration of
the cytoarchitecture of the host brain. To the contrary, multi-
ple studies noted that the host organism dictated migration
and transplanted cells followed the differentiation cues from
the host [13, 14, 16, 19, 21].

Neurological Chimerism and Behavior

Neurological diseases and injuries can cause profound deficits in
behavior and cognition. Current estimates for the prevalence of
Alzheimer’s disease (AD), provided by the Alzheimer’s Association,

suggest 5.5 million Americans are living with AD, a number
expected to rise dramatically [37]. Transplantation of human
NS/PCs into either transgenic mice or hippocampal lesioned
rats ameliorated learning and memory deficits in the Morris
water maze (MWM) task [38–41]. As AD is a disorder of global
brain degeneration, the targeted site for transplantation is a
debated issue. Direct transplantation into the affected hippo-
campal formation demonstrated a limited degree of migration
[38, 39, 42], whereas transplantation into the lateral ventricles
migrated out through the SVZ to the hippocampus and other
subcortical regions through white matter tracts [40, 43]. Trans-
plantation of human cells has also been used to model AD. In
one study, human ESC-derived NS/PCs functionally integrated
into the neonatal AD transgenic mouse brain and were present
up to 8 months post-transplantation, during which time the
human cells were showing signs of degeneration similar to AD
patients [44]. Transplanted cells from all of these studies were
observed to survive and differentiate into immature neurons
as well as astrocytes and glia, but mature neurons expressing
choline acetyltransferase were rarely observed [38, 39, 44].

Neurological injuries occurring as a result of ischemic stroke
or traumatic brain injury (TBI) can also have a profound impact
on cognitive and behavioral function. Reported statistics within
the United States place the yearly incidence of stroke at nearly
800,000 individuals [45] and roughly 2,800,000 emergency
department visits related to TBI [46]. Long-term disability is
common in individuals surviving these injuries, often requiring
years of physical-, speech-, and occupational-therapy. Although
these disabilities are difficult to measure experimentally in ani-
mals, the MWM task can assess spatial learning and memory
that are significantly impaired in stroke and TBI animals. Trans-
plantation of NS/PCs derived from fetal brain as well as the
NT2N cell line were able to attenuate MWM deficits back toward
baseline levels as early as 2 weeks post-transplantation and last-
ing up to 12 weeks post-transplantation [47–51]. Hippocampal

Figure 2. Human cells used for preclinical or biomedical neurological research. For scientific review, we sampled a small fraction of the
available peer-reviewed primary research articles in which human cells are transplanted into the CNS of mice, rats, and nonhuman pri-
mates. From these studies, a variety of cell lines were used which primarily fall into 3 categories: Embryonic stem cell (ESC) derived,
induced pluripotent stem cell (iPSC) derived and fetal-derived. These cells lines can either be expanded then differentiated into neural
stem/progenitor cells (NS/PC) or glial progenitors, or transplanted directly with minimal in vitro manipulation (fluorescent- or magnetic-
activated cell sorting) and no in vitro expansion (primary fetal cells). Within our review, an additional category of NS/PC cell lines is identi-
fied, which includes direct conversion of somatic tissue to NS/PC and the teratocarcinoma-derived Ntera2/D1 cell line.
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transplantation of fetal-derived NS/PCs 48-hours following middle
cerebral artery occlusion reduced early sensorimotor deficits in the
sticky-dot task in mice [49]. Many studies observed that trans-
planted cells remained in an immature neuronal phenotype up to
13 weeks post-transplantation [52–58]. Transplanted cells were
also observed to differentiate toward a glial phenotype [47, 59, 60].

Cell-based regenerative therapies for AD, stroke and TBI are
at a nascent stage in development, with a variety of hurdles to
overcome before it is seen as a viable therapeutic option. Preclin-
ical transplantation of human cells into rodent models were able
to ameliorate some of the cognitive and behavioral deficits albeit
rarely returning to, or rising above, healthy levels. This benefit
may be due, in part, to trophic effects of the transplants, rather
than integration of the graft as few studies noted alterations in
synapse formation of host cells [38, 44, 49] and no study noted
an alteration in the cytoarchitecture of the host brain.

Neurological Chimerism and Motor Function

Transplantation of neural progenitor cells as a therapy for PD has
arguably advanced the furthest of any neurological cellular therapy,
to date. Although PD affects multiple systems throughout the body,
the clinical diagnosis of PD occurs as a result of the loss of dopami-
nergic neurons within the substantia nigra (SN) projecting to the
striatum (STR). It is estimated that the prevalence of PD is near
2 individuals per every 1,000 in the population, with increased risk
associated with age [61]. Preclinical success of cellular transplanta-
tion for PD is due to the identification of a population of neural pro-
genitors that can innervate the STR and release dopamine to near
physiological levels, which can be achieved using a variety of cell
sources [62, 63]. Fetal ventral mesencephalic tissue is a dopamine-
rich source of cells that are capable of integrating with the
denervated STR and has resulted in the rescuing functional defi-
cits in the rat and nonhuman primate following transplantation
[34, 64–69]. Within these grafted animals, a strong outgrowth of
tyrosine hydroxylase (TH) fibers from the graft core into the host
STR has been observed, suggesting that the grafts are integrating
with the host neurons.

Due to the limited availability of human fetal tissue and the
variability of cell populations in transplants derived from fetuses
of different gestational ages, several labs have focused on
identifying alternative sources of cells for transplantation into
PD. Differentiation of PSCs, in vitro, toward a dopaminergic
progenitor has advanced largely due to the dual SMAD inhibition
and floor-plate specification protocols [70, 71]. Using variations of
this protocol, multiple groups have focused on differentiation of
ESCs, which have observed strong integration of graft-derived
TH+

fibers in the host STR of mice, rats, and nonhuman primates
[72–79]. Transplantation of iPSC derived dopaminergic progeni-
tors have similarly displayed robust engraftment and functional
benefits in unilaterally lesioned rats [80].

From analysis of post-mortem tissue correlated with behav-
ioral outcomes in human fetal tissue clinical trials, Hagell and
Brundin suggest, at a minimum, 100,000 surviving TH+ neurons
need to be present for a sustained therapeutic benefit [81].
Within the rat, numerous studies report amelioration of
amphetamine-induced rotational deficits with as little as 1,000
human TH+ neurons. In some cases, up to 20,000 human TH+

neurons were observed in the rodent striatum [71, 76] more than
doubling the estimated number of dopaminergic neurons in the
healthy rat SN pars compacta [82].

Similar to PD, HD is amovement related disorder that is a result
of an autosomal dominant mutation of the Huntingtin gene leading
to the death of medium spiny neurons within the STR and glutama-
tergic neurons of the cortex [83]. Transplantation of fetal tissue into
HD patients has been seen as a relative success in clinical trials
[84–86]. Preclinical data suggested that tissue derived from the
human fetal ganglionic eminences could engraft into the STR in the
quinolinic acid lesion model of HD, survive up to 9 months post-
transplantation, and ameliorate apomorphine-induced rotational
deficits [34, 87–90]. Primary fetal grafts from6 to 11 postgestational
week ganglionic eminences, still containing dividing cells, resulted
in differentiation toward immature neurons and few region-specific
mature neurons [91, 92].

Similar to the issues associated with fetal transplants in PD,
the research field in HD moved preclinical transplantation toward
finding new sources of tissue, such as in vitro expanded or Myc
immortalized fetal-derived NS/PCs. Studies in which fetal NS/PCs
were transplanted into the rodent striatum demonstrated poor
outcomes with little or no improvement in behavioral measures,
and poor survival or integration into the host circuitry [92–98].
However, differentiation of PSCs toward a neural stem cell fate or
toward a medium spiny neuronal fate show promise in reducing
deficits associated with the quinolinic acid model [99–102]. Trans-
plants of PSC-derived NS/PCs survived up to 4 months post-trans-
plantation, differentiated toward medium spiny neurons and also
expressed synaptic marker PSD95, suggestive of integration with
the host [102–104].

Transplantation of human tissue into animal models of PD
or HD has proven invaluable as new regenerative therapies are
advancing toward the clinic, providing benefit for the individ-
uals diagnosed with these devastating neurological disorders.
Early preclinical studies transplanting fetal-derived tissue into
the animal host has laid the groundwork for PSC derived pro-
genitor cells. In all of these studies, no group has reported
findings in which the grafted cells altered the behavioral state
of the animals above baseline levels or altered the cytoarchi-
tecture of the host brain.

Neurological Chimerism in the Spinal Cord

SCI affects more than 250,000 people in the United States, with
vehicular and fall-related injuries being the most common causes
[105]. Injury of the spinal cord results in partial or complete loss
of limb sensation and function depending on the severity of the
injury. Rodent models of SCI attempt to reproduce injury from
either a temporary compression or contusion of the spinal cord
or a complete transection. In these rodent models, human ESCs
or iPSCs differentiated toward NS/PCs or glial cells are most com-
monly transplanted into the lesion epicenter or surrounding ver-
tebrae. Two- to six-months following transplantation, counts of
surviving cells ranged from less than 1% to as high as 23.9%
[106–109]. Another study observed a plateau of approximately
400,000 surviving human cells within the spinal cord, regardless
of initial dose [110]. Although the vast majority of transplanted
cells remain within the transplantation site, there have been
reports of migration more than 7 mm distal to the site of
transplantation, corresponding to approximately 3 vertebrae
[108, 110, 111]. Multiple studies have observed that transplanted
cells differentiate into oligodendrocytes, suggesting that the
human cells may be supporting endogenous surviving neurons
[106, 109–111]. Similarly, terminal differentiation of transplanted
human NS/PCs into astrocytes also provides a therapeutic benefit,
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likely due to increased trophic support [107, 112]. Transplantation
human cells into SCI rats demonstrate marginal behavioral improve-
ments in open-field, flat beam, and rotarod tests, relative to SCI
control animals [108–110, 113, 114].

The most common motor neuron disorder in adults is
amyotrophic lateral sclerosis (ALS), which is characterized by
the loss of both upper and lower motor neurons resulting in
muscle atrophy and ultimately death most commonly due to
the inability to contract the diaphragm. Over 90% of ALS cases
are considered idiopathic, and death usually occurs 3–5 years
after the onset of symptoms [115]. Variants of the superoxide
dismutase 1 (SOD1) gene have been linked to familial ALS and
is present in 5%–10% of all human ALS cases. Both ESCs and
iPSCs differentiated toward NS/PCs or glial cells have been
transplanted directly into the spinal cord of rodent models of
ALS. Human cells have been observed within transplanted ani-
mals up to 9 months post-transplantation and have been
shown to form neurites, axons, and even functional neuromus-
cular junctions [116–118]. However, the terminal differentia-
tion of these cells is variable. One study demonstrated that
human cells are still in an immature state at 9 months post-
transplant, suggesting the human cells may not be at a pheno-
typic state to completely integrate into the rodent CNS [119].
Two separate groups observed that up to 1,600,000 human
cells integrated into the spinal cord of mutant SOD1 transgenic
rodents up to 9 months post-transplant, with the majority of trans-
planted human cells differentiating toward astrocytes [117, 120].
Although some studies have shown grafted human neural stem
cells to extend axons and innervate muscle, it is likely that the ben-
efits seen are at least in part due to the neuroprotective mecha-
nisms exerted by the engrafted human cells [116, 119, 121–125].

Transplantation studies of human cells into the diseased and
injured spinal cord of rodents has demonstrated a therapeutic ben-
efit with encouraging cell survival and integration of the human
graft with animal host tissue. Preclinical transplantation of human
NS/PC or glial progenitors into the spinal cord of rodent models of
SCI and ALS have provided new therapeutic options for future clini-
cal trials. In these 2 conditions, transplantation of human cells has
not altered the behavioral state of the host above baseline levels,
nor altered the cytoarchitecture of the host CNS.

Neurological Chimerism Using Human Glial Progenitors

The demyelinating disease multiple sclerosis (MS) is characterized
by the progressive loss of myelinating oligodendrocytes in the
CNS, resulting in numbness, tingling, tremors, and loss of mobility.
Human cell transplantation studies in adult rodent models of MS
have shown variable results. Transplants of fetal glia progenitors
into the adult brain as well as ESC- or iPSC-derived NS/PCs into the
adult spinal cord have shown limited benefit, beyond an altered
immunomodulatory effect [126–128]. Transplants of human fetal-
derived NS/PCs were found to survive up to 9 weeks in the demye-
linated primate brain while remaining in a progenitor state [129]
and 25 weeks in the brain of the shiverer transgenic mouse focally
myelinating cells around the site of transplantation [130].

The greatest degree of neurological chimerism in any of the
studies and disease states mentioned thus far has been observed
in multiple studies by Goldman and colleagues at the University of
Rochester. In these studies, human glial precursors isolated from
fetal NS/PCs are transplanted into the corpus callosum of neonatal
shiverer transgenic mice, resulting in the ultimate replacement of
the endogenous mouse glia with human glia [131]. This replacement

has developed an entire human glial network within the mouse
brain, where 300,000 initial human glial precursor cells prolifer-
ated into an estimated 12 million human glial cells throughout
the entire shiverer mouse CNS [131–134]. Adult shiverer glial
chimeric mice showed reduced seizure activity and extended
overall survival as well as myelination patterns and glial networks
similar to what is observed in wild-type mice. Human glial pro-
genitors derived from human iPSCs have demonstrated similar
effectiveness in myelinating the shiverer mouse CNS [135].

One study that deserves special attention transplanted fetal-
derived glial precursors into neonatal immunodeficient mice and
found human glia throughout the entire brain within 12–20months
and was organized in a laminar structure, a phenotype previously
thought to be present only in humans and nonhuman primates
[136]. The human astrocytes maintained a human astrocyte mor-
phology (i.e., larger nuclei, long projections) within the mouse
brain. Functionally, human astrocytes propagated calcium waves
significantly faster than mouse astrocytes resulting in enhanced
rates of field excitatory postsynaptic potentials and long-term
potentiation. Behaviorally, chimeric mice displayed an improve-
ment in the speed of acquisition of an auditory fear conditioning
response, reduced latency to escape the Barnes maze, and an
increase in the ability of mice to remember the locations of
objects in the object-location memory task, relative to wild-type
mice. It is likely that the enhanced ability to learn in the human/
mouse astrocyte chimeras is a result of subtle differences
between the functions of human and mouse astrocytes rather
than human astrocytes forming novel neuronal pathways. How-
ever, the enhanced ability of these human/mouse chimeras to
learn, regardless of whether the neuronal architecture is altered,
is an important observation that necessitates further research.

DISCUSSION

The purpose of this reviewwas to summarize the literature inwhich
human tissue has been transplanted into the CNS of mice, rats, and
nonhuman primates, in order to answer the question: “Will genera-
tion of human neural tissue within animals through blastocyst com-
plementation produce humanized animals?” Although the ultimate
answer to this question requires additional research, our review of
the scientific literature finds that human/animal chimerism has not
yet generated animals that possess an altered cognitive or behav-
ioral state which trends toward “human-like.” To the contrary, few
studies transplanting human cells into a diseased or injured animal
restored cognitive ormotor function to levels of healthy animals.

Several key variables need to be considered when interpreting
these findings. First, most studies implanted human cells into mice
(30%) or rats (64%). The mouse brain contains an estimated 70 mil-
lion neurons and 23 million glia, the rat brain contains an estimated
200 million neurons, and the human brain contains an estimated
86,000 million neurons and 85,000 million glia [137–140]. It would
be unlikely that even amajority of human neuronswithin the rodent
brain would substantially alter the cognitive abilities of the chimeric
animals, due to the small size, limited cytoarchitecture and connec-
tome of the rodent brain. Relevant to blastocyst complementation,
the domestic pig has a gyrencephalic brain with roughly 2.5% of the
total number of neurons relative to humans, similar to the total
number of neurons in the rhesus macaque [141, 142]. Of the 6% of
studies in this review in which human cells were transplanted into
the nonhuman primate brain, no team identified an observational
alteration in the behavior of the nonhuman primate.
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The second variable that needs to be considered is the age of
the host at the time of transplantation. The majority of studies
transplanted human neural tissue into adult animals (84%) com-
pared with prenatal or neonatal animals (16%). It is likely that the
age of the transplant recipient will impact the degree of chimerism
as the developing brain is more plastic to the integration of trans-
planted cells. One study observed that the neonatal mouse brain
promoted the survival and migration of transplanted human cells
when compared with adult mice [143]. Multiple studies transplant-
ing human fetal glial progenitor cells into demyelinated neonatal
mice show the human cells integrate and out-compete endogenous
mouse glia, effectively creating a largely human glial networkwithin
the demyelinated mouse brain [131–136], whereas transplantation
of other cell types into adult demyelinated animals results in limited
engraftment [130, 144]. Although it is likely the case that transplant
recipient age affects the outcome of transplantation, more work
needs to be done to determine the extent of these effects.

Ethical concerns have been raised about the possibility that the
introduction of human stem cells into a nonhuman blastocyst could
potentially alter the brain connectome of the host to the degree to
which we would observe evidence of neural connections of the
type andmagnitude that would be required to produce human-like
thought and behavior [9]. Although more research is required to
address the concern more completely, work by the Nakauchi group
demonstrated that through generating a rat pancreas within the
mouse, using blastocyst complementation, the size of the pancreas
was similar to that of a normal mouse and not the rat. This suggests
that in the context of interspecies complementation, the devel-
opment of the host species likely dictates the ultimate size of
the complemented organ [5]. Likewise, we speculate that gen-
erating human neural cells in the nonhuman host would pro-
duce a connectome that would be dictated by the host species.
Thus the elaboration of human behavior through a human con-
nectome would be unlikely.

A final consideration is that preclinical and clinical studies
using human fetal brain tissue for transplantation demonstrate
that neural precursors derived from the fetal brain are the
most suitable for transplantation. Therefore the need to allow
chimeras to come to term for the harvesting of neural cells for
transplantation is not required and addresses the concerns of
chimeras being born that express human behaviors.

RECOMMENDATIONS FOR FUTURE COMPLEMENTATION

RESEARCH

The 150 transplantation studies reviewed here suggest that com-
plementation of nonhuman mammalian embryos with human
stem cells is not likely to substantially alter the behavior of the chi-
mera in a manner which can be construed as humanized. How-
ever, research on the potential humanization of chimera animals
remains limited, and further investigation is required to more fully

explore the plausible risks. Research in blastocyst complementa-
tion should be allowed to continue, carefully and with transpar-
ent milestones, in order to better evaluate these unknown
risks. As the scientific community begins to discuss these mile-
stones, we recommend the following be included:

• Complementation of human cells in the livestock embryo
should not surpass mid-gestation without determining the
extent of chimerism in all tissues, including neurogenic
regions, thus providing an early time point to alter or aban-
don the experimental protocol.

• Blastocyst complementation for the purpose of non-
neurological organs should not be allowed to come to term
until a thorough and reproducible analysis of neurological
structures can determine the extent of chimerism in pre-
term fetuses, with the goal of limiting neurologic chimerism.

• Blastocyst complementation for the purpose of treating
neurological disorders should harvest tissue at a progenitor
stage, and therefore chimeric animals will not be allowed to
come to term. However, neurological chimeras should be
analyzed for the purity of human cells within the target
structure as well as outside of target structure.

• Blastocyst complementation for the purpose of neurological
disease modeling should be allowed to come to term after
a thorough analysis of the preterm brain has been estab-
lished and if on-target chimerism is limited to motor regions
of the brain, allaying concerns over human chimerism to
prefrontal cortex and hippocampal regions.

• Chimeric animals should be separated at weaning and not
allowed to breed, in case human gametes are found in chi-
meric livestock.
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