
Representing exact number visually 1

Representing exact number visually using mental abacus

Michael C. Frank

Department of Psychology, Stanford University

David Barner

Department of Psychology, University of California, San Diego

The two authors contributed equally to this work. We gratefully acknowledge the students

and staff at UCMAS Gujarat, and give special thanks to Snehal Karia and his family.

Thanks also to George Alvarez, Timothy Brady, Neon Brooks, Susan Carey, Steven

Franconeri, Lisa Feigenson, Justin Halberda, Rebecca Saxe, and Jessica Sullivan for

comments on this manuscript. This project supported by a UCSD Senate Award and NSF

#0910206 to DB, and a Jacob Javits Graduate Fellowship and NSF DDRIG #0746251 to

MCF.

Please address correspondence to: Michael C. Frank, Department of Psychology, Stanford

University, 450 Serra Mall, Building 420 (Jordan Hall), Stanford, CA 94305, tel: (650)

724-4003, email: mcfrank@stanford.edu.



Representing exact number visually 2

Abstract

Mental abacus (MA) is a system for performing rapid and precise arithmetic by

manipulating a mental representation of an abacus, a physical calculation device.

Previous work has speculated that MA is based on visual imagery, suggesting that it

might be a method of representing exact number non-linguistically, but—given known

limitations on visual working memory—it is unknown how MA structures could be stored.

We investigated the structure of the representations underlying MA in a group of children

in India. Our results suggest that MA is represented in visual working memory by

splitting the abacus into a series of columns, each of which is independently stored as a

unit with its own detailed substructure. In addition, we show that the computations of

practiced MA users (but not those of control participants) are relatively insensitive to

verbal interference, consistent with the hypothesis that MA is a non-linguistic format for

exact numerical computation.
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Introduction

Human adults, unlike other animals, have the capacity to perform exact numerical

computations. Although other creatures are sensitive to precise differences between small

quantities and can represent the approximate magnitude of large sets, no non-human

species can represent and manipulate large, exact numerosities (Feigenson, Dehaene, &

Spelke, 2004). Multiple forms of evidence suggest that this human capacity is related to

natural language (Barner, Chow, & Yang, 2009; Dehaene, Spelke, Pinel, Stanescu, &

Tsivkin, 1999; Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004; Pica, Lemer,

Izard, & Dehaene, 2004; Wynn, 1990). Language, however, may not be the sole cognitive

system capable of symbolically representing exact number. Experienced users of an

abacus—a physical calculation device—can learn to perform arithmetic computations

mentally, as though visualizing a “mental abacus” (MA) (Hatano, 1977; Hatano & Osawa,

1983; Hishitani, 1990; Stigler, 1984; Stigler, Chalip, & Miller, 1986; Miller & Stigler, 1991).

Previous work, reviewed below, has described the MA phenomenon and has provided

suggestive evidence that MA is represented non-linguistically, in a visual format. However,

this proposal remains tentative for two reasons. First, early studies that directly tested

the role of language in MA were compelling but imperfect, and used sometimes informal

methods to test small and unusual populations of participants. Second, previous proposals

fail to explain how MA could be represented in a visual format. The present study

addressed these issues in a series of three experiments. We conducted detailed studies of

MA processing to ask how it might be represented in visual working memory, given known

limitations on the non-linguistic processing of quantity information. In addition, we used a

dual-task paradigm to test the role of language in MA computations. Taken together, our

results support the view that MA relies on visual resources, and in particular the ability

to represent multiple groupings of objects in parallel, to create visual representations of
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Figure 1. A Japanese soroban abacus of the type used by our participants. The rightmost

nine columns represent the number 123,456,789.

exact number that differ fundamentally from those constructed using natural language.

Background and previous work on MA

The abacus has been used in Asia since 1200 for rapid precise calculation, and may

have emerged from earlier Roman counting boards, which bear a similar structure

(Menninger, 1969). It represents number via the arrangement of beads into columns,

where each column represents a place value that increases in value from right to left

(Figure 1). On a Japanese soroban abacus—the most commonly used type of

abacus—each column is divided into two levels separated by a horizontal beam. On the

bottom are four “earthly” beads and on top is one “heavenly” bead, whose value is five

times greater than the individual earthly beads below. Moving beads towards the dividing

beam places the beads “in play,” thereby making them count towards the total number

represented. Other varieties of abacus represent number similarly, but with interesting

differences: one variety of the Chinese suanpan has five bottom beads and two top beads

on each column, allowing for both decimal and hexadecimal computation, while the

Russian schoty (similar in appearance to the “school abacus” in the United States) is

organized into rows of ten beads, color coded into a sets of 4, 2, and 4 on each row.
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In addition to using the physical device, MA users are trained to visualize an abacus

and to move imagined beads on this abacus in order to perform arithmetic calculations.

Many users appear to move these imagined beads using their hands, and thus move their

hands in the air as they perform calculations, suggesting that motor representations

somehow interface with the number representations created in MA. MA is commonly used

for calculations like addition and subtraction, but with practice, users can also learn

routines to perform multiplication and division or even square and cube roots. Because of

its incredible speed and accuracy, MA compares favorably to other methods of

computation, including electronic calculators (Kojima, 1954) and alternative systems of

mental arithmetic. For example, the 2010 Mental Computation World Cup was won by an

11-year-old MA user. For examples of mental and physical abacus use and an example of

a participant in Experiment 2 discussing the MA procedure, see supplementary movies

S1–3.1

Although abacus instruction is conducted verbally and begins after children learn to

count, previous studies argue that MA representations are not linguistic in nature but rely

on visual mechanisms (Hatano, 1977; Hatano & Osawa, 1983; Hishitani, 1990). For

example, Hatano (1977) investigated how the calculation abilities of expert MA users were

affected by concurrent verbal, spatial, and motor interference tasks. Consistent with his

hypothesis, Hatano found that MA users could perform difficult arithmetic problems while

doing concurrent tasks. However, the strength of these findings is limited, because (1)

Hatano tested only a small group of MA grand masters and (2) the interference tasks were

somewhat informal in nature. For example, the verbal interference task consisted of

answering basic factual questions while completing addition problems, potentially allowing

participants to switch rapidly between tasks during the course of the experiment.

Follow-up studies tested the digit-span capacity of three national champions in mental

1Available at http://langcog.stanford.edu/materials/abacus.html.
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calculation (Hatano & Osawa, 1983) and a developmental sample of intermediates and

experts (Hatano, Amaiwa, & Shimizu, 1987; Lee, Lu, & Ko, 2007) and showed that

experienced MA users can effectively store long strings of digits with greater accuracy

than long strings of verbal material, presumably by remembering these strings as abacus

images.

Echoing Hatano, subsequent studies have also reported differences in how MA users

represent number. First, studies using fMRI have found different processing signatures for

MA and verbal arithmetic. When asked to recall a long string of digits or do complex

arithmetic tasks, MA users show selective activation of cortical areas associated with

vision and visuo-spatial working memory. In contrast, untrained controls exhibit patterns

of activation related to verbal processing and verbal working memory (Tanaka,

Michimata, Kaminaga, Honda, & Sadato, 2002; Chen et al., 2006; Hu et al., in press).

Second, according to Stigler and colleagues, there is a close correspondence between what

MA users “see” in their minds eye and the structure of the physical device (Stigler, 1984;

Stigler et al., 1986). They reported that MA users are far more likely to make calculation

errors involving quantities of 5 (due to misrepresentation of “heavenly” 5 beads) than

control participants, who make these errors less than a quarter as often. Also, they found

that MA users were able to access intermediate states in calculations that are unique to

abacus (e.g., when adding 5+3, the abacus passes through states representing 5, 6, 7, and

8 as each bead is moved). When shown a card depicting an abacus state, subjects could

identify whether this state appeared in a subsequent mental addition problem, and did so

with the same accuracy as when doing problems on a physical device. This result suggests

that participants’ mental abacuses pass through the same set of states as the physical

device does, and together this previous work suggests that MA representations are

structured like a physical abacus.
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The nature of MA representations

Stigler (1984) and Hatano (1977) both argued that MA relies on a non-linguistic,

visual representation of an abacus, but little is known about how such representations

could be implemented by the visual system. Consider an MA representation of the

number 49: representing this quantity requires tracking the precise location of nine beads.

Representing the identity and precise location of each bead is critical not only for

identifying states of the abacus (e.g., reading off values), but also for performing

arithmetic computations. For example, when adding 49 + 30, it is not enough to know

that four beads are present in the 10s column. A MA user must also know which four

beads are in play (the bottom four) in order to select the correct motion that will

transform these appropriately when the quantity 3 is to be added.2 Thus, a user of MA

must represent the location and position of each bead in the current state of the abacus to

perform basic addition tasks successfully.

It is a puzzle how such states can be represented, given what is known about the

processing of quantity information in the visual system. Previous studies indicate that

visual working memory can represent both the location and identity of three to four items,

but not more (Alvarez & Cavanagh, 2004; Cowan, 2000; Feigenson et al., 2004; Luck &

Vogel, 1997). Thus, this system is insufficient for representing anything but the smallest

quantities in MA. The approximate cardinality of large sets can also be represented using

the approximate number system (ANS), where error in estimation is proportional to the

size of the set being evaluated (Feigenson et al., 2004; Whalen, Gallistel, & Gelman, 1999;

Xu & Spelke, 2000). The ANS does not track the location of individual objects, however,

and although the ANS exhibits relatively little error for small sets (e.g., with fewer than

4–5 members), it can only represent the cardinality of large sets approximately. Since

2In this case, the user would have to subtract 2 from the “earthly” (1) beads and add the “heavenly” (5)

bead, to represent the total quantity 7 in the 10s place.
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representing the quantity 49 requires keeping track of the locations of each of 9 different

abacus beads (and simply maintaining the information that there are 9 and not 10), it

would appear that neither of these non-linguistic systems could alone represent the

structure of an MA.

Because there is no obvious answer to how MA representations are constructed in

the visual system, it is tempting to conclude that each column is represented by a symbol

that is unconnected to the underlying semantics of the physical abacus. On this kind of

account, the picture of a column with four earth beads in play is equivalent to the Arabic

numeral 4: both are an abstract representation of a particular quantity that can be

composed to create larger numbers like 40 or 400. In addition to the findings that we

present in this study, several facts speak against this. First, Arabic numerals and MA

representations are defined differently. The Arabic numeral 4 has no internal

structure—nothing that says that the symbol “4” should not stand for 5 objects and the

symbol “5” stand for 4, for example. In contrast, the MA representation of four gains its

numeric value because of a set of rules that also defines the MA representations of other

quantities. Representing the internal structure of columns in MA is necessary for

supporting arithmetic computations like addition and subtraction, because these

computations rely on moving individual beads. Second, as reviewed above, MA users

make errors that are consistent with access to intermediate states in the abacus

calculation—intermediate states that could only be available if they were representing the

substructure of abacus columns. Third, MA is often tightly linked to gesture (a striking

part of the MA phenomenon for observers). These movements correspond to moves on the

abacus and appear to facilitate the movements of individual beads in the mental image

(an observation supported by the motor interference results shown by Hatano, 1977 and in

Experiment 2). Thus, the evidence does not support a view of MA representations as

unanalyzed wholes.



Representing exact number visually 9

Instead, recent work on visual working memory suggests a possible mechanism by

which abacus representations might circumvent the limits of known number representation

systems. According to these reports, subjects can select and represent up to three or four

sets of objects in parallel (Feigenson, 2008; Halberda, Sires, & Feigenson, 2006). These

sets can then be manipulated in different ways. For example, in one study subjects saw

arrays that contained spatially overlapping sets of dots of different colors, and were

probed to estimate the number of items for a particular color after the array disappeared

(Halberda et al., 2006). When the number of sets was 3 or fewer, subjects were able to

estimate the quantity of the probed set with relative accuracy, and showed signs of using

the ANS. However, when 4 or more sets were presented they failed to make reliable

estimates. In another study, subjects watched as different kinds of objects (e.g., candies,

batteries, toy pigs) were placed into a container, while they performed a concurrent verbal

interference task that prevented them from counting. Here again, subjects could perform

reliable estimates when 3 or fewer kinds of things were involved, but failed when they were

required to keep track of 4 or more sets at a time (Feigenson, 2008). Together, these

studies suggest that normal adults can represent multiple sets in parallel using visual

working memory, and can perform numerical estimates on these sets.

Supporting this view, some work suggests that objects contained in multiple sets

can be tracked individually, so long as there are no more than 3–4 objects in each set. For

example, Feigenson and Halberda (2008) showed that young children can represent and

compare two sets of objects, binding property information to the objects in each set and

tracking their locations over time. In addition, in those studies, infants’ ability to track

objects improved when arrays were first presented as smaller subsets divided in space,

suggesting that spatial grouping cues could facilitate object tracking. Consistent with this,

studies of adult visual attention find that subjects are signficantly better at attentional

tracking when targets are divided across the two visual hemifields (Alvarez & Cavanagh,
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Figure 2. A schematic proposal for a mental abacus (MA) representation of the number 49.

2005). By organizing sets into horizontally segregated arrays, much like the abacus,

subjects can optimize the number of objects they are able to track in parallel.

In keeping with these findings, Figure 2 shows a schematic proposal for how MA

might represent a number like 49.3 By treating each column of the MA as a separate set

in visual working memory, users could track the locations of beads in up to three or four

columns in parallel. The main studies of parallel set representation have investigated the

approximate quantities represented in each set (Halberda et al., 2006; Feigenson, 2008).

Nevertheless, we do not believe that the information represented about an individual

column is restricted to the approximate quantity of beads present: instead, column

representations must contain information about the precise quantity and locations of the

beads in the column (we return to the issue of the relationship between MA and

approximate number representations in the general discussion). Thus, recent work lends

3It is conventional in drawings of abacus representations only to represent those beads that are “in

play”—thus an MA image of the number 10 involves imagining an abacus with only one bead, while an MA

image of 49 involves nine beads.
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plausibility to the idea that MA uses existing visual resources to store multiple,

internally-structured set representations in parallel, in order to represent large exact

numerosities.

The current studies

We explored the proposal described above—that MA representations are

column-based models in visual working memory—in a series of three experiments. The

goal of the studies was not to compare this hypothesis to an existing alternative, since no

viable alternative hypotheses exist in the literature. Instead, our studies were exploratory

in nature, testing the plausibility of the view that MA is a non-linguistic representation of

number that uses existing visual resources to perform exact arithmetic computations.

To do this, we tested a population of children in Gujarat Province, India, where MA

is taught in a 3-year after-school program. Because of the effectiveness of MA for

arithmetic calculation—a critical component of standardized tests in the Indian

educational system—MA courses have experienced huge growth in India in the past

decade. Many children from throughout Gujarat province and the rest of India compete in

regional, national, and international abacus competitions using both MA and physical

abacus. This situation has created a large student population within which to study MA.

Our studies examined both highly practiced users of MA (Experiment 2) and also children

who were randomly sampled from the larger student population (Experiments 1 and 3).

Experiment 1 asked children studying MA to perform challenging addition problems

in order to test the limits on MA addition and their relationship to limits on visual

working memory. According to our hypothesis—that abacus columns are stored as sets in

visual working memory—MA users should show limits on the number of columns they can

compute over. The results of Experiment 1 are congruent with this prediction: MA is

sharply limited by the number of digits in each addend—a limit that corresponds to the
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capacity of visual working memory (≈3–4 digits). However, there appears to be no hard

limit on the number of distinct addends children can add, suggesting that the total

number of computations in a problem cannot explain its difficulty.

Experiment 2 then follows up on Hatano’s early work by using a variant of the

adaptive addition paradigm of Experiment 1 to investigate the effects of verbal and motor

interference on both MA users and untrained adults. The goal of this study was to

determine the relative role of language in MA computations. Our results suggest that

while language interference has some effect on MA calculation, the effect of motor

interference was approximately equivalent, and most participants were still able to

perform extremely well on difficult addition problems under interference. This finding is in

contrast to the large effects of verbal interference on untrained control participants, for

whom motor interference had no effect on computation.

Experiment 3 investigated the behavior of MA users and untrained control

participants on a final task: translating a picture of an abacus to Arabic numerals

(“abacus flashcards”). This study provides a second, independent test of the column limit

found in Experiment 1. Also, it tests whether the encoding of visual arrays in an

unrelated task—estimation—is facilitated when arrays become more abacus-like in

structure. The results suggest that untrained control participants perform in ways that

are remarkably similar to MA users, giving evidence that MA expertise does not

fundamentally alter the method of representation of the abacus image. Instead, based on

these results, we conclude that MA representations are optimally designed to exploit

pre-existing visual representations.

These studies make three primary contributions. First, our studies suggest that MA

representations are supported by the recently-discovered capacity of visual working

memory to select multiple sets and store information about them concurrently. Second,

Experiment 2 replicates and extends Hatano’s claim that linguistic resources are not
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essential to abacus computations, and that motor representations may be more critical.

Finally, our studies suggest that MA is not—as would be expected from previous

literature—a phenomenon in which experts’ representations differ dramatically in

structure from those of novices. Instead, the power of the MA technique is that mental

representations of the soroban abacus fit neatly into visual working memory, such that

untrained controls store abacus images in a way not unlike highly trained MA users. In

summary, our studies support a view of MA as a visual method for representing exact

number that is tailored to the structure of the visual system.

Experiment 1: Rapid addition

Our first experiment was designed to probe the limits of the MA representation.

Because of the problem posed above—the inability of the ANS or visual working memory

to represent the whole of the abacus—we were interested in what factors controlled the

difficulty of doing particular arithmetic problems using MA. To the extent that

performance is tied to particular aspects of the underlying representation, this method

may allow us to differentiate hypotheses about MA.

We were particularly interested in whether MA performance declines as the total

number of beads in a representation increases, or whether some sort of grouping in MA

representations minimizes error related to bead number. One such grouping would be the

partition of the MA image into columns. We hypothesized that each column in MA could

be stored as a separate set in visual working memory. A strong prediction of this

hypothesis is that MA users should be able to represent only 3–4 abacus columns, since

previous work has found that only 3–4 sets can be represented in parallel (Halberda et al.,

2006; Feigenson, 2008).

We used a task that was well-practiced for the students in our population: addition.

In order to map out each individual participants’ performance on a range of different
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problems, we made use of adaptive paradigms that presented more difficult problems

when participants succeeded and easier problems when participants made errors. The use

of adaptive paradigms is an important part of psychophysics research, but these

paradigms are less used in research on higher-level cognitive phenomena. In the following

set of experiments we make extensive use of adaptive designs because of quirks of the

population we were studying: although many MA students were extremely proficient at

the technique, they were still relatively young children and could not be relied on to

complete very long experiments. In addition, their level of skill varied widely. Thus, we

needed a method for quickly tuning an experiment to the level at which participants

would give us information about the questions of interest.

In a between-subjects design, we tested the dependency of MA computations on A)

the number of abacus columns in an addition problem (width condition) and B) the

number of operations in a problem (height condition). In the width condition, we

manipulated the width of the addends participants were asked to solve, first testing 1 + 7,

then 18 + 34, then 423 + 814, etc. In the height condition, we manipulated the number of

two-digit addends presented, first testing 18 + 34, advancing to 53 + 19 + 85 and

eventually to problems like 77 + 56 + 21 + 48 + 92 + 55 + 61 + 57.

Methods

Participants. All MA participants in all experiments were children enrolled in

Universal Computation Mental Arithmetic System (UCMAS) franchise schools in Gujarat

Province, India. Participants were chosen for inclusion in the initial subject pool on the

basis of A) their completion of level 4 UCMAS training (which includes approximately a

year of physical abacus training and an introduction to the MA method), B) their ability

to travel to the test site, and C) their instructor’s judgment that they were among the

best students in their cohort. In Experiment 1, 119 children participated; they had a
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mean age of 10.3 years (min = 5.8, max = 16.3).

Stimuli and Procedure. All stimuli were presented on Macintosh laptops via custom

software designed using Matlab with Psychtoolbox. Responses were entered on USB

numeric keypads. Instructions were given in English, unless children had difficulty in

comprehension. In that case, instructions were given by a trilingual teacher in either Hindi

or Gujarati depending on the child’s preference. Instructions were illustrated with

examples until the child had successfully answered several trials. In general, children had

considerable practice with addition and thus had little difficulty understanding the task.

On each trial, children were asked to enter the sum of a group of addends. The

addends were presented simultaneously on a computer screen until the participant typed

an answer or until 10 seconds had elapsed. In the width condition (N=51), on each trial,

the participant was presented with 2 vertically-presented addends and asked to sum them,

and the place value of the addends was varied from 1-digit addends up to a maximum of

8-digit addends. In the height condition (n=68), on each trial, the participant was

presented with some number of 2-digit, vertically-presented addends and asked to sum

them. The number of addends was varied from 2 addends to a maximum of 10 addends.

In each condition, the manipulated variable was adapted via a transformed staircase

procedure (Levitt, 1971). These procedures are commonly used in psychophysics to

estimate accuracy in a task and to find the level of difficulty for that task at which

participants performance meets a particular accuracy threshold. For example, in the

width condition, the staircase procedure proceeded as follows: following two correct

answers, the length of addends increased by 1 digit; following one incorrect answer the

length decreased by 1 digit. In the height condition, the staircase was identical except

that the number of addends increased by 1 following two correct answers and decreased by

1 following an incorrect answer.

This “2 up/1 down” staircase has been shown to converge around a stimulus
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difficulty level for which participants give approximately 71% correct answers (Levitt,

1971). We chose this kind of staircase in order that participants would be making

primarily correct answers so that the task did not appear demoralizing or unnecessarily

difficulty while still measuring performance across a range of difficulties, even for students

of highly varying levels of expertise.

Stimuli for the height condition were sampled randomly from the range 10–99, while

those for the width condition were sampled in the same manner depending on the width of

the addends. Participants received feedback following their answer and saw a message

indicating that they were out of time if they did not answer within 10s. The task was

timed to last a total of 5 minutes and participants generally completed between 30 and 40

trials within this time limit.

Results and Discussion

Participants were in general highly expert at the addition task. Representative

results from seven participants in each condition are shown in Figure 3. These curves

summarize the percentage of correct answers given at each level the participant was

exposed to; participants in the figure are sampled uniformly from the range of participants

so that those on the left are the lowest performers while those on the right are the highest

performers and those in the middle are approximately evenly spaced on the dimension of

task performance.

For the purposes of our analysis we were interested in the limits on performance

across conditions. Thus, we needed a robust summary statistic describing individual

participants’ performance in this experiment. We experimented with a variety of summary

measures, including the parameters of the logistic curves plotted in Figure 3. Of these

measures, the one that proved most robust to participants’ errors was the average number
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Figure 3. (top) Accuracy curves for representative participants in the width condition.

Each subplot shows the percentage of correct trials by the number of digits presented; the

red line shows the results of a logistic regression. Participants were selected by sampling

uniformly along the dimension of digit thresholds (see text). (bottom) Accuracy curves

for representative participants in the height condition, plotted by the number of addends

presented. Participants were again sampled uniformly across the range of thresholds.

of addends presented after the staircase converged (in practice, we allowed 20 trials for

convergence). As noted above, this number corresponds to an estimate of the level at

which participants would be 71% correct—a psychophysical threshold value. We use this

number as the primary description of an individual participants’ threshold on the measure

that was being manipulated: for the width condition, this was the size of the addends they

could add together successfully within the time limit. For the height condition, this

threshold was the number of addends they could add together successfully within the time

limit.4

4Although a standard method of finding thresholds in a psychophysical task would be to extrapolate
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Figure 4. (left) Histogram of thresholds from width condition: mean size of addends

presented for trials after the staircase had converged. (right) Histogram of results from

height condition: mean number of addends presented for trials after the staircase had

converged.

In the width condition, while most children were able to add two three-digit

addends consistently (average performance on these trials across participants was 67%

correct), almost none were able to add four-digit addends (average performance was 23%).

Corresponding to participants’ difficulty in performing four-digit problems, there was a

from the logistic curve to find the number of addends at which participants’ performance was expected to

be a particular level (e.g. 50%), the wide range of psychometric functions we observed—and the relatively

limited number of trials we were able to ask for from our participants, many of whom were grade-school

children—made this approach unreliable. In contrast, the average trial level metric that we adopted accorded

very well to our intuitions about participants’ performance, formed after close examination of individuals’

data. Nonetheless, we believe the choice of summary measure did not qualitatively affect our results: the

same basic patterns were observed for measures like parameters of the logistic curve or alternative threshold

values estimated from the logistic curves.
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very tight distribution of addend thresholds. Figure 4, left, shows a histogram of these

average digit thresholds. Consistent with natural variation in a cognitive limit, the digit

thresholds were normally distributed (µ = 3.1, σ = .62, Shapiro-Wilk W = 0.98, p = 0.74),

and did not show non-normal kurtosis (Anscombe-Glynn test for non-normal kurtosis,

k = 2.91, z = .25, p = .80).

In contrast, in the height condition, there was no tight limit on the number of

addends that participants were able to sum. A histogram of addend thresholds is shown in

Figure 4, right; the distribution was quite different from that in the width condition. The

thresholds were not normally distributed (µ = 5.1, σ = 1.99, Shapiro-Wilk test for

violations of normality W = 0.95, p = 0.02). In addition, threshold scores exhibited

substantially lower kurtosis, indicating a wider spread of abilities (Anscombe-Glynn test

for non-normal kurtosis, k = −2.05, z = −2.05, p = .04). Finally, participants’ addend

threshold scores ranged widely, from 2 to 10.

What explained this difference in threshold distributions? The diffuse distribution

of thresholds in the height condition might simply reflect the varying skill levels across

participants; some added quickly and accurately due to greater practice with the MA

technique, while others were slower and more error prone. In contrast, the tight

distribution of thresholds in the width condition was more puzzling. There is no

qualitative change between how two-, three-, or four-digit addends are added on the

abacus. Instead, a limit on the structure of the MA representation seems like a possible

explanation for this result. This explanation would be consistent with our hypothesis

about the relation between the number of columns on the abacus and the limits on the

number of sets that can be stored in parallel in visual working memory, but might also be

confounded with the number of beads on the abacus, as opposed to the number of sets.

The next analysis follows up on this possibility by performing a separate analysis of the
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Figure 5. Probability of a correct response in Experiment 1 is plotted by two different

predictors on the horizontal axis. (left) Probability correct is plotted by the number of

abacus beads in the solution of the addition problem. The numbers used as markers on

the plot correspond to the number of columns involved in a problem. For problems with a

given number of columns—e.g., all instances of “4” on the plot mark all the problems with

four columns—there is no relationship between number of beads and probability of success.

(right) Probability correct is plotted by the number of columns in a problem, and plotting

markers correspond to the number of beads. Now it is clear that number of columns predicts

performance and there is no additional effect of beads.
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data in the width condition.

We next investigated the distribution of thresholds in the width condition by

contrasting two possible explanations of participants’ trial-by-trial performance in this

task. The first explanation was that problem difficulty increases as the number of abacus

beads “in play” on the abacus increases. The second explanation was that the number of

beads was irrelevant to problem difficulty and that the number of columns of abacus

involved in the problem is the primary determinant of performance.

We plotted the probability of success in a problem by the number of beads required

to represent the solution, marking the number of columns by using a numeric marker in

the plot, in place of a dot or square. We found no relationship between the number of

beads and probability of success (Figure 5, left). In contrast, when we plotted probability

of success by the number of columns of abacus involved (the number of digits in the

addends), there was a strong relationship between these two factors (Figure 5, right).

To quantify this visual impression, we used multilevel logistic regression models

(Gelman & Hill, 2006). These models allowed us to model the entire dataset produced by

our participants (all trials in all conditions). Unlike typical ANOVA analyses they A) are

appropriate for binary response variables (like whether a response was correct or not), B)

allow for the analysis of adaptive/asymmetric designs such as the one we used here, and

C) allow us to test for the effects of trial-level predictors like the number of beads or

columns involved in a particular addition problem. We use these models throughout the

studies reported here. In each experiment we used the multilevel model to capture the

effects of interest using group-level coefficients (“fixed” effects); at the participant level,

each model also included separate intercepts (“random” effects) for each participant.

To test the effects of the number of abacus beads and abacus columns on

participants’ performance in the width condition, we created separate models with

group-level effects of either beads or columns and then compared their fit to the data.
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Because the number of beads and columns in a display were highly correlated (r = .65),

this model-comparison approach provides a principled method for determining which

predictor better fits the data. While both bead and column predictors were highly

significant in their respective models (both p values < .0001), the column-based model fit

the data far better overall (χ2 = 504.58, p < .0001). In a model with both predictors, the

column predictor remained highly significant (p < .0001) while the bead predictor was no

longer significant (p = .21). This result shows that all variance explained by beads is due

to the correlation of number of beads with number of columns.

Summarizing the results of this analysis: while MA students varied widely in the

number of two-digit addends they could successfully sum in 10 seconds, nearly all students

were limited in width of the addends they could sum. This difficulty going beyond

three-digit addends was consistent with a column-based limit on computations (but not a

limit based on the number of beads involved in the computation), and further consistent

with a theory of MA as drawing on parallel set representations in visual working memory.5

Experiment 2: Verbal and manual interference

Hatano (1977) observed that MA users could answer basic factual questions while

doing abacus calculations. This result suggested that some language comprehension and

production could be integrated into the abacus routine, again suggesting that MA

representations are primarily visual, rather than linguistic. In addition, both Hatano’s

observations and our own experiences suggested that MA users made considerable use of

abacus-like gestures to facilitate computation. These gestures vary from person to person

5In fact, one advanced MA technique (which these participants had not been exposed to) involves learning

to use a three-column abacus to add much larger numbers by breaking them into parts. Although Hatano

and Osawa (1983) suggested that very highly trained adult MA experts may gain the ability to represent

more abacus columns over the course of many years of practice, we found no evidence for a significant

expansion in even the most experienced abacus users we tested.
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in their degree of intensity, but they are a notable feature of the MA technique and

obstructing them appears to cause difficulty in calculation. Thus, we were interested in

comparing verbal and manual interference effects in order to understand the relative

contributions of linguistic and gestural resources to MA computation.

Because of the relatively demanding nature of dual-task studies, which involve

carrying out two complex and unrelated tasks at once, we wanted to identify a subgroup

of MA participants that were expert enough to be able to do any kind of computation

under interference. We thus conducted an initial screening experiment with children from

local abacus schools, and asked the most expert group of children in the initial sample to

return for testing in Experiment 2 and perform a set of adaptive addition tasks, similar to

the height condition of Experiment 1.

Participants were tested in three different interference conditions—manual

interference, verbal interference, and combined manual-verbal interference—as well as a

baseline no-interference condition. In the manual interference condition, participants were

asked to tap their fingers on the table as they did the addition problem (pausing only to

enter the sum on a keypad). In the verbal interference task, participants listened to a story

on headphones and “shadowed” it by repeating back words and phrases immediately after

hearing them. Combined interference required performing both of these tasks at once.

In order to test whether the pattern of interference effects we observed was specific

to MA representations or general across other strategies for mental arithmetic, we

additionally tested a group of untrained control participants in an identical paradigm.

Methods

Participants. MA Participants were selected to be among the top students in their

cohort. This determination was made on the basis a pre-screening test of 346 MA

students using a test of physical and mental abacus ability. Our participants either scored
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higher than 90% on either the mental or physical portion of the test, had completed the

full UCMAS course of 3 years of training and gone on to the “grand levels” (advanced

training available for high performers), or were members in a group of UCMAS students

who performed demonstrations of mental arithmetic at public events. The 15 MA

participants had a mean age of 13.3 years (min = 9.7, max = 16.3).

Control participants were 23 undergraduates at the University of California, San

Diego who participated in exchange for course credit.

Procedure. The basic procedure was substantively identical to the height condition

in Experiment 1: participants were given an adaptive addition task in which they added

sets of two-digit addends under a 10 second time limit. There were two minor differences:

first, the paradigm began with a control task of retyping a single addend, and second, the

maximum number of addends was limited to eight, rather than 10.

Each participant received four five-minute blocks of trials. In the No-Interference

block type, sums were computed as in Experiment 1. In the Verbal-Interference block,

participants were asked to listen to and repeat a children’s story (verbal shadowing). The

story that we used for the verbal shadowing task was “Ali Baba and the Forty Thieves.”

It was read in Indian English, Hindi, and Gujarati by a trilingual instructor and children

were allowed to pick the language in which they were most comfortable to do the

shadowing task (so as not to conflate language difficulties with true interference effects).

Participants were instructed on verbal shadowing via a demo by an experimenter and then

given approximately one minute of shadowing practice before they began the addition

task. For untrained control participants, an American English version of Ali Baba was

used for verbal shadowing.

During the Manual Interference block, participants were instructed to drum their

fingers on the table and then pause briefly with one hand to type in the answer. If children

had difficulty drumming their fingers independently (as some of the youngest participants
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did) they were encouraged to tap their hands on the table at the same pace. The manual

interference task was also demonstrated by the experimenter. The last block combined

simultaneous manual and verbal interference. All participants performed all four blocks

(no interference, verbal interference, manual interference, and both interference tasks).

The second and third blocks were counterbalanced for order. An experimenter was present

during testing to monitor the children for compliance with the interference tasks.

Ensuring compliance was difficult. An experimenter was present to remind

participants to continue performing the manual interference task and would tap along

with the participant to remind them to be consistent in performing the task. However,

this was not possible during the shadowing task because the experimenter could not hear

the exact source text. Accordingly, we conducted an analysis to ensure that participants

were not trading off one task against the other, failing to shadow verbally while they were

performing the addition task. An independent coder segmented videotapes of each

participants’ performance by trial and rated their shadowing on each trial on a scale of

one to five from completely disfluent to completely fluent. We then split these ratings by

the difficulty of the addition problem (number of addends) and whether the participant

had given a correct or an incorrect answer. This analysis showed no evidence for trading

off between one task and the other. Shadowing fluency was numerically very similar

between trials where answers were correct vs. incorrect, and did not vary with the

difficulty of the addition task.

Results and Discussion

Despite the unfamiliarity and difficulty of the interference tasks, the MA experts

still showed surprising proficiency in adding while performing the interference tasks, with

some participants at ceiling even while performing both interference tasks simultaneously.
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Table 1

Coefficient weights for mixed regression models fit separately to error rates for MA and

control participants in Experiment 2. “:” indicates an interaction term.

MA Untrained control

Predictor Coefficient Std. Error z value Coefficient Std. Error z value

Intercept 4.78 0.28 16.93 6.93 0.34 20.17

Addends -0.45 0.07 -6.67 -2.09 0.14 -15.22

Manual interference -1.61 0.20 -8.22 0.11 0.14 0.81

Verbal interference -1.34 0.19 -7.06 -1.22 0.14 -8.50

Manual:Verbal 0.87 0.23 3.74 -0.28 0.19 -1.49

In contrast, control participants were far less proficient at addition overall, and were

unaffected by motor interference but strongly affected by verbal interference. Figure 6

shows estimated performance at each level for each condition and group, along with a

summary of the data.

Because of the complexity of this dataset (two groups, each with four

within-subjects conditions), we began by analyzing each group’s data separately using a

separate mixed logistic regression model, as in Experiment 1. Each model included a

group-level intercept term as well as effects of the number of addends in a problem, effects

of verbal and manual interference, and an interaction term for performing both

interference tasks simultaneously; the model also included participant-level slope and

intercept terms to account for differing baseline levels of abacus skill across participants.

Coefficients for the models for both groups are given in Table 1.

For MA participants, the manual and verbal interference tasks decreased
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Figure 6. Results of Experiments 2. The probability of a correct response in an adaptive

addition task with an increasing number of two-digit addends is plotted by the type of

interference and the number of addends for (a) MA users and (b) controls. Size of dots

reflects the proportion of participants with a given mean performance; lines reflect the best-

fit curves for a mixed logistic regression model, with colors showing the different interference

conditions.

participants’ performance significantly from baseline (p < .0001 for both coefficients), but

they did not differ significantly from one another. The manual by verbal interaction term

had a positive coefficient value, indicating a significant sub-additive interaction. We

speculate that this interaction is probably due to some fixed task-switching cost that is

incurred regardless of whether there are two tasks being performed or three as well as the

specific costs due to each interference task. For control participants, performance was

significantly decreased by verbal interference (p < .0001) but there was no significant

effect of manual interference and no interaction.
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Next, to test for a significant group by interference-type interaction, we constructed

a mixed model for both datasets. This model included terms for participant group (MA

vs. control), an interaction of participant group and number of addends, and terms for

motor interference, verbal interference, their interaction, and the interaction of all three

with participant group. This complex model nevertheless yielded highly interpretable

coefficient estimates. In the interest of brevity, we report only those that relate directly to

the question of what the differences were between groups. Capturing the overall higher

performance of MA participants in the task, there was a highly significant interaction

between the coefficient on number of addends and participant group (β = 1.55, p < .0001).

In addition, there was an interaction of participant group and motor interference

(β = −1.76, p < .0001), capturing the greater effect of motor interference on MA users.

Most adults in the control group were unable to add more than two addends with

any facility while under verbal interference. Our own anecdotal experience suggested that

the most difficult operation under verbal interference was “carrying”: when the sum in one

place value exceeded 9 and needed to be applied to a higher place value (as in e.g. 27 + 19

but not 27 + 12). To capture this effect, we created a mixed model of control participants’

data, identical to that reported in Table 1 except in that it included a term for the

number of carries in each problem. We found that the coefficient added significantly to

the fit of the model (χ2(1) = 342.47, p < .0001), with a coefficient estimate (β = −1.24) of

approximately the same magnitude of that for addends (β = −1.18). When we added an

interaction between verbal interference and number of carries, this coefficient was also

significant and negative (p = .002, β = −.38). These analyses indicate that “carrying” is a

difficult operation in verbal arithmetic, and further that carrying interacted with language

interference to produce an extra interference effect. When we carried out the same

analysis with the MA participant data (coefficient estimates can again be compared to

those in Table 1), we found neither a significant effect of carries (β = −.11, p = .17) nor a
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significant interaction between number of carries and verbal interference (β = −.07,

p = .26). This analysis confirms that MA users are employing different representational

resources to complete their calculations than control participants.

Both verbal and manual interference produced decrements in some MA participants’

performance, but if anything, manual interference was harder (despite the simplicity of the

tapping task). Some participants were still able to perform close to ceiling even under

interference. These data speak against an account under which either language or manual

skills are critical to MA performance, although both may play some facilitatory role6.

Comparing the magnitude of interference effects between the MA and control groups is

difficult across groups with such disparate baseline skill levels. Nonetheless, two pieces of

evidence suggest differences in the method of computation employed by the two groups:

first, the MA group made much greater use of motor resources during computation; and

second, the MA group did not show the same interaction between verbal interference and

the number of “carries” shown by the control grop. Thus, evidence from this experiment

does not rule out the possibility that there is some involvement of language in MA (we

return to this issue in the General Discussion), but it does strongly suggest qualitative

differences between the verbal algorithm used by control participants and the MA strategy.

6We noted anecdotally one very interesting phenomenon with respect to shadowing performance: gaps or

difficulties in shadowing were almost always at the end of an abacus computation, immediately before

entering the sum onto the keypad. We hypothesized that these gaps were caused by the necessity of

translating abacus representations into Arabic numerals. This translation process is likely at least partially

linguistic (since Arabic numerals are so closely linked to their corresponding word forms), and hence would

be likely to cause greater difficulties in the verbal interference task if abacus computations were otherwise

non-linguistic.
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Experiment 3: Abacus flashcards

In our final experiment, we asked whether the benefit of MA expertise is seen in

forming initial MA representations, or whether the primary benefit of practice with MA

comes in performing computations once representations have already been formed.

Although it seems clear that MA training requires extensive practice with computational

procedures, it is less clear whether it also involves a form of perceptual expertise, or

whether, as we suggested in the Introduction, MA takes advantage of existing visual

resources to build representations of number. However, because Experiments 1 and 2

relied on addition, these studies were unable to differentiate computational expertise from

perceptual expertise. To explore this question, we contrasted the performance of MA

experts and adult novices on a task that does not require arithmetic computation, but

that does require forming MA representations: flashcard reading.

As part of their abacus training, children that we tested learn to rapidly read

abacus flashcards: a card showing a schematic representation of an abacus is flashed and

participants call out the value shown on the abacus. Here we asked whether adult novices

could also perform this task with a brief training, and whether their performance differed

qualitatively from that of child experts, or if instead the two groups exhibit similar limits

in their ability to rapidly perceive bead arrays. Evidence that the two groups use similar

perceptual mechanisms for representing abacus structures would suggest that MA training

does not involve acquiring unusual perceptual expertise, but instead involves practice of

computational algorithms that are defined over existing perceptual resources.

To compare how experts and novices encode abacus structure, we not only tested

both groups with an abacus reading task, but also asked them to perform a series of

dot-array estimation tasks. The logic of this second set of tasks was as follows. If MA

experts acquire perceptual expertise when they learn MA, then they may become better

not only at reading an abacus flashcard, but also at encoding other perceptual arrays, like
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a set of dots on a screen. For example, when asked to estimate the number of beads on an

abacus structure, MA experts may be faster at this non-abacus task than adult controls.

However, in contrast, if MA exertise is not perceptual in nature, then we may expect little

difference in how experts and novices make such estimates.

In addition, using a dot array estimation task allowed us to probe whether abacus

structure might be, in some sense, optimized for visual processing. If abacus was designed

to fit the limits of visual processing, rather than requiring the development of perceptual

expertise, then we may expect that a non-abacus task like estimation will be facilitated

when arrays of dots are organized like an abacus, into small vertical columns.

To test this, we asked experts and novices to make estimates for five different types

of dot array. Across these five conditions, we parametrically varied the similarity of the

displays to an abacus, as shown in Figure 7a. The identical display tested the difference

between the abacus reading task and the estimation task. The rotated and configural

estimation displays tested whether the specific orientation and rectilinear arrangement of

beads, respectively, contributed to estimation accuracy. The jittered estimation task

tested whether the spatial extent of the abacus display was important. Finally, the

random dot estimation display provided a baseline for estimation performance. By

systematically varying aspects of the abacus structure in a distinct task, these conditions

allow us to investigate which parts of abacus structure aid in perceptually grouping

elements of complex displays.

Methods

Participants. The 133 MA participants in Experiment 3 had a mean age of 11.2

years (min = 6.8, max = 15.0). All participants were familiar with the abacus reading task

from their training; these participants were sampled from the same population as those in

Experiment 1 and had the same level of training. In addition to the MA participants, 30
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UCSD undergraduates participated for course credit. None had any prior experience with

abacus calculation or MA technique. Due to experimenter error, one estimation task from

three participants in the control group was not included in the analysis.

Stimuli and Procedure. Each MA participant in this experiment performed two

tasks, in a random order: an abacus flashcard reading task and one of the five estimation

tasks. For control participants, stimuli and procedures were identical, but all control

participants were tested in all six tasks in one of two random orders. Prior to testing, each

control participant completed a two-page abacus training worksheet which taught them

how to read abacus representations of the type used in our experiments and which gave

them practice on twelve abacus-reading problems.

Example stimuli for each of the six conditions are given in Figure 7a. In the abacus

flashcard task, participants were presented schematic images of an abacus (flashcards) for

500ms on a computer screen and were asked to report the cardinality represented by the

abacus using a numeric keypad. The task was adaptive in the number of abacus columns

in the pictured quantity: if participants gave a correct answer on two consecutive trials,

an extra column was added to the next trial; if they were incorrect on one trial, a column

was subtracted. Participants were given feedback after each trial and there was no time

limit for responses.

For the estimation tasks, participants simply reported the number of dots on the

screen. Tasks were (1) Identical: abacus flashcards identical to those used in the reading

task (N=24), (2) Rotated: mirror images of abacus flashcards rotated 90 degrees (N=24),

(3) Configural: abacus flashcards with the beam and rod structures removed but the

configuration of beads preserved (N=36), (4) Jittered: random dot arrays jittered within

the bounding box space that the beads in the corresponding abacus flashcard would have

occupied plus a small constant (N=25), or (5) Random: random dot arrays (N=24).

Each estimation task was adaptive according to the same distribution of trials as
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the flashcard task. For individual participants, stimuli were generated beginning with

1-column abacus flashcards (with 1 – 5 beads) and then converted into estimation

displays. If two of these trials were completed correctly, stimuli sampled from a 2-column

abacus display were converted into estimation displays (with 1–10 beads). This procedure

matched the adaptive structure of the estimation tasks exactly to the adaptive structure

of the flashcards task. Because of the inherently noisy nature of the ANS, this procedure

ensured that the majority of trials were in the range of 1–10 items (since nearly all trials

with 1–5 items were correct and most were incorrect for quantities above 5). Nevertheless,

most participants saw at least some trials in the 10–15 range.

Results and Discussion

All results for both MA and control participants are given in Figure 7. We began by

analyzing the abacus-reading component of the experiment, which every participant

completed. Consistent with the results of Experiment 2, we found that abacus reading

accuracy was better predicted by a model including the number of columns on the abacus

than by a model with the number of beads in play (χ2 = 815.89, p < .0001). Abacus

reading accuracy was highly comparable across the groups of MA children tested in each

of the five estimation tasks (M = .72, .72, .73, .74, and .73, respectively). Although

accuracy data were noisier in the untrained participants, results resembled those for MA

users: the column-based model fit far better than the bead-based model (χ2 = 128.36,

p < .0001). Hence, even in the absence of extensive MA training, untrained participants

grouped the abacus displays into columns.

Supplementing this analysis, we conducted an error analysis of the MA users’ data.

The most interpretable errors came on the 57% of error trials where only a single column

was misread. In these trials, there was an effect of the number of beads being read, but it
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Figure 7. (a) Displays in Experiment 3. The color around each display corresponds to dots

and lines in b–e. (b) Accuracies for MA participants. Probability of correct response plotted

by number of abacus beads in the correct response. Size of dots reflects the proportion of

participants with that mean performance; lines reflect best-fit curves for a logistic regression

model. (c) Log reaction time for MA participants. (d) Accuracy data for untrained adults.

(e) Log reaction time data for untrained adults.



Representing exact number visually 35

Table 2

Coefficient weights for logistic mixed model analyses of accuracy in MA users and control

participants in Experiment 3.

Predictor E2 Coef. (Std. Error) z value E3 Coef. (Std. Error) z value

Abacus 2.80 (0.07) 41.03 3.24 (0.21) 15.34

Identical 3.54 (0.19) 18.24 3.35 (0.20) 16.82

Rotated 3.92 (0.19) 20.40 3.84 (0.20) 18.83

Configural 4.10 (0.15) 27.63 4.70 (0.23) 20.63

Jittered 5.66 (0.24) 23.88 5.29 (0.23) 23.25

Estimation 5.52 (0.24) 22.87 5.17 (0.23) 22.50

Abacus:Beads -0.21 (0.01) -28.16 -0.36 (0.03) -14.48

Identical:Beads -0.31 (0.02) -14.48 -0.29 (0.02) -13.96

Rotated:Beads -0.36 (0.02) -16.94 -0.33 (0.02) -15.81

Configural:Beads -0.41 (0.02) -22.98 -0.40 (0.02) -17.79

Jittered:Beads -0.65 (0.03) -21.61 -0.55 (0.02) -22.39

Estimation:Beads -0.63 (0.03) -20.98 -0.53 (0.03) -21.43
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Table 3

Coefficient weights for linear mixed model analyses of log reaction time in MA users and

control participants in Experiment 3.

Predictor E2 Coef. (Std. Error) t value E3 Coef. (Std. Error) t value

Abacus 0.28 (0.02) 11.55 0.40 (0.06) 6.85

Identical 0.37 (0.04) 9.70 -0.43 (0.06) -7.34

Rotated 0.21 (0.04) 5.63 -0.58 (0.06) -9.85

Configural -0.10 (0.03) -3.38 -0.61 (0.06) -10.39

Jittered -0.15 (0.03) -4.44 -0.79 (0.06) -13.57

Estimation -0.11 (0.04) -2.98 -0.65 (0.06) -11.16

Abacus:Beads 0.06 (0.002) 34.01 0.08 (0.007) 11.50

Identical:Beads 0.13 (0.004) 31.16 0.14 (0.006) 22.51

Rotated:Beads 0.12 (0.004) 32.16 0.14 (0.006) 22.90

Configural:Beads 0.14 (0.003) 48.18 0.14 (0.006) 23.26

Jittered:Beads 0.13 (0.004) 36.72 0.14 (0.006) 23.90

Estimation:Beads 0.15 (0.001) 39.79 0.14 (0.006) 23.52

Trial number -0.0020 (0.0001) -14.740 -0.001 (0.0001) -12.731
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was not a linear effect that grew with quantity. Instead, children were most likely to make

errors when reading columns that contained 3 beads (39% of all errors), followed by

columns with 2 and 4 (20% and 28% respectively), and were least likely to make errors for

columns containing 1 or 5 beads (9% and 4% respectively). While this result is congruent

with a number of possible theories about the internal structure of MA columns, it argues

against the operation of the ANS even within individual columns. If columns were

represented using the ANS, we would predict the largest number of errors to occur in

columns with 5 beads, rather than 3. We return to the implications of this analysis in the

General Discussion.

Next, we compared flashcard accuracy data with accuracy data from the estimation

tasks. For each group, we fit a single multi-level model to the entire dataset produced by

our participants (all trials in all conditions), with group-level effects for each condition and

the interaction of condition with number of beads in the trial. Coefficients are reported in

Table 2, along with z value approximations for the group-level effects in the model.7 The

ordering of accuracies for the five estimation tasks was almost identical for the MA-trained

and untrained groups. In both groups, jittered and random estimation tasks grouped

together and these two tasks were more difficult than the three configural conditions,

which also grouped with one another. This suggests that the increased performance of MA

users in the identical, rotated, and configural conditions relative to random and jittered

conditions was not due to their extensive MA training. Instead, the advantage seen in

these conditions seems to be a consequence of the perceptual properties of the stimuli.

However, abacus reading was a difficult and error-prone task for the control participants,

7All p values are derived from this z approximation. While this approximation can be anti-conservative

for small amounts of data, the large size of the dataset we used means that this anti-conservatism is quite

minimal (Pinheiro & Bates, 2000). Using this approximation, non-overlapping standard errors can be

interpreted as significant differences at p < .05.
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while for the MA users, abacus reading exhibited greater accuracy (with lower intercept

and higher slope) than any of the five estimation tasks (p < .0001 for all comparisons).

For each group, we also fit similar models to reaction times, measured at their first

key-press (Table 3).8 We used a linear regression to predict the natural logarithm of

reaction time, choosing a log transform because individual reaction times (the input data

to the mixed linear model, which operated over every trial individually rather than over

means) are well-described by a log-normal distribution. Reaction times greater than three

standard deviations above the mean (constituting 1.9% of the total data) were omitted

from this analysis. Because reaction times tend to decrease over the course of an

experiment, we added a coefficient for trial-number to the model.

For both groups, the reaction time slope for abacus flashcards was qualitatively

different from that for all of the estimation tasks (which were largely undifferentiated).

Both untrained adults and MA users showed a lower reaction time slope for abacus reading

than for any other task (all ps < .0001 for comparisons between coefficients). The different

slope for abacus reading relative to estimation for both groups is consistent with the view

that abacus reading is an operation over columns rather than individual beads. Since

estimation reaction times increase according to the number of items in a display (Whalen

et al., 1999), the flatter slope and faster RTs for abacus reading indicate a distinct

process—e.g., one that operates over columns and their configurations, rather than over

individual beads. Nevertheless, for control participants, their intercept was significantly

higher than for all other conditions (all ps < .0001). This higher intercept likely reflects a

greater constant cost for conversion of abacus quantities to Arabic numerals.

We conducted this experiment to test the nature of MA expertise, and whether it is

rooted primarily in the mastery of computational procedures or also involves acquiring

8We made use of the first key-press rather than total input time in order to avoid the confound that larger

numbers take longer to input. Thus, RTs analyzed here are due to processing time for different displays.
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perceptual expertise. The flashcard reading task, easily learned by novice adults, found

qualitatively similar limits in both novices and MA experts, suggesting that similar

mechanisms were used by both groups. Further, we found that in both groups dot-array

estimation grew more accurate as dot-arrays grew closer in structure to actual abacus

configurations, suggesting that visual arrays are more easily processed as they become

more similar to abacus structures. Both findings are consistent with the hypothesis that

MA is adapted to the design of the human visual system, rather than requiring the

acquisition of perceptual expertise. We conclude, therefore, that the difference between

MA and control participants is the set of highly-practiced operations that MA

participants are able to bring to bear on arithmetic problems, not the nature of the

representations they can form.

General discussion

Our studies examined mental abacus (MA), a powerful mental arithmetic technique

that allows users to make extremely fast and accurate computations beyond the reach of

typical arithmetic techniques. We asked two broad questions about MA. First, building on

previous reports, we tested the idea that MA computations are non-linguistic by asking

users to perform addition while doing concurrent linguistic and motor interference tasks,

and compared this to the performance of untrained control participants. Second, we asked

how MA might be represented in the visual system. Our results support the idea that

columns in MA are represented as separate sets. On our view, inputs and outputs to MA

computations are linguistic, but computations performed over this parallel set

representation involve visual working memory resources (along with an intriguing gestural

component related to the motor operations involved in individual steps of MA arithmetic).

In the following two sections we sketch a more detailed picture of MA representations and

then discuss the relationship of MA computations to language and the approximate
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number system (ANS). We end by considering some broader implications of this work.

The nature of MA representations

Visual working memory is believed to be limited in its capacity to approximately

four objects and the approximate number system lacks the precision to capture the exact

numbers used in abacus computations (Alvarez & Cavanagh, 2004; Feigenson et al., 2004;

Luck & Vogel, 1997). As a result, neither system has the capacity to encode abacus

structure. Thus, the status of the initial proposal (that MA representations are images)

has been tentative, awaiting an account of how the detailed structure of an abacus could

be represented using limited visual resources.

As noted in the Introduction, recent studies provide evidence that the visual system

can represent information about multiple sets. In these studies, participants perform three

to four numerical estimates in parallel (Halberda et al., 2006; Feigenson, 2008). Additional

evidence suggests that multiple object tracking abilities are enhanced when targets are

displaced horizontally in space (allowing each visual hemifield to form independent

representations) (Alvarez & Cavanagh, 2005). Together, these studies suggest that

untrained subjects can use attention to track not only multiple objects, but also the

members of multiple sets. These studies raise the possibility that the columnar structure

of MA allows users to select multiple horizontally-adjacent columns in parallel, to then

track their contents, assign features to columns, store their values, and perform

computations over their contents.

Evidence for this proposal comes from several findings reported in this study. First,

in Experiment 1 we found a tight limitation on the number of columns that can be

involved in an addition problem, but a much looser limit on the number of beads or

addends. These signatures were also found in Experiment 3, where subjects were asked to

either read abacus flashcards or makes estimates for visual arrays that varied in their
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resemblance to an abacus. This study also revealed a difference in RT slopes for abacus

reading compared with estimating from comparable displays. The presence of a distinct

RT slope in even novice adults with only brief exposure suggests that grouping the MA

representation in this way is an automatic consequence of the place-value organization of

abacus combined with its visual structure, rather than an overlearned strategy.

Our findings also suggest that the particular layout of MA—rectilinear, horizontally

extended, and segregated into columns—is optimized for visual processing. When

participants were asked to estimate the number of “beads” in a visual array, both MA

users and controls performed better as the structure of the arrays become more similar to

actual abacus structures. Previous studies report that configural cues similar to those

provided by the abacus, greatly facilitate numerical estimation, mirroring our findings

(Mandler & Shebo, 1982; Atkinson, Francis, & Campbell, 1976; Van Oeffelen & Vos,

1982). For example, in a study by Atkinson et al. (1976), participants were asked to make

estimates for columns of dots including up to 12 items. Accuracy was perfect for arrays up

to 4, but fell off quickly thereafter. However, critically, estimates for sets of up to 8 were

also perfect if items were arranged into rows of 4 or fewer dots, and the rows were

presented at a 90 degree angle to one another. Thus, it is likely that the rectilinear

structure and frame of the abacus make it considerably easier for the image to be grouped

into sets and maintained in memory.

Our proposal leaves open the precise internal structure of abacus columns in MA,

however. According to the proposal just described, either ANS or visual working memory

alone might represent the beads within individual columns (e.g., by representing columns

as approximate values from 1–5, or as arrays of objects, each able to receive its own

attentional index). While our current data do not provide conclusive answers about the

internal structure of columns in the MA representation, they nonetheless speak to the

question, suggesting that the ANS is not likely used to represent the contents of columns.
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Instead, our data suggest that MA users track individual beads within each column,

perhaps shifting attention from one column to the next as they do computations.

First, in analyses of the data from Experiment 3, we found that MA users’ errors

when reading flashcards did not increase linearly as the number of beads on a column

increased, but instead were affected by configural cues related to the position of particular

beads. Thus, an estimate based purely on approximate number cannot explain childrens

errors. Second, when MA users do arithmetic, they track the location of individual beads

in space, and move them in their visual image. Evidence that users do this comes not only

from the errors that they make and their access to intermediate steps of MA computation

(Stigler, 1984), but also from the robust and often highly detailed gestures that children

make when doing computations: their fingers move in space as they move beads up and

down the columns of their virtual device (for discussion, see Brooks, Goldin-Meadow,

Frank, & Barner, in prep). These abilities cannot be explained if column contents are

represented in the ANS alone.

In addition, we found that the ANS abilities of the MA users in Experiment 3 were

quite similar to those of control participants. This result is interesting to consider with

respect to an ongoing discussion about the role of the approximate number system in

symbolic math expertise. (Halberda, Mazzocco, & Feigenson, 2008) showed that those

children who had more accurate approximate number representations also performed

better in standardized tests of symbolic mathematics, even controlling for a host of other

cognitive factors. This finding has since been replicated in another population (Gilmore,

McCarthy, & Spelke, 2010), but the causal direction underlying the correlation is puzzling.

Is it the case that practice with exact numerosities improves approximate magnitude

estimation, or is approximate magnitude precision important for “checking your work” in

symbolic mathematics? Our findings suggest a bound on any causal connection between

symbolic practice and improvements in ANS accuracy: even extensive mental abacus
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practice—enough to allow children to be considerably better at mental arithmetic than

adults—does not make children adult-like in their estimation abilities.

To summarize, we propose that MA representations are supported by parallel set

representations, which operate over the columns of the abacus. Individual columns

preserve information about the identity and location of individual beads, suggesting that

they are not approximate number representations but instead have some more complex

substructure. This substructure is not specified by the current data and may be a fruitful

topic for future work.

The relationship of MA to language

Our proposal is that MA involves performing mental arithmetic in a non-verbal

format, unlike standard mental arithmetic techniques which rely on phonological working

memory. One component of this argument, made in Experiments 1 and 3 of this paper,

involved showing how such representations might be possible, given known limits of visual

working memory. An equally important step in the argument, however, is to show

experimentally that MA users remain proficient at arithmetic even when doing a

concurrent verbal task. This was the goal of Experiment 2.

In this experiment, inspired by earlier work of Hatano (1977), we showed that

experienced MA users were surprisingly competent at doing mental sums while

simultaneously repeating an auditorily presented story (and were equivalently affected by

a simple tapping task). In contrast, we found that untrained adults were much more

affected by verbal interference than MA users, but not affected at all by motor distraction.

In addition, controls but not MA users showed differential verbal interference effects for

sums that contained many“carries” (operations that spanned place-values). Together,

these results confirm Hatano’s results and provide support for the contention that MA

relies on primarily non-verbal structures.
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Language likely does play a role in the acquisition and use of MA, however. First, to

our knowledge, abacus use is always taught after children learn verbal numbers. Second,

when individuals use MA, both the inputs and outputs of computations are either Arabic

numerals or their verbal counterparts. As a result, verbal interference should have some

modest effect on the use of MA, to the extent that it interferes with this translation

process. What we have argued here is that, although the inputs and outputs to MA are

linguistic, the format of representations during MA computation is not. MA is like an

electronic calculator in this sense: its internal states use a representation that is

convenient for calculation but not linked to language, while its inputs and outputs are

base-10 numerals, linked to language. In the case of a calculator, the internal

representation is binary or hexadecimal numbers stored in electronic registers; in the case

of MA, the internal representation is soroban columns stored in visual working memory.

The language interference effects shown by MA users in Experiment 2 could

therefore have several explanations that are consistent with a visual theory of MA

representations. First, verbal interference could have interfered with (linguistic) input and

output processes for MA computations. As noted above, we saw anecdotal support for

this explanation from pauses in shadowing that corresponded to when participants were

outputting the results of MA calculations. Second, verbal shadowing could simply impose

a general task-switching or task-monitoring cost because of the complexity of the

shadowing task. In neither case would the relatively modest decrement verbal interference

effect that we observed be evidence for MA representations being linguistic in nature.

Summarizing this discussion, MA is a representation of exact number that draws on

visual (and perhaps motor) resources to complete computations. Inputs and outputs for

these computations are often linguistic, but due to their unique structural signatures and

their relative resistance to verbal interference, we do not believe that the representations

themselves critically depend on language.
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Conclusions

Over human history—from Babylon, to Roman times, to China and Japan—almost

every form of counting board and abacus has organized counters into small sets that fall

within the limits of visual working memory. Even apparent exceptions like the Russian

schoty prove the rule. The schoty features 10 beads per column, but groups the beads into

a 4-2-4 structure using color cues in order to allow users to identify bead configurations

easily (Menninger, 1969). Our study suggests that the soroban abacus is optimally

designed to take advantage of grouping cues that permit the rapid encoding of objects in

visual working memory. Even slight deviations from the soroban structure cause both

trained and untrained individuals to be slower when encoding sets.

The mental structure of MA allows users to store multiple columns of beads

simultaneously in working memory. By assigning each column a distinct place value, users

can represent and manipulate large exact numerosities using visual resources. Although

MA interfaces with language, numerical content nonetheless appears to be represented in

visual working memory, suggesting that language is not the sole mental format for

representing precise numerosities. More generally, the example of MA suggests that

humans can make use of a range of cognitive resources in constructing symbolic systems.
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