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Over the recent years, advances in brain imaging, optogenetics

and viral tracing have greatly advanced our understanding of

the cerebellum and its connectivity. It has become clear that the

cerebellum can be divided into functional units, each

connected with particular brain areas involved in specific tasks,

allowing afferent and efferent pathways to process task-

specific information. The activity patterns in these pathways

can be widely different among cerebellar areas. Therefore, it is

expected that each cerebellar module is tailored to interpret

inputs with a specific activity profile. In this paper we will review

the evidence for region-specific inputs, region-specific

connectivity with the rest of the brain, and region-specific

processing within the cerebellum.
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Introduction
The cerebellum plays a pivotal role in several behaviors

that range from reflexive and planned motor coordination

to emotional and cognitive processes. This wide range of

behaviors all need to be processed by the same basic

cerebellar circuitry. The cerebellar cortical circuitry is

highly stereotyped. Mossy fibers synapse onto granule

cells and Golgi cells in the granule cell layer. Granule

cells in turn give rise to parallel fibers that traverse large

portions of the cerebellar cortex to synapse onto Golgi

cells, molecular layer interneurons and Purkinje cells.

Climbing fibers synapse onto Purkinje cells and molecu-

lar layer interneurons to provide learning or instructive

signals. Golgi cells provide feedforward and feedback

inhibition to granule cells, whereas molecular layer inter-

neurons provide feedforward inhibition to Purkinje cells.
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Ultimately, all information passes through Purkinje cells

to reach neurons in the cerebellar nuclei from where

signals are sent to a myriad of brainstem and midbrain

nuclei.

Over recent years evidence has emerged that the cere-

bellum can be subdivided into several specialized regions

to facilitate control of specific behaviors. Below we iden-

tify the basis of cerebellar zonation and its interconnec-

tedness with the rest of the brain, we lay out what

information is relayed to the cerebellum and how activity

in various mossy fiber pathways differs between cerebel-

lar partitions, and finally, we highlight evidence that

different zones in the cerebellum are adapted to process

differential information in their afferents.

The cerebellum is divided into functional
zones
The cerebellar vermis and hemispheres can be subdi-

vided into ten lobules. Classically, each lobule has been

considered to be responsible for a particular sensory-

motor function [1]. However, over the past decades it

has become clear that a lobule should not be considered as

the main functional unit, since many cerebellar control

functions can span multiple lobules. For example, one

eyeblink region in the mouse cerebellum has recently

been identified at the base of the primary fissure in the

hemispheric extensions of lobules V and VI, implicating

that parts of both lobules may be involved in eyeblink

conditioning in mice [2��,3]. In addition, transsynaptic

tracing of the eyeblink circuits in mice suggests that

their cerebellar cortex contains also various other eye-

blink regions, dispersed over lobules in not only the

hemispheres, but also vermis and paravermis [4,5]. This

potential multi-lobule organization of cerebellar eye-

blink control is supported by electrophysiological sti-

mulations and recordings of the eyeblink regions in cat

[6]. Thus, even though specific functionalities might still

be attributed to particular regions in different lobules, it

is difficult to sustain the view that a lobule forms the

main functional unit.

In mediolateral direction the cerebellum can be divided

into functional stripes delimited by zebrin. Stripes of

Purkinje cells expressing zebrin are alternated with Pur-

kinje cells negative for this protein. Each stripe seems to

work more or less on its own, since dendrites and axons of

most types of cerebellar neurons have been shown to not

cross zebrin borders [7,8]. Moreover, in most cases the

climbing fiber input and frequently also the mossy fiber

input appear to respect the zebrin borders [9,10]. In

general, the zebrin-organization of the cerebellum is
www.sciencedirect.com
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highly conserved throughout phylogeny in that it can be

observed not only in mammals, but also in for example

pigeon, catfish, goldfish, mormyrid fish, star-nosed mole

and echidna [9,11–14]. Interestingly, in pigeon the zebrin

identity of Purkinje cells in the uvula and flocculus has

been shown to be associated with a preferred activity

encoding a particular optic flow such as contraction, trans-

lation or rotation [12�]. Finally, at a more detailed level

zebrin zones can be even further divided into microzones,

which are characterized by a particular functional response

of climbing fibers firing in synchrony [15,16].

Combining various cerebellar maps may thus result in a

finely parcellated cerebellar cortex consisting of putative

functional units. If these delineated units indeed repre-

sent functional units, it is expected (A) that each unit is

connected in a specific manner to the rest of the brain, (B)

that the activity observed in each unit sub-serves the

function of that unit, and (C) that adaptive processing in

that unit is tailored towards the function of the unit

(Fig. 1). These three predictions will be further elaborat-

ed upon in the next sections.

The cerebellum forms closed loops with the
rest of the brain
Output from Purkinje cells is processed by neurons in the

cerebellar nuclei, from where it is sent off to various
Fig. 1
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The cerebellum can be divided into the anterior region (red), posterior

region (green) and vestibular region (blue). Each region has its own set

of afferent and efferent projections. The activity profiles of these

afferent projections influence cerebellar activity and processing,

ultimately influencing the firing frequency and regularity of Purkinje

cells. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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nuclei in the midbrain and hindbrain [17,18]. Each func-

tional unit of the cerebellar cortex is connected to a

specific subnucleus of the cerebellar nuclei [19,20], with

the most lateral parts of cerebellar cortex connected to the

lateral or dentate nucleus, intermediate parts of cortex

being connected to the interposed nucleus and most

medial parts connected to the medial or fastigial cerebel-

lar nucleus [15]. A similar scheme can be observed for

climbing fiber projections from the inferior olive to the

cerebellar cortex and nuclei [21]. Inhibitory connections

from the cerebellar nuclei to the inferior olive close the

olivo-cerebellar loop, thus enabling Purkinje cells in

cerebellar cortex to regulate their own climbing fiber

discharge [22�,23�].

Excitatory outputs from the cerebellar nuclei project for

example to the thalamus and thereby indirectly influence

neocortex, striatum and hippocampus [22�,24,25,26��].
The projection to the thalamus is sufficiently robust to

instantaneously stop generalized seizures in the cerebral

cortex following optogenetic stimulation of the cerebellar

nuclei [27]. Similarly, blocking a prominent cerebello-

striatal connection has recently been shown to alleviate

motor symptoms in a mouse model for cerebellar-induced

dystonia [26��,28], further highlighting the relevance of

the connectivity of the neocerebellum with the neocor-

tex. Lobules I through V seem to be mostly involved with

sensorimotor cortex, whereas lobules VI through part of

lobule IX are more connected with association cortices

[29,30,31,32�,33,34,35��,36]. In contrast, no prominent

connections have been found between lobule X (vesti-

bulocerebellum) and cerebral cortex. The functional

connectivity with cerebral cortex coincides with the con-

nectivity between the cerebellum and pontine nuclei,

thus creating additional, closed and topographically orga-

nized loops [31,32�,33,37,38]. Moreover, the connectivity

to the cerebral cortex coincides largely with that to

afferent nuclei in the brainstem. For example, sensory

nuclei, such as the external cuneate nucleus, project

mainly to the sensorimotor parts of the cerebellum

[39–42], pontine nuclei converge mainly on the central

and posterior zones of cerebellar cortex [41��], and ves-

tibular nuclei project mainly to lobules IX and X [43].

Thus, the cerebellum is involved in many closed loop

circuitries including not only those of the olivocerebellar

modules, but also those of the cerebral cortex.

Regional differences in input dictate cell
physiological responses
Activities in afferent nuclei to the cerebellum have not

been investigated in great detail yet, but seem to differ in

their firing pattern. Neurons in sensory nuclei in the

brainstem (e.g. cuneate nucleus) often respond with a

bursting response upon peripheral stimulation [39,40].

Cerebellar projecting neurons in the lateral reticular

nucleus can show similar bursting behavior [39,40],

but also clock-like activity with profound pausing upon
Current Opinion in Neurobiology 2015, 33:150–155
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peripheral stimulation [44,45]. Interestingly, the pontine

nuclei contain various types of neurons, which can show

different levels of tonic activity intermingled with bursts

of activity [46,47]. Neocortex drives activity in cerebel-

lum and blocking activity in neocortex during slow wave

activity blocks slow wave activity in cerebellum [48]. This

relation seems especially strong between primary sensory

cortex and cerebellum [49]. The cerebral-pontine-cere-

bellar connection therefore seems of particular impor-

tance for binding cerebral and cerebellar activities.

Vestibular projections to the flocculo-nodular zone of the

cerebellum have been extensively studied. Primary ves-

tibular afferents can be subdivided into regular and

irregular afferents. In anesthetized rodents, regular affer-

ents show a remarkable linearity in their response to

vestibular stimulation and short-term synaptic plasticity

is virtually absent at physiological rates in these afferents.

This facilitates a linear translation from vestibular affer-

ent to vestibular nuclei neuron [50,51]. However, in

awake behaving monkeys, non-linear translations can

occur at this synapse when superimposed frequencies

are used for vestibular stimulation [52]. Moreover, when

the signals of regular and irregular afferents are integrat-

ed, vestibular nuclei neurons seem to show activity, which

is even more irregular than that of irregular afferents,

making them rely on averaging multiple neurons for

reliable signaling [53]. By extension, mossy fibers arising

from vestibular nuclei neurons in the anesthetized prep-

aration show predominantly tonic activity, providing a

regular drive to granule cells [54�], even though the level

of variation in firing is presumably higher in awake

behaving animals.

Clearly, each part of the cerebellum receives tailored

inputs. Anterior cerebellum receives inputs mainly from

sensory brainstem nuclei and sensorimotor afferents from

forebrain that have a mixed bursting and tonic character.

The central and posterior cerebellum is connected with

association cortices, but virtually nothing is known about

the activity in these pathways. Finally, the flocculonod-

ular zone receives vestibular inputs that are probably

predominantly tonically active.

The cerebellum performs region-specific
computations
Different from the firing frequency of climbing fibers,

which does not reach far beyond a few spikes per second,

the firing frequency of mossy fiber inputs can range from

several up to several hundred spikes per second. Thus, in

addition to the differences in firing patterns described

above, mossy fiber activity is also characterized by an

enormous diversity in firing rates. Since this can also vary

among regions, it raises the question to what extent the

diversity in mossy fiber inputs translates into different cell

physiological response properties of the various cell types

in the different cerebellar lobules and zones.
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Differences in mossy fiber input have to be interpreted by

granule cells. There is considerable disagreement wheth-

er granule cell spiking can be elicited by a single mossy

fiber input firing at low frequency [55] or whether several

inputs at a high frequency are needed to generate granule

cell output [56]. The reason for these discrepancies might

in part be found in the fact that these experiments were

performed in different parts of cerebellar cortex, medial

anterior and lateral posterior lobe, respectively [55,56].

Possibly, the expression patterns of relevant conduc-

tances have been adapted during evolution to the local

demands of the regions involved. Indeed, granule cells in

lobule II (anterior lobe) and lobule IX (posterior lobe)

differ in their expression of the CaV3–Kv4 complex,

which regulates the responsiveness to bursts versus tonic

inputs [57��]. Not surprisingly, granule cells in lobule II

are more responsive to bursts of mossy fiber input, where-

as granule cells in lobule IX are more sensitive to slow

changes in mossy fiber input [57��]. This mechanism may

present an elegant example where cell physiology is

tuned to optimally interpret afferent inputs.

Activity in the granule cell layer directly affects the activity

of molecular layer interneurons, which inhibit Purkinje

cells, as well as that of Purkinje cells themselves, which

form the sole output neuron of the cerebellar cortex.

Indeed, we have recently shown that activity profiles from

mossy fibers are transmitted through the cerebellar cortex,

dictating firing regularity of interneurons and Purkinje

cells [54�]. Purkinje cells express a tonic current that drives

neurons to spike at 50–100 Hz in slice and in vivo, and at

about 30 Hz in isolated culture [58]. This intrinsic tonic

spiking, which in vivo can be influenced by excitatory

input from granule cells and inhibition from molecular

layer interneurons, has been investigated in slices in the

absence of synaptic transmission [59,60,61�]. A comparison

of Purkinje cells in the anterior cerebellum with those in

the vestibulocerebellum revealed that lobule X Purkinje

cells can sustain tonic firing rates longer with less adapta-

tion compared with anterior lobe Purkinje cells [60]. At the

same time lobule X Purkinje cells are generally less

excitable and therefore show lower average firing rates

than Purkinje cells in anterior cerebellum. In effect, Pur-

kinje cells in lobule X may trade off their excitability to

sustain constant or slowly modulated firing rates at higher

input intensities. Purkinje cells in the anterior cerebellum

on the other hand are better positioned to faithfully

transmit short high-intensity inputs, like those arising from

bursty granule cell-relayed mossy fiber inputs associated

with the anterior cerebellum [54�,59].

Two recent studies investigated the firing frequencies

and regularity of Purkinje cells throughout the cerebel-

lum in vivo [61�,62�]. The most prominent land-mark

feature of the output frequency of a cerebellar module

seems to be expression of zebrin, but the actual deter-

mining factors are probably other zone-related proteins
www.sciencedirect.com
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[61�]. Purkinje cells in zebrin-positive zones showed on

average a lower firing frequency than those in zebrin-

negative zones [61�,62�]. In accordance with the afore-

mentioned in vitro studies, firing frequency decreased

when moving from anterior cerebellum, which contains

mostly zebrin-negative cells, to the vestibulocerebellum,

which is dominated by zebrin-positive cells.

Interestingly, Zhou et al. [61�] found in awake mice a

slight difference in regularity between the different zones

of the cerebellum. The anterior zone showed lowest

regularity, while PCs in the vestibulocerebellum were

most regular. This difference however disappeared when

looking at in vitro firing of Purkinje cells, highlighting the

potential importance of mossy fiber inputs [54�]. In con-

trast, Xiao et al. [62�] found in anesthetized rats that PCs

in zebrin-positive zones fired more irregularly than those

in zebrin-negative zones. Both, Zhou et al. and Xiao et al.,

found a slight difference in complex spike firing rates and

complex spike pause duration between PCs in zebrin-

positive and -negative zones [61�,62�], highlighting ho-

meostatic regulation of firing of inferior olivary neurons

through the cerebellar cortical and nuclear loop [22�,23�].

Conclusions and future directions
In this article we have reviewed evidence for the exis-

tence of functional cerebellar zones that are connected to

other brain areas in a zone-specific manner. Evidence has

emerged that functional zones of the cerebellum are

specialized in their physiology to process specific kinds

of inputs. Substantial circumstantial evidence indicates

that mossy fiber systems, which often target lobule-ori-

ented regions, will impact the firing behavior within a

module and the potential for its adaptation (Fig. 1).

Taken together, it seems that the precise physiological

processing of a cerebellar module is adapted to its tasks

and the mossy fiber sources involved and that the corre-

sponding physiology can tell us about the functionality of

the cerebellar module.

Before we can come to a full understanding of the relation

between cerebellar function, cerebellar zonation, cere-

bellar interconnectivity and cerebellar connectivity, there

are several issues that need to be resolved.

First, there is relatively little known about the physiology

of pontine nuclei neurons during behavior. Some infor-

mation is available on gaze information coded in these

neurons, but many other modalities should be transmitted

through the pontine nuclei to the cerebellum

[26��,31,37,41��,63]. Understanding what information ex-

actly is relayed to the cerebellum will prove essential for

the understanding of cerebellar function in relation to the

rest of the brain.

Second, although some is known about cerebellar projec-

tions to the thalamus, the full extent of cerebellar impact
www.sciencedirect.com 
on processing in the mid- and forebrain remains to be

elucidated. A thorough understanding of what informa-

tion is relayed and which areas are affected is necessary to

advance our understanding of cerebellar processing.

Third, evidence about region-specific processing in the

cerebellum is now emerging slowly but steadily. The

cerebellar cortex is much less stereotyped than classically

described [64]. Investigations into signal processing of

specific areas of the cerebellar cortex will help us under-

stand how the cerebellum integrates information from

diverse sources and how its output is relevant for its target

structures. Also, insight in different ways inputs are

treated will help us understand the computations the

cerebellum performs.

Finally, all these issues need to converge into a greater

scheme: What does the cerebellum compute exactly?

What do specific inputs contribute to cerebellar computa-

tions? And how are downstream areas influenced by the

outcomes of cerebellar processing?
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Gautheron V, Reibel-Foisset S, Dieudonné S, Stephan A et al.:
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