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Abstract

Physical organization of the nervous system is pictoof perpetual interest in
neuroscience. Despite significant achievements herthe past, many details of the
nervous system organization and its role in anihiehavior remain obscure, while the
problem of complete connectivity reconstructions hecently re-emerged as one of the
major directions in neuroscience research (i.e.nectomics). We describe a novel
paradigm for connectomics reconstructions that yéald connectivity maps with high
resolution, high speed of imaging and data anglgsid significant robustness to errors.
In essence, we propose that physical connectivitymeural circuit can be sampled using
anatomical fluorescent synaptic markers localizedifferent parts of the neural circuit
with a technique for randomized genetic targetany] that high-resolution connectivity
maps can be extracted from such datasets. We bedwow such an approach can be
implemented and how neural connectivity matrix barreconstructed statistically using
the methods of Compressive Sensing. Use of ComipeeSensing is the key to allow
accurate neural connectivity reconstructions wittleos-of-magnitude smaller volumes
of experimental data. We test described approackironlations of neural connectivity
reconstruction experiments (@ eegans, where real neural wiring diagram is available
from past electron microscopy studies. We show thah wiring diagram can be in
principle re-obtained using described approach-thdhys of imaging and data analysis.
Alternative approaches would require currently edst 1-2 years to produce a single
comparable reconstruction. We discuss possibleicgigins of described approach in
larger organisms such Bsosophila.

1. Introduction

In recent years the problem of complete reconstmstof neural connectivity has re-emerged as
one of the major goals of modern neuroscience (&per al., 2005; Briggman and Denk, 2006;
Smith, 2007; Lichtman et al., 2008; Helmstaedtealgt2009). Several “connectomics” projects
had been thus proposed relying on classical eleaticroscopy (Briggman and Denk, 2006;
Smith, 2007), injections of tracer viruses (Bohlatdl., 2009), sparse expression of fluorescent
cytoplasmic markers (Svoboda, Personal Communicgtaiffusion tensor imaging (Hagmann
et al., 2007; Hagmann et al., 2008), among otlizspite significant progress made along these
directions this problem remains far from being sdhand significant limitations continue to
exist in the resolution or practically feasible wmle of possible reconstructions. E.g., diffusion
tensor imaging (DTI) allows one to obtain connattimaps for the entire human brain, but only
very large-scale projections, such as betweeneeatirtical areas, can be mapped (Hagmann et
al., 2007; Hagmann et al., 2008). Electron micrpgc(EM), on the other hand, can produce
reconstructions at the level of individual synap$es is very difficult to scale to large volumes
(White et al., 1986; Briggman and Denk, 2006). Du¢he ability of EM to map neural circuits
at the level of individual synapses, EM remainsfthwerite approach for the new connectomics



reconstructions (White et al., 1986; Briggman andnk) 2006; Smith, 2007). Yet, EM
reconstructions are known to be extremely laboensive (White et al., 1986; Briggman and
Denk, 2006), while tracing of axons and dendritesrdarge distances through densely cluttered
EM images has proven difficult to automate (Juetial., 2006; Jain et al., 2007; Macke et al.,
2008; Mishchenko, 2009). Also, significant sendiyivof EM reconstructions to point errors
during imaging and analysis had been recently tede@lishchenko, 2009; Mishchenko et al.,
2010b).

In this paper, we describe a different paradignréoonstructions of neural connectivity that can
combine high level of detail of produced connetyivhaps with high speed of fluorescent light
microscopy imaging and significant robustness torsr In essence, we propose that neural
connectivity can be sampled using anatomical flsoeat synaptic markers introduced into
different parts of a neural circuit genetically atherwise and that high-resolution connectivity
maps can be subsequently extracted from such dstasiag statistical techniques. We describe
a specific setup for such an experiment that efsliwo-component fluorescent synaptic markers
(Feinberg et al., 2008; Mishchenko, 2010) andeeombinase system for stochastic gene
expression (Livet et al., 2007; Lichtman et al., 2008; Luoatt 2008) to randomly express the
synaptic marker in a neural circuit and produceamme of certain simple connectivity
measurements. We show that synaptic connectivityixnean be accurately reconstructed from
such data using the techniques@mpressive Sensing (Donoho, 2006; Candes and Wakin,
2008). Use of Compressive Sensing is the key towalbccurate neural connectivity
reconstructions with orders-of-magnitude smalldurees of the experimental data. We test the
feasibility of this approach by simulating a hypetibal neural connectivity reconstruction
experiment inC. elegans, a popular neuroscience model where a real nedradg diagram is
available from EM (White et al., 1986). Using swhactual wiring diagram, we show that the
complete connectivity matrix i€. elegans can be in principle re-obtained with the described
approach in only 1-7 days of imaging and data amglyhereas the best alternative available
EM approach currently would require at least 1-arge€for a single comparable reconstruction.
We also discuss different strategies that can afipplying the described approach with different
connectivity probes and genetic targeting techrsguelarger organisms such Bsosophila.
Our results open new possibilities for quantitatilaa-rich empirical studies of neural circuits’
organization and functions in the brain.

2. Materials and Methods

2.1. Probing specific synaptic connectivity with fluorescent synaptic markers

Recently certain two-component fluorescent synapiszkers had been developed that can be
used to label and individually observe synapsewdmt specific neurons. These include the
synaptic marker GRASP (Feinberg et al., 2008) &edwo-component co-localization synaptic
marker (Mishchenko, 2010).

The synaptic marker GRASP relies on the processambination of the two fragments of the
split-GFP molecule to label synaptic contacts betwspecified neurons. Split-GFP molecule
consists of a pair of proteins that by themselves ot fluorescent, but can chemically
recombine into a functional fluorescent protein Epkhen in close proximity from each other
(Sarkar and Magliery, 2008). In GRASP, such spkRdragments are genetically tailored to the
proteins normally present on the external surfadgsre- and post-synaptic regions of neurons



and are separately expressed in selected neurorg gene-fusion (Fig. 1A). When two such
neurons form a synapse, split-GFP fragments reawembver its synaptic cleft and produce a
functional GFP, thus, fluorescently tagging thatagyse.

The principle of (Mishchenko, 2010) is essentidlig same with that of GRASP. This synaptic
marker consists of a pair of different wavelendtiofochromes targeted to the proteins normally
present on pre- and post-synaptic surfaces of neu(fig. 1B). Unlike in GRASP, such
fluorochromes are not required to be chemically glementary; instead, detection of synapses
is performed by observing spatial co-localizatidrflaorescence from these fluorochromes. At
existing synapses such pre- and post-synapticdtlwomes are co-localized naturally due to
dimensions of the synaptic clefts. Such co-locéilbramay also occur randomly, e.g., due to
random oppositions of pre- and post-synaptic sedaof nearby synapses. However, in
(Mishchenko, 2010) it was shown using electron oscopy data that such random oppositions
should be extremely rare for optical instrumentghwufficient resolving power, including array
tomography (Micheva and Smith, 2007) and structulledhination microscopy (Gustafsson,
2000, 2005), in which case synapses can be detegctedsuch an approach typically with an
accuracy of better than 95%.

The connectivity probe considered in this work $sentially a replica of the two-component

construct described above with one difference. Beegahe above synaptic markers originally
only label synapses of affected neurons, correspgnekll bodies remain unaffected. For our

purposes, however, it will also be necessary tellabll bodies of the neurons expressing such
markers. For that, to the above construct we initeda “helper” element consisting of a

fluorescent nuclei marker that can be used to iyeneurons expressing the synaptic marker
post-factum, Fig. 2A-B.

2.2. Probing synaptic connectivity stochastically with fluorescent synaptic markers and a
recombinase system

Recombinase systems such as the Cre/Lox systehe d¥lp/Frt system can be used to express
the synaptic marker in a neural circuit stochaBicand, thus, to allow sampling different
connections in that circuit in a high-throughputrmer. Recombinase systems are well known
genetic tools for manipulating gene expression aind,particular, for expressing genes
stochastically in a population of cells. A partaly ingenious tour-de-force demonstration of
this latter aspect had been recently produced t@Brainbow mouse using the Cre/Lox system
(Livet et al., 2007; Lichtman et al., 2008; Lu &t @009a; Lu et al., 2009b). In the Brainbow
mouse (or rather one of its implementations) a etéssf several genes encoding different
emission spectra fluorochromes (e.g., GFP, YFR) &dlanked in the genome with inversely
oriented loxP-sites. The Cre action then consistiipping orientation of such sequences (Fig.
1C). In this process, loxP-enclosed sequences adtichlly assume either direct or reverse
orientation in different cells. Since the cells werientation of the sequence is reversed cannot
transcribe the respective genes successfully, Bosmsucceeds in randomly deactivating
different fluorochromes in different cells. Differe cells then attain distinctive cytoplasmic
colors depending on the combination of the fluoroates that are “active” there, and can be
distinguished merely by color. This makes analgsid tracing of projections of such neurons
significantly simpler and at the same time morél#é (Livet et al., 2007). A number of larger



axons and synapses in several neural circuits éad thus reconstructed using this approach (Lu
et al., 2009a; Lu et al., 2009b).

In our settings, we use the recombinase systemmniomly deactivate expression of the synaptic
marker in different cells of a neural circuit. Ineopossible implementation, the sequences for the
post- and pre-synaptic components of such maré&ra(d sB, respectively) are placed into
reverse-tandem flanked jointly with loxP-sites, .F@A. Two different outcomes of Cre-
recombination then can occur with equal probabilityoutcome (i) sequenc is transcribed
leading such neurons to express the post-synagptikenfragment. The respective nuclei tédg

is also transcribed, thus, labeling the nucleiwghsneurons with a distinctive color. In outcome
(i) sequenceBis transcribed leading such neurons to exprespriysynaptic fragment and the
nuclei tagnB. Neurons always express exclusively eitk®or sB and nevesA andsB together.
This may be advantageous if the expression of bmdhker fragments simultaneously in the
same neuron is undesirable (Bargmann, Personal oomation). Fluorescent puncta are
formed by all synapses made by the neurons thaesgpromplementarily the pre- and post-
synaptic marker fragments, Fig. 2C.

In another implementation, Fig. 2B, the sequenamstlie post- and pre-synaptic marker
fragments are flanked with loxP individually. Fooutcomes of Cre-recombination are then
possible with equal probability. In outcome (i) bafA andsB are transcribed and both pre- and
post-synaptic sites of the neurons are tagged eughlized. In outcome (ii) onlgA sequence is
transcribed and, thus, only post-synaptic sitesumh neurons are visualized. In outcome (iii)
only sB sequence is transcribed and only pre-synaptis sitessuch neurons are visualized. And
in outcome (iv) neithesA norsB are transcribed and synapses of such neuron®aobserved.

If homogeneous action of a single recombinase systeross all neurons cannot be achieved,
mixtures of multiple recombinase systems can bd irsthe manner described above.

Other implementations are obviously possible; FAgprovides only one possible “real life”
example of such an implementation together witlapfiropriate recombination outcomes.

2.3. Sampling neural connectivity with stochastically expressed fluorescent synaptic
markers

We suggest combining a two-component fluorescemasyc marker and a recombinase system
for stochastic gene expression to stochasticattypda synaptic connectivity in a neural circuit as
illustrated schematically in Fig. 3. In Fig. 3A ¢lersubsets of neurons from a hypothetical neural
circuit are shown expressing at random the post @e-synaptic marker fragments and the
respective nuclei tags. These three samples caespand to three different specimens from the
genetic line containing implementation of such ¢arg, i.e. itsthree different phenotypes.
Whenever two neurons that express complementan®/ pre- and post-synaptic marker
fragments form a synapse, a fluorescent punctuaisis formed allowing one to observe such
synapses with fluorescent microscopy. ObviouslfferBnt synapses are visualized in different
specimens.

Because single synaptic marker labels all synajpsttee same way (e.g., GRASP labels tags all
its synapses with the same fluorochrome - GFPgemeral, it will be impossible to determine
which labeled synapses belong to which neurondeds a cumulative measure should be
obtained such aée total count of all puncta othe combined fluorescence size of all puncta. We
will denote such measurement with symbolldentity of the neurons expressing the synaptic



marker in each experiment should be also recordedjwassociated nuclei tags. We will denote
such expression patterns for the post- and prepsignanarker fragments with symbadsandb.
That is,a is just a list of all neurons that express giv@ost-synaptic” nuclei tag in a given
specimen andb is that for the neurons expressing “pre-synapficitlei tag. The set of
observations that is thus procured is that of tipdets, {(n, a, b)}, for different specimens. Such
a sample is a characteristic of the above stocha$tenotype (Fig. 3B), and can be used to
exactly reconstruct the underlying neural connégtimatrix, as we discuss below.

2.4. Reconstruction of the neural connectivity matrix with stochastically expressed

fluorescent synaptic markers

The key observation of this work is to recognizattthe measurements introduced in Section
2.3. can be interpreted as certain sums over th&aheonnectivity matrix (Fig. 3C).
Specifically, if C; is an element of such neural connectivity matesatibing, e.g., the number
or the size of all synapses between different pdipost-synaptic and pre-synaptic neurbasd

j, respectively, the measuremenin a specimerk can be mathematically represented as the
following sum,

n(k) = iia}”b}%u : (1)

i=1 j=1

Here,N is the total number of neurons in the circidf’ and b are the indicator functions

characterizing the expression patterns of the @osd-pre-synaptic marker fragments in animal
k, respectively. More specifically (see Fig. 3A-C iilustration),

& _ |1 neuron expressethepost- synaptianarkerin specimerk
! 0, neuroni did notexpresshepost- synaptianarkerin specimerk

()

b0 = 1, neuronj expressethepre- synaptionarkerin specimerk
) 0, neuronj did notexpresghepre- synaptiomarkern specimerk

For recombinase systems such as the Cre/Lox dFElpa’ and b® will be essentially

random vectors with approximately 50% of ones abfb ®f zeros (Livet et al., 2007; Lichtman
et al., 2008; Luo et al., 2008).

Using Eq. (1), we can expect that it may be posdiblestimate the neural connectivity matjx
statistically from the collection of measuremengs(§), {al“} .{b®}), k=1,... K}. Specifically,

we can search fd;; that can best describe the available set of meamnts (1) within the class

of sparse matrices. We know that connectivity i leural systems is typically very sparse, and
sparse priors previously had been shown to allgmifstant reduction in the amount of data
necessary for a reliable reconstruction of linearigoded signals. Although such a problem may
appear to be hopelessly ill-defined (e.g., all espion patterns are broad and nonspecific, sparse
prior is nonspecific as well, etc.), contrary tdsthmpression it is possible to recover the
connectivity matrix under these conditions quiteusately. In fact, it can be mathematically
shown that the connectivity matrix can be extracteattly from relatively small number of
measurements (1) using the methods of Compresswsir® (Candes and Romberg, 2005;



Donoho, 2006). In subsequent sections we desdrédbenithematical procedures that can be used
to identify the connectivity matrix from such data.

2.5. Reconstruction of the neural connectivity matrix using Compressive Sensing

Compressive Sensing (CS) (Candes and Romberg, 2005; Candes et alg; 2DGnoho, 2006;
Candes and Wakin, 2008) is a recently emerged fiéldignal processing that deals with
decoding of linearly encoded sparse signals. Limgaoding here means that a sigifid), is

encoded by a collection of linear measuremey(s) = ¢ * f :Z¢k (t) f () (sum is over all
t=1,....T). Sampling(t) at a set of predefined pointg}{or observing the Fourier components of
f(t) would be examples of linear encoding. The goaC8fis to accurately reconstru¢t) from

an incomplete set of such linear measurementsgvidnibwing that the original signal is sparse
(i.e. thatf(t)=0 for mostt, but not knowing whergt) is zero). For example, we know that the
connectivity matrix in the neural systems shouldsparse, but we may not know exactly which
neurons are connected. CS is provably nearly opaiparoach for addressing this problem.

Certain remarkable mathematical properties of G leen recently rigorously established and
should be mentioned (Candes and Romberg, 2005;eSaedal., 2006; Candes and Wakin,
2008). First, it was shown that it is possible éoanstruct sparse signetactly from a small
number of its measurements, [ log(T)T, , whereTg,<<T is the number of nonzero elements in
f(t). Second, appropriate reconstruction procedutagable: with probability approaching to 1
exponentially inT the sought signal is the smalléshorm solution of the set of linear equations

{y(k) :Z¢k tf (), k=1,...,K}. Third, such exact reconstruction can be obtaesskntially
independently of the specific form af, (t), i.e., exact reconstructions can be achieved using
nearly arbitrary set of probing waveforms(t) .

Recall now that our measurements of the count otbawed size of labeled synapsescan be
interpreted as following sums over the neural cotiviéy matrix,

N N
n(k) = Zzai(k)bjgk)cij ’

i=1 j=1

wherea and b are the indicator functions for the respectiveresgion patterns of the post-

and pre-synaptic marker fragments in anikyé@ections 2.3-2.4. We now immediately recognize
in these settings the linear encoding problem dssdrabove. According to CS (Candes et al.,
2006), then, the connectivity matrix can be acalyarecovered from a sample of such
measurements by solving a linearly constrairexptimization problem,

N N
min||C||Il = minZZ|Cij , subject to (3a)
i=1 j=1
N N
nk) =Y > a®bMC, k= 1..K . (3b)
i=1 j=1

Problem (3) is a standard linear-program (LP) awavesful methods exist for solving it
efficiently, e.g., such as the interior point meteqWright, 1997; Vanderbei, 2001; Boyd and
Vandenberghe, 2004). For large connectivity magideowever, the issue of computational



scalability should be addressed. In particular,|dés LP solver fails to solve problem (3) when
N exceedsN~50 neurons due to computer memory limitations. Reber that there ardl’
variables to be optimized in problem (3).

In (Candes and Romberg, 2005) an alternative meftirosblving Eqs. (3) for very largd® was
N N
proposed. Specifically, if;-norm of the connectivity matrixS=ZZ|Cij|, is known a-priori,
i=1 j=1
solution of problem (3) can be found as the inttiea of two convex sets — thig-cube
IC|, =S and the hyper-plane (3b). In our casB, can be estimated directly from the

measurements f( a, b)}, i.e. Sz(n(k)>/<|a""||b‘k’|>, where the average is over all sampies

N

and |a(k)| :%Zaﬂ‘) . According to the central theorem of CS, suchrggetion is unique and
i=1

corresponds to the exact solution of problem (3emK is sufficiently large (Candes and

Romberg, 2005).

To actually find said intersection, the algorithrh alternate projections was used (Bregman,
1965). In this algorithm one starts with a randoness for the connectivity matrixG @, and
then repeats the two steps of consequently progdtie current guesG®’, onto the hyper-
plane (3b) and then onto thecube||C||I1 =S,

C(I+1/2) :=C(I) +PT(PPT)_1(n_PII;(|))- (4a)
Cifl ) .= max@,C.*? - ), (4b)

]
In Eqg. (4a) we used vector notation for claritg, ,iINXN connectivity matrixC;; was represented
by aN’x1 vector over joint indicesj} andP denoted th&xN* matrix P(k;ij) = a*’b® . In such
notation Eq. (3b) clearly corresponds exactly toe thlot-product of P and C,
n=PI[C =) P(kij)C; . Eq. (4a) describes the step of projecti@ onto the hyper-plane
)

(3b): it can be trivially checked tha® [C!*"? =n. Eq. (4b) describes the step of projecting
C¥2 onto thely-cube [C], =S. »! is chosen at each iteration to achieﬂ(lﬁ'*l) , =Sand

controls retraction of2“**? onto the nearest face of that cube. Steps (4aj4n)dare repeated
until convergence, which typically can be achievegidly because the process proceeds
between two hyper-planes - the hyperplane of timstcaints and one of the faces of teube.

2.6. A hypothetical neural connectivity reconstruction experiment using stochastically
expressed synaptic marker GRASP in C. elegans

We evaluate performance of the described approariy simulations of a hypothetical neural
connectivity reconstruction experiment @ elegans. C. elegans is a popular neuroscience
model organism and the ontyganism where real wiring diagram is known frornopelectron
microscopy work (White et al., 1986). In particult#ris motivated our attention specifically to
that system, although our method obviously is estricted to applications i@. elegans.



We simulated connectivity reconstruction experirsentvolving from 500 to 10,000
measurements performed with the described systeimg uhe synaptic marker GRASP
(stochastic GRASP). For each observation we gestbrare- and post-synaptic GRASP
expression patterns according to Section 2.2. Rerconstruct in Fig. 2A, each neuron was
assumed to express pre- and post-synaptic GRAS§mémts uniformly and mutually
exclusively with probability 50%. For the construnt Fig. 2B each neuron was assumed to
express pre- and post-synaptic GRASP fragmentsoumly and non-exclusively with
probability 50%. Using thus generatef’ and b{, we simulated measurememi¥) according

to Eq.(1).

We also considered a number of “noise” factors taat affect actual experiments. One of such
factors considered wdmsological variability, i.e., that actual connectivity matrix could véirgym
one stochastic GRASP animal to another. In thae das each animak a slightly different

connectivity matrixC{* was prepared using following formula,

Ciﬁk) :Eij @- ab) +V[abc_:ij ]. %)

Here 5”. was the test wiring data from (White et al., 198@®. for each pair of neuronsandj

C_:”. described the number of synaptic contacts betwbese neurons from the EM data in

(White et al., 1986) x] was a Poisson-distributed random variable withrmeaand modeled
the variation inC; among animals. Parametay controlled the degree of such variatioa,=0
corresponded to no variability amg=1 corresponded to the case where synapses wenedor
completely at random with certain number of synagsstween given neurons on average. The
objective of the reconstruction in this case wasetmver theverage connectivity matri>(_1ij .

Second, we considered noise that could be addedhetobservations during the measurement
process itself, e.g., due to imperfections in tlkpeeimental setup. For that we altered the
measurementsi(k) by adding white noisen(k) - n(k)@+a,v). Herey was a Normally-

distributed random variable with zero mean and waitance, andy controlled the relative
strength of such “measurement” noise.

Finally, we considered errors that could be madenduneasurements of the expression patterns
a® and b®. Since such errors typically would lead reconstoncalgorithm to use wrong

projecting matrixP, such errors clearly could result in deviationgha reconstruction from the
truth. To consider this factor in our model, we rapted the “true” expression patterns by
randomly shuffling identities of a small numberr@urons. In that sense, we assumed that the
total number of neurons was known a-priori (asvifact inC. elegans) and the only errors that
could be committed were due to confusion of neasayrons.

2.7. Comparison with alternative approaches for connectomics reconstructions

We performed a comparison of our approach with mi@kapplications of several alternative
methods for connectomics reconstructions — seleaitr®n microscopy (EM) and pair-wise cell
recordings (PCR). We inspected such applicationghes amount of the reconstruction effort
involved, E, and the impact of different degrees of noise emwtributed errorsf. In order to



perform simulations we used real neural wiring diatam C. elegans, similar in essence to
Section 2.6.

In EM, reconstruction effof refers to the fraction of the neural tissue volumaged in respect
to the total volume of the neural circuit, and i@APthat refers to the fraction of all neural pairs
recorded from. The part of the neural connectiwiigtrix that is recovered for givdawith EM

is that corresponding to the neurons whose celidsodre contained inside the reconstructed
volume, of which the fraction is obviousl. Note that, although a larger number of synapses
may be observed in the reconstructed volume, onliyaetion of these can be identified
corresponding to the neurons whose cell bodiesbeafound inside the reconstructed volume
Therefore, to simulate the result of EM reconstang for differentE we considered the
connectivity matrix in which only connections beemeEN randomly chosen neurons were
retained, while all other connections were assutoede unknown. To simulate the result of
PCR reconstructions for differer, respectively, we considered the connectivity main
which EN? randomly chosen neural connections were retained.

In order to inspect the impact of biological vaii@p on the result of EM and PCR
reconstructions, we simulated connectivity matrit@msindividual specimens using the scaled
Poisson model, given by Eq. (5). Since EM or PCRildigproduce connectivity reconstructions
essentially within individual such specimens, todate the impact of biological variability we

compared such individual scaled Poisson matricéis thie averagef”.. In general, we found

that the impact of biological variability on suckconstructions was insignificant, i.e., the
members of scaled Poisson family could generallgXymected to be similar with their average

o
Errors in EM reconstructions generally are comprisethe mistakes made in the traces of thin
axons due to local misinterpretations of imagepluwtographing defects (Mishchenko, 2009;
Mishchenko et al., 2010b). For example, an axonbsanonfused with a similar nearby axon in
an image and, thus, continued as such of a wroogone Such errors can be characterized by
their ratef, i.e., the probability for one such error to ocicuthe reconstruction of an axon over a
given interval, e.g., such as between two its coutsee synapses. To simulate the impact of
such errors we proceeded as follows. For each neunve traversed all its post-synaptic
connections irC;; in (White et al., 1986) in random order, one bg.oburing each step the error
event was generated with probabilityf error event was generated, then the effegtieatity of

the pre-synaptic neuron was changed to anotheorameéuronj’, and subsequent connections
for the reconstruction of the original neurowere selected fror@;:. This was meant to model
confusion of similar nearby axons during tracingisTprocess was repeated until all connections
from C;; were exhausted, so that all rows of the corrupgednstructed connectivity matrix were
thus filled.

Errors in PCR reconstructions typically would cgpend to failures to observe a connection
when stimulating one neuron and recording from la@otThis can occur, e.g., due to failure of
the target neuron to get stimulated or failure bsesve a weak post-synaptic sub-threshold
response, etc. Such errors are mathematicallyideslcas point errors in the connectivity matrix
and can be characterized by their probability ps neural pairf. To simulate the impact of
such errors, therefore, we deleted at random atidrad of the connections from the
reconstructed connectivity matrix and compared scefrupted result with the original;.



Additive noise in the measurement of the connecstoength can also be present in PCR due to
fluctuations in the membrane potential levels. Taior was not considered in this work.

3. Results

3.1. Feasibility of the wiring diagram reconstructions in C. elegans using stochastic GRASP

To test our approach we simulated a hypotheticataleeonnectivity reconstruction experiment
in C. elegans. C. elegans is a popular neuroscience model and the amlynal where complete
wiring diagram is known from serial electron miaropy (White et al., 1986). This, in particular,
motivated our attention specifically to this systeafthough our approach obviously is not
restricted taC. elegans.

The neural wiring diagram i€. elegans in (White et al., 1986) was produced as followstie
body of oneC. elegans specimen was imaged at extremely high resoluteinguserial electron
microscopy. (More accurately, several specimensvimiaged partially in order to achieve a
dataset equivalent to one full body coverage.) €quently, synapses were manually found in
the images and associated with the correspondiogsaand dendrites, and axons and dendrites
were traced to the respective cell bodies throughiphe EM images, also manually. Total count
of synapses between different pairs of neuronstiuas tabulated, and the table describing these
counts was compiled as the neural wiring diagramCofelegans (now available from
wormatlas.org). We used this actual wiring diagram as the growath for a simulated neural
connectivity reconstruction experiment, see Secfof. The wiring diagram o€. elegans
containsN=300 neurons connected via a grand total of aboQ0 &Yynapses in 2500 distinct
neural connections.

We simulated a neural connectivity reconstructioqpegiment with stochastically expressed
synaptic marker GRASP (stochastic GRASP) using fia500 to K=10,000 animals, and
inspected obtained reconstructions both in matimfand as a scatter plot of the reconstructed
vs. actual connection weights (Fig. 4). Quantitiilywe characterized the reconstructions using
the correlation coefficient between the reconsedicand actual connection weights, r?=0
would correspond, naturally, to no correlation kesw the reconstructed and true connection
weights, andr’=1 would correspond to a reconstruction that wasfepe or exact.
Reconstructions with®=0.5, as we observed in particular, already wereggly good enough

to provide a practically meaningful estimate of tleeiral connectivity matrix, Fig. 4.

In Fig. 5 we show? for the stochastic GRASP reconstructions plottedhesnumber of
measurements. As can be seen from this figure, perfect recoitions were obtained already
with 10,000 measurements. This is in excellent agreemiéimthe CS theory and far below
~90,000 measurements that can naively be expectegl necessary to completely characterize
the connectivity matrix of 300x300 neurongdnelegans at least once. Practically meaningful
reconstructions could be obtained with000 measurements. These results were obtained for
both exclusive and non-exclusive constructs, Figa@d 2B. Compressive Sensing was critical
here as, e.g., a naive solution using a more ctiovehL, regularization (i.e.,

min|C], = minZZ|Cij|2 s.t.nk) =Y > a®bC, ) resulted in practically useless
reconstructions with the sample of this size.
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These results indicate that complete reconstrustainthe wiring diagram il€. elegans using
stochastic GRASP can be feasible and in princigla be performed with quite modest
experimental effort, relying only on already exgtitechnologies such as Cre/Lox or Flp/Frt
recombinase systems, GRASP, and low-end light moapy.

3.2. Impact of biological variability on the wiring diagram reconstructions using stochastic
GRASP

It may be expected that the connectivity matridiifierent animals of the same species may vary
from animal to animal. In this case, in each stathaGRASP experiment a slightly different
connectivity matrix will be probedAlthough it is not yet known to what degree realina¢
circuits should be expected to vary (in fact disedpposite opinions exist on this topic among
neuroscientists), we inspected potential impacswth variability on the neural connectivity
reconstructions using stochastic GRASP, see Se2trResults of this study are shown in Fig.
6. In every case, we found that the impact of lgmlal variability on the connectivity
reconstructions was insubstantial.

3.3. Impact of added noise on the wiring diagram reconstructions using stochastic GRASP

It can be expected that a perfect measurementeotdtal puncta count or size may not be
possible to obtain under realistic conditions. Sunoise added during the process of collecting
the measurements themselves may obviously distbet tesults of the connectivity
reconstructions. We inspected potential impact wthsnoise on the reconstructions using
stochastic GRASP, see Section 2.6. Results ofstidy are shown in Fig. 7. Reconstructions
were found to be stable under small additions adend.e., small amounts of noise caused only
proportionately small deviations in the reconstuctresult (Candes et al., 2006; Candes and
Wakin, 2008). Yet, sensitivity to noise was substdnand only up to 3-4% of added noise could
be tolerated for the minim#~10,000. Robustness improved with the number of nreasents

K, so that higher levels of noise could be potelptialitigated by collecting datasets with a
larger number of measurements. Although we didemt#nd this study to largét, because such
an extension would be very computationally expemsitie specifications for particular target
reconstruction accuracy and specified noise legatsbe computed straightforwardly using the
methods in Sections 2.5 and 2.6.

3.4. Impact of misidentifications in detected GRASP expression patterns on the wiring
diagram reconstructions using stochastic GRASP

It can be expected that a perfect measurement @&fSEFRexpression patternsandb, may not

be possible to obtain under realistic conditiomsthat a certain amount of errors in the detected
expression patterns should be anticipated. Cleadgh errors can result in deviations of the
reconstructed connectivity matrix from the truthe Wispected potential impact of such errors on
the reconstructions using stochastic GRASP in gredétail, see section 2.6. Results of this
study are shown in Fig. 8. Although reconstructiomese found to be stable again, sensitivity to
errors in the expression patterns was substaandlonly up to 5-6% of misidentified neurons in
the detected expression patterns (i.e. 15-20 nmisfaeel neurons per 300 i@. elegans) could be
tolerated for the minimalK=10,000. As before, reconstructions with larger nemiof
measurement& were more robust to errors, so that higher eewels could be tolerated with
datasets of larger size. Although we did not exttnsl study toK greater than 10,000, again
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because that would be very expensive computatigntile specifications for particular target
reconstruction accuracy and specified error lexads be computed using the methods in
Sections 2.5 and 2.6.

4. Discussion

We describe a new approach for reconstructions eafral connectivity that utilizes two-
component fluorescent synaptic markers (Feinbeed. €2008; Mishchenko, 2010) together with
a recombinase system for stochastic gene expref@sivet et al., 2007; Lichtman et al., 2008;
Luo et al.,, 2008) to randomly sample synaptic cetimiy in a neural circuit. Complete
connectivity matrix is reconstructed from produdedrescent measurements using the methods
of Compressive Sensing (Candes and Romberg, 2005; Candes et al., 2006phHao 2006;
Candes and Wakin, 2008).

We use real neural wiring data fGr elegans, availablefrom EM (White et al., 1986), to show
that described approach . eegans is feasible and can be executed with already iegist
technologies. InC. elegans, we find that 5,000-10,000 measurements performeth
stochastically expressed synaptic marker GRASPnkieeg et al., 2008) will suffice to
successfully recover the complete wiring diagrafve® small size (100x100x1000 pm) and fast
development (2-3 days) @. elegans, 10,000 animals can be incubated on a single-Bistriin
the span of several days. Modé&nelegans phenotype screens, in fact, routinely work with th
populations that large. Fluorescent measurementbeabtained by performing 3D-scans of the
specimen bodies, while GRASP expression patternsbeaobtained at the same time using
associated nuclei-targeted fluorescence. Compigerithms such as (Long et al., 2008) can be
used to automatically determine GRASP expressiattems inC. elegans from produced
imaging data. Although, according to our calculasiothe identification error rates reported in
(Long et al., 2008) are still quite high for thisrpose (i.e., 95% correct identifications and 5%
errors), significant improvement from this firsteahpt in the computerized cell identification
can be naturally expected in the near future. Agsgrthat the imaging data at resolutiod.5
pm/pixel can be acquired with a confocal microscapthe speed of at least 10MHz, it should
be possible to perform such a full scan of one isp&Ts body in 1 minute or less using a
specialized imaging setup (Kerr, Personal commtioica 10MHz acquisition rate can be
achieved, e.g., with a 1000x1000 pixel CCD cameomunted on a confocal microscope and
taking images at the frequency of 10 frames peosrg®cThe body of on€. elegans specimen at
the resolution of 0.5 pm/pixel contains approxirya®0) million pixels. Using a CCD camera
with 1000x1000 pixels and by taking one image & gart of the longitudinal section @f.
elegans of 1000x200 pixels every 1/10 of a second, 80iamilpixels can be acquired in [80*°L0
pixels]/[2*10° pixels/frame]/[10 frame/second] = 40 seconds. W miso note that the entire
body of the specimen may not need to be imagede ghe neural connections will typically be
localized only to small regions in the specimentslya Then, the total imaging time for the
entire sample of 10,000 animals can be estimatexilyn1-7 days. Subsequent reconstruction of
the connectivity matrix from such data is computagily straightforward and can be performed
in several hours of computations on a laptop cosmpas was shown here.

Several remarkable features of such reconstruajmproach should be explicitly mentioned.
Complete connectivity can be recovered using whatle considered a grossly incomplete and

non-specific dataset, with the number of availabasurements« ~ N logN << N?, where
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N, is the number of connected neural pairs in theuttiandN is the total number of neurons

(Candes and Romberg, 2005). Clearly, should we Haeosvn the identity of all connected
neural pairs in the circuit, we could use~ N measurements to determine the connectivity

matrix, e.g., by using pair-wise cell recording8Vith Compressive Sensing we can achieve
similar performance bound without any prior knovwgedabout the identity of the connected
neural pairs. Reconstructions with smaller thanimahly sufficient number of measuremeids

will produce the best possible approximations teetrconnectivity matrix with=K terms
(Romberg, 2008). Described approach does not ievtiacing of neurons, recordings from
individual neurons, genetically targeting individlugeurons or small groups, or other explicit
association of synaptic connection with remoteliated neurons, which is the main difficulty of
many other connectomics paradign®napses are associated with the relevant neurons a
posteriori, and detailed connectivity matrix isa@hed even when all neural “targeting” patterns
are broad and nonspecific (e.g., stochastic).

We can compare our approach with alternative exgstibonnectomics paradigms, although such
comparison is admittedly complicated by the diugrsf existing approaches, making it difficult
to bring them to a common denominator, and thetfadt none of the existing approaches is yet
capable of detailed reconstructions of connectigitgn in a system such @selegans (with the
exception of serial electron microscopy). Here, @aenpare two such paradigms that in our
opinion have the best prospects for complete nexmahectivity reconstructions in the near
future — serial electron microscopy (EM) (Whiteaét 1986; Briggman and Denk, 2006; Smith,
2007; Mishchenko, 2009) and optically assisted-p@se cell recordings (PCR) (Bureau et al.,
2004; Baker et al., 2005; Petreanu et al., 2007¢. Wdlve left out a number of promising
techniques for estimating neural connectivity friimctional correlations between neurons, e.g.,
using calcium imaging (Broome et al., 2006; Jorteal.e 2007; Pillow et al., 2008). Although
these now potentially allow reconstructions of gite with hundreds and thousands of neurons
(Stevenson et al., 2009; Mishchenko et al.,, 2016a)y an effective connectivity matrix is
produced with such an analysis, whose relationghigie physical circuit structure is yet to be
clearly elaborated.

EM reconstruction paradigm comprises: a) direattaging a block of neural tissue with serial

electron microscopy; b) finding synapses in thegesaand associating them with corresponding
axons and dendrites; c) tracing associated axodsdandrites through multiple images to

corresponding cell bodies; d) recording a connacbetween a pair of neurons. The main
advantage of EM reconstructions is their abilitassess the physical structure of a neural circuit
directly, as individual synapses, axons, and dé&slrtan be all directly seen in EM images.

Furthermore, details of neural morphology such rderashape, branching structure, synapses
bunching, etc., can be extracted from EM imageshSiata can be used to directly model

physical processes and signal transmission insitdesa dendrites, and neurons as well as to
study sub-cellular organization of neurons and aaamganization of neuropil.

The main disadvantage of EM approach is very loaedpwith which the data can be acquired
and extreme difficulty of subsequent image analyarsalysis of EM data is characterized by
very high labor-intensity — manual reconstructiom®ne C. elegans specimen in (White et al.,
1986) took over 10 years to complete. Modern autmmdechniques can reduce this time, but
has to rely on complex and brittle image-understamalgorithms, making reliable scaling of
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such approaches difficult (Jurrus et al., 2006y &ial., 2007; Macke et al., 2008; Helmstaedter
et al., 2009; Mishchenko, 2009; Mishchenko et2010b). In (Mishchenko, 2009; Mishchenko
et al., 2010b), in particular, a complete autormatpproach was presented and reconstruction
speed of about 5 pifman-hour in dense neuropil in rat hippocampus wemonstrated,
estimated to correspond to at least a 10-fold ivgmaent over the purely manual analysis. Such
automation irC. elegans potentially could allow another complete conneaa®construction in
1-2 years of work by a single operator, with sulbeed) speedup possible by parallelizing. Of
course, this estimate should be only viewed asigiroorder of magnitude estimate, since many
different factors will play role in the actual pemhance including simpler longitudinal
organization of axons i€. elegans (which may help reconstruction), their smalleres{zvhich
may make reconstruction more difficult), etc. Alsate that (Mishchenko, 2009; Mishchenko et
al., 2010b) deals with full volume neural tissueomstructions in which the contours of all
neurons are completely recovered. Computer assisi@uual skeleton-based reconstructions
such as recently reported in neuroscience confesehg W. Denk potentially may allow yet
faster analysis of EM data.

PCR reconstruction paradigm comprises: a) stimndatdifferent neurons individually
electrically or optically; b) observing sub-thregh@lectrical responses in a selected neuron
using an electrode patch. While this approach spossible for the bulk of the information
available today about neurons and their circuitshameasurements are also notoriously difficult
to perform. Normally, only as few as 10-100 neyraiks can be patched and tested a dag. In
elegans, in particular, this implies that a complete sadrthe connectivity matrix would take
anywhere from 3 to 30 years to complete, althoughsiwuld also note that patching neurons in
C. elegansis admittedly more difficult due to their extremeimall size. With optical stimulation
and optical readout techniques such as ChR2 andgeotensitive dyes, however, this time can
be dramatically reduced, making complete scansiless the span from several minutes to
hours. We will further revisit this option a littlater in this section.

We inspected performance of EM and PCR reconstmstin terms of the degree of the
reconstruction effort involved (Figure 9A and C) and noise and contebuerrors (Figure 9B
and D). See Section 2.7. for the details of thedeutations. In EM, reconstruction effort refers
to the fraction of the neural tissue volume imagedespect to the total volume of the neural
circuit, and in PCR this corresponds to the fracwd all neural pairs recorded from. Errors in
EM reconstructions are typically introduced viargarrors in the traces of thin axons, e.g., such
as confusing and mixing similar nearby axons orsifig” axons due to local mistakes in
interpretation of images or defects in the photplgsa(Mishchenko, 2009; Mishchenko et al.,
2010b). Because each such error affects a largdeuai synapses located downstream on the
affected axon (e.g., causing all such synapse® tlodi or mis-assigned to a different neuron),
EM reconstructions can be very sensitive to suchllserrors. In Fig. 9B, in particular, the
quality of EM reconstructions i@. elegans vs. the rate of such errors is shown. The ernerisa
characterized by the probability of an error in thece of an axon on its interval between two
consecutive synapsefs,For instance, if EM reconstruction contains oerage one error in a
trace per 1000-2000 serial EM sections, i.e., 50416 under typical conditions, the chance of
an error on the 5-10 um axonal segment comprishegy typical distance between two
consecutive axonal boutons in mammald~i0%. When tracing an axon from one synaptic
connection to the next, then, there will be a 109ance to make a point error affecting that
reconstruction. From Fig. 9B, we observe that Hrgdst error rate that can be toleratecCin
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elegansin such settings is only about 10%, or one eresr59-100 um. Interestingly, an estimate
of EM error rates in (Mishchenko, 2009; Mishchemdtal., 2010b) indicates that these may be
in fact as large a6<5-10%. At the same time, also note that the abok@ eate bound may
depend on the size of the reconstructed neuralitisoad may become progressively smaller as
the circuit size becomes larger than thaCimegans.

In PCR, errors typically correspond to failuregl&gect a connection when recording from a pair
of neurons. This can occur, e.g., due to failuréheftarget neuron to get stimulated or failure to
observe a weak post-synaptic sub-threshold resportee recorded neuron, etc. Such errors are
mathematically represented as point deletion ernmorshe connectivity matrix and can be
characterized by their probability per one testedral pair,f. From Fig. 9D we observe that
PCR is quite robust to such errors, and error segtlip to 40-60% can be easily tolerated.

While we show that the proposed approach can beessfulalready today irC. elegans, it is
important to think about possible strategies ferapplications in larger systems, e.g., such as
Drosophila. In particular, inDrosophila with N~10° neurons and on average 100 synapses per
neuron the neural circuit complexity My~10" connections, and an experiment such as we
described may appear prohibitive.

We must note that this problem is not confineduomethod per se. Even though reconstruction
of the circuit with 2500 connections in ofe elegans specimen had been completed with EM

(White et al., 1986), and connectivity studies imimmg ~1000 neural connections had been

conducted in the past with other techniques (Ikagetyal., 2005; Song et al., 2005; Broome et
al., 2006; Pillow et al., 2008; Mishchenko et aD10a), scaling of any of these techniques to a
circuit with ~10” connections is highly nontrivial to say the least.

Notwithstanding, three general directions can lopgsed that can allow applying our strategy to
a circuit as large as that Drosophila. First, while we assumed that only a single meagent
can be obtained from one stochastic GRASP anirh&, does not need to be the case in
principle. Whereas synaptic marker GRASP utilizégngical reconstitution of a particular
protein across synaptic cleft, it is bound to bseesially a single-color marker. However,
recently the author had shown that mere spatialipity of two different wavelength pre- and
post-synaptic fluorochromes can allow detectingapges without the need for such chemical
reconstitution (Mishchenko, 2010). In this casepfbchromes can be multiplexed onto synapses
in large numbers, allowing for up t@"“ different synaptic labels foN. distinct color
fluorochromes [similar in essence to the idea egwgioin the Brainbow mouse (Livet et al.,
2007; Lichtman et al., 2008)]. This case can berroodated by our framework without any
modifications - the number of measurements obtafred one animal then will b@": instead

of 1. This will allow accelerating data acquisitidramatically and may allow reconstruction of
the neural circuits as large as thaDrosophila by imaging, e.g., 10 synaptic fluorochromes in
1000 animals.

Second, one may consider formulating connectivégonstructions in terms of certain neural
populations rather than individual neurons (Lualet 2008). As the role of individual neurons
vs. neural classes in the animal behavior is Istilhg debated, such approach may prove to be
not only less practically involving but also morehlaviorally relevant. The connectivity matrix
in that case would describe couplings between rdiffieneural populations rather than individual
neurons, and can be “sampled” using the same desiadegy that we described here. In
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particular, inDrosophila libraries of Gal4 lines provide particularly coment tool for accessing
as well as cataloguing such neural populationsn;Ttiee connectivity matrix can be accessed in
a series of experiments targeting synaptic markedsfferent neural populations using different
Gal4d lines and their combinations, e.g., using thethods from (Luo et al., 2008). The
expression patterresandb in that case will be known a-priory from the idgnof the Gal4 lines
used in each experiment and will not need to besored. The connectivity matrix in terms of
the smallest resolved groups of neurons for the set of used Gal4 lines, as defined belsil,be
produced even if none of the neurons were targgpedifically in any of the experiments. An
approximation to the true connectivity matrix givercomplete available data can be obtained
and then continuously improved as more data isiodxda

Third, our strategy need not be constrained toaisanatomical synaptic markers but can be
employed also with other modalities that may ulteha allow faster neural connectivity
reconstructions. Of these, pair-wise recordingsaisiptical stimulation [e.g. see (Bureau et al.,
2004; Petreanu et al., 2007)] and optical obsesmatif the membrane potential with voltage
sensitive dyes [e.g. see (Baker et al., 2005)] appebe the most promising. Post-synaptic sub-
threshold responses after activation of a grouprefsynaptic neurons, at least in the first
approximation, can be represented as linear sumghef connectivity matrix elements
corresponding to these for individual neurons, tlaliswing application of the same formalism
that we developed here. Specifically, we can regrepost-synaptic sub-threshold response in
neuroni, observed after stimulation of a group of neurbp@) during trialt, as follows,

V(1) =>.C,b; (1). (6)

Here,V, (t) is a measure of the integrated evoked post-synaggponse (iIEPSP) in the imaged

neuron, andj is the connectivity matrix describing the iEPSRsgth for all different post- and
pre-synaptic neurons in the circuit. As is easgde, Eq. (6) is identical to Eg. (1) and can be
analyzed using the same approach. Note that thieydbiobserve sub-threshold changes in the
membrane potential is critical in Eq. (6) and, thiee use ofvoltage-sensitive dyes and not
calcium sensitive dyes is required.

Our method calls for identification of neurons esg®ming the synaptic marker during each
experiment. Thus, another important question that lne asked is whether our strategy can be
applied in the organisms where neurons are novichaklly identifiable. While it is known how

to identify neurons irf€. elegans and some other organisms suclheash, in general methods for
and even possibility of identification of individuaeurons in larger organisms are subject of
significant debate. It is important to ask, therefchow our approach can be applied in such
settings where neurons cannot be individually ifieat

This question, again, is not specific to our apphoger se. A degree of “identifiability” is

required for results of any neural connectivity essment to be comparable or generalizable
across different animals. Really, if individualunens in an organism cannot be identified, this
also means that it is impossible to co-relate nesiin different animals. In turn, this means that
neural connectivity reconstructions obtained in aremal cannot be compared with that
obtained in another and, even more generally, anilas experimental results in one animal
cannot be compared or generalized to that in anothdentifiability” in some form should



16

always be available and, indeed, it is always prieseneuroscience experiments.Gnelegans,
specifically, neurons can be identified individyalin Drosophila genetic lineages and Gal-4
lines are used to identify neurons and their pdpria; in higher organisms morphological
classes and anatomical landmarks such as cordigaid, neural nuclei, and functional areas are
used to characterize connectivity. If any suchesysis available in a target organism, then the
framework developed in this work can be immediaggplied in the context of such a system.

Specifically, consider a case where one has a lagggal circuit and a system of different
morphological classes for classification of its mos. In each experiment, then, one can count
neurons expressing the synaptic marker in suckréift morphological classes. Such counts can

be used to replace the indicator functicaf§ and b{ in our formalism, and the connectivity

matrix C;j can be subsequently calculated from such measuatserfilowing exactly the same
procedure as described in Section 2.5. In this,casarly,i andj will refer to the different
morphological classes and not individual neuroms| @; will describe the connectivity in the
neural circuit as it exists between such classexilaély, if one has an atlas of anatomical
landmarks such as a map of brain areas or neudéinwne can count how many neurons
expressed the synaptic marker in different areasume such counts in place of the indicator

functions a® and b{ to recover the connectivity matrix in terms of lsuanatomical
landmarks.

Libraries of genetic classes, such as Gal4 lindmeages irDrosophila, have recently emerged
as a powerful tool for classifying neural structuie large neural systems (Phelps and Brand,
1998; Luo et al., 2008). Such libraries can provide means for identifying and cataloguing
neurons even when morphology and location cannatsed for that reliably. Having a library
consisting of certain genetic linés B, C, etc., one can associate with each neuron a patfern
1's and 0’s describing whether that neuron is presethe expression patterns of lin&sB, C,

etc. For example, pattern “110...” can correspond teeuron that is present in the expression
patterns of lineg\ andB but notC, etc. Different such patterns will constitute dentification
system for the neural structures, whereas diffenentons will be identified by the combinations
of the genetic lines containing them. One doesnea&d the ability to detect or identify these
neurons directly anatomically: as long as such arican be accessed in reproducible manner
by manipulating the Gal4 lines, experiments witbhhsgroups of neurons can be conducted and
connectivity between them as well as their propertan be reliably determined. Note that
neurons that are present in all the same linesb&iindistinguishable and equivalent for such an
identification system, and will constitute what wball call thesmallest resolved group of
neurons, or the equivalence class in mathematical termsuich an identification system (see
Table 1). By introducing synaptic markers into tieural circuit using such different genetic
lines and their combinations and performing the suemments and the calculations that we
described above the reconstruction program camimpleted successfully. Detailed connectome
in terms of the smallest resolved groups of neufonthe set of Gal-4 lines will be recovered.

One may argue that such “class-wise” reconstrustibat we thus described fall far short from
the ideal neuron-wise connectome that EM can pelgntdeliver. However, class-wise
reconstructions already contain substantial amaidnsignificant information and can be of
substantial interest to researchers. Class-wiseemiomes in fact had been already widely used
in neuroscience research in the systems whereidudivneurons cannot be identified, including
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large EM studies of the optic lobe organizatiorbrosophila (Meinertzhagen and Sorra, 2001),
studies of the organization of the cortical michawits in the mouse (Shepherd and Svoboda,
2005), etc. Where neurons in principle may not hexgdicit “individual identities”, class-wise
connectomes may not only prove to be significantlyre practically accessible, but also may
provide a more physiologically adequate viewpointtbe organization of the neural circuits
(Luo et al., 2008).

5. Conclusion

We describe a new neural connectivity reconstragiaradigm that utilizes random or pseudo-
random sampling of neural connectivity with anatoahifluorescent synaptic markers localized
genetically or otherwise to different parts of aura circuit. Synaptic connectivity matrix is
recovered statistically from a collection of fluscent measurements obtained with such a probe.
While conventional neural connectivity reconstrastiparadigm focuses on finding individual
synapses in neuropil and explicitly relating thesth remotely positioned neurons, we propose
here to collect large samples of simple fluoreseceesurements of connectivity and combine
these using minimal model assumptions to determ@tailed configuration of the probed neural
circuit.

The key contribution of this paper is to recogrilzat physical connectivity in a neural circuit
can be recovered using a sample of simple obsengproduced with anatomical fluorescent
synaptic markers such as GRASP. We observe thattairc type of fluorescent measurements
that can be obtained with such markers can be mmattieally represented as linear sums over
the elements of the synaptic connectivity matrikisTallows us to propose an algorithm for
accurate and efficient reconstruction of such cotiviey matrix from such observations.
Compressive Sensing (CS), in patrticular, is especially attractive femork for such an analysis
since neural connectivity is expected to be sparseC. elegans, e.g., the total number of
connections i52500 out of the total possibi®0,000 and sparseness is 0.03Dnmwsophila the
number of connections per neurorrB00 out of the total possibkl00,000 and sparseness is
103, etc. CS algorithms are mathematically tractabiel @rovably nearly optimal for
reconstructions of sparse signals from ensemblésezr measurements.

The method that we proposed potentially can allagh hspeed, high detail connectome
reconstructions in many model organisms in therutlihe advantages of the proposed approach
are: the method relies on relatively fast and etsyobtain fluorescent light microscopy
measurements; the measurements are simple — #heaant or the total fluorescence strength of
labeled synapses and the patterns of co-expressebki ntags; analysis of the data is
computationally straightforward and uses well ustleyd statistical methodologies; tracing of
neural projections or any other explicit assocratd synapses with neurons over macroscopic
scales is not required; highly detailed connegtivitaps can be produced without targeting
individual neurons or their small groups. Practicaheaningful strategies are available for
extensions to larger organisms suctDassophila including the use of multiplexed fluorescent
synaptic markers (Mishchenko, 2010), use of lilesof genetic lines such as Gal4 lines (Luo et
al., 2008), and use of different modalities suclvatage sensitive dyes (Baker et al., 2005), as
described in the Discussion. The approach can jieéverage connectivity matrix for an entire
population of animals at once as well as the vditglin the connectivity matrix, which can be
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calculated, e.g., using bootstrapping — producaugpmstructions from different parts of the same
dataset.

Among the disadvantages of the present approadhk relatively high sensitivity to noise. In
particular, stringent conditions on the data qyaliould be maintained if one wishes to recover
useable reconstructions with the near-minimal getmneasurements. The method yields the
average connectivity matrix and, thus, can onlybed to study general or stereotypical neural
connectivity or gross structures and not the cotivigcin individual animals, as opposed to the
techniques of electron microscopy and pair-wisd cetordings. The discussion that we
presented here is theoretical and no actual impletien or experimental data are shown.
Although we consulted to the fullest degree theedatliterature and experimentalists to
realistically assess the approach’s feasibility gadsibility of its practical implementation
(Livet et al., 2007; Micheva and Smith, 2007; Feirb et al., 2008; Long et al., 2008;
Bargmann, Personal communication; Kerr, Personanconication), the impact of a number of
different experimental factors remains unknown a@adnot be assessed now due to lack of
experimental data. For example, it is not yet kn@uantitatively how specific synaptic marker
labelings can be, how effective GRASP can be inbitdry vs. excitatory synapses, how well
pan-neuronal expression can be achieved and ho¥oromisuch expression can be, etc.
Unfortunately, answering these questions is culrebéyond the limited capabilities of the
author, who does not have access to experimertdities or resources needed to carry out
extensive experimental program associated with aneg these questions. While recognizing
the many uncertainties that remain, the authorebe$ that the data available in the literature
today support a very favorable view on the prospeidtthe practical implementations and
utilization of the described approach (Livet et 2D07; Micheva and Smith, 2007; Feinberg et
al., 2008; Long et al, 2008; Bargmann, Personammanication; Kerr, Personal
communication).

This work opens many exciting possibilities for newantitative data-rich studies of neural
connectivity in large neural circuits. [D. elegans, in particular, described approach in principle
allows reconstructions of complete wiring diagramthe span of several days using existing
genetic and off-the-shelf fluorescent light micrggg tools and straightforward data processing.
For comparison, the alternative approach of setedtron microscopy would require at least 1-2
years of imaging and analysis to obtain reconstynodf a single neural circuit of comparable
size, employing sophisticated and expensive highdemaging equipment and complex and
fragile image understanding algorithms. Describpgreach can be also employed in larger
organisms such aBrosophila using different connectivity probes and/or gendtcgeting
techniques.
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Figures Legends and Tables Legends

Figure 1. Schematic description of GRASP (Feinberg et ab820two-component co-
localization synaptic marker (Mishchenko, 2010) &me Cre/Lox system for stochastic
expression of genes (Livet et al., 2007). A) Twagiments of a split-GFP (sA and sB) are
expressed separately at post-synaptic (left) aaepnaptic (center) sites of different neurons.
Separately, split-GFP fragments do not producedésmence. At the location of synapses split-
GFP can recombine into a functional GFP molecute@nduce fluorescence, thus,
fluorescently tagging respective synapses (rigjit)fwo different wavelength fluorochromes
(sA and sB) are used to tag separately post-syn@eti) and pre-synaptic (center) surfaces of
different neurons. Co-localization of fluoresceffreen such fluorochromes can be used to detect
and identify synapses with high accuracy (rigi). Schematic description of the Cre/Lox
system for stochastic expression of genes. A dasséh two genetic sequences for two
different wavelength fluorochromes (red and gréeft), in mutually inverted orientations is
introduced into the genome and flanked with invigregiented loxP-sites. When Cre is
introduced into cells, recombinase reacts with {ekBs in such a way that orientation of the
flanked sequence is flipped at certain rate. Wheni€removed, the sequence may be found in
either original or reversed orientation (right). gvifluorochrome sequences in the cassette are
transcribed, only those in the direct orientatian be produced successfully. Thus, different
cells produce either green or red fluorochromesmdom.

Figure 2: Schematic description of the action of the stodbasthaptic marker, combining a a
two-component fluorescent synaptic marker (FigukeB) with a recombinase system for
stochastic gene expression (Figure 1C) . A) Irfitlseimplementation, a cassette with two
inversely oriented sequences encoding pre- andsyostptic marker fragments (sA and sB) and
associated nuclei-bound fluorescent proteins (nd\ra) is introduced into genome and flanked
with inversely-oriented loxP-sites. Effect of Csetd randomize the orientation of such cassette
in different neurons leading to two recombinatiaicomes: (i) post-synaptic fragment and
associated nuclei XFP are expressed, tagging goapsc sites and nuclei of such neurons, and
(i) pre-synaptic fragment and associated nuclePéfe expressed. A promoter (p) can be used
to additionally restrict cassette expression tefnéd population of neurons. B) In the second
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implementation, a cassette with two loxP-flankegussces for pre- and post-synaptic marker
fragments is introduced into genome. Effect of Sr® randomize orientation of both sequences
leading to four recombination outcomes: (i) pred anst-synaptic fragments are expressed
together in a neuron, (ii) post-synaptic fragmergxpressed only, (iii) pre-synaptic fragment is
expressed only, and (iv) neither of the fragmesiesxpressed. C) When two neurons form a
synapse while expressing the synaptic marker fraggraomplementary a fluorescent punctum
is formed. Nuclei of the cells expressing the syicaparker are labeled at the same time with
the associated nuclei XFP and also can be observed.

Figure 3: Schematic description of the neural connectiviggorestructions using stochastically
expressed synaptic markers. A) In different andnnahdom neurons in a circuit express the
synaptic marker. Three random expression patt@msnotypes) are shown for illustration. In
each pattern all synapses formed by “affected” mesiproduce same-color fluorescent puncta
that can be observed with a light microscope. Aeral measure such as the total count or the
combined size of all labeled puncta is produced=@)reconstruction of the connectivity matrix
it is sufficient to collect the above overall me@suentsn, along with the pre- and post-synaptic
marker fragments expression patteanandb, for a sample of such stochastic phenotypes. C)
The sampler(,a,b) can be mathematically represented as a samtileeaf measurements over
the connectivity matrix. Specifically can be related to certain sums over the conngctivi
matrix elements that correspond to the interseaidhe rows and columns associated with the
neurons expressing the pre- and post-synaptic madgments. We recognize in these settings
an instance of Compressive Sensing problem (Dor2@f; Candes and Wakin, 2008) that
allows tractable recovery of the synaptic connégtmatrix from a sample of such data.

Figure 4: Result of a hypothetical neural connectivity restamction experiment i€. elegans
simulated using real wiring diagram for that animahilable from electron microscopy (White

et al., 1986). Shown are the scatter plots of élsemstructed connectivity weights versus that for
the true connectivity weights. Reconstructions wifl90-6000 measurements can be already
practically meaningful and the reconstruction with000 measurements is exact.

Figure5: Result of a hypothetical neural connectivity re¢ongion experiment iiC. elegans
simulated using real wiring diagram available frelactron microscopy (White et al., 1986).
Shown is the correlation coefficient square for the true and reconstructed connectivity
weights as a function of the number of measurenméen®econstructions from 4000-6000
measurements are already practically meaningfutlaadeconstruction from 10,000
measurements is exact. No significant differenadénperformance is observed when using
exclusive (Fig. 2A) or non-exclusive (Fig. 2B) comsts. These results allow us to estimate that
complete wiring diagram i€.Elegans could be re-obtained using described approadheirspan

of 1-7 days. Result of a similar reconstructiomgssimpler_, regularized algorithm is shown to
emphasize dramatic improvement conferred by Comppesensing algorithms.

Figure 6: Impact of biological variability on the reconstnact of neural connectivity using
stochastic GRASP. Biological variability descrilpessible variation in the connection matrix
from one animal to another. Different degrees ofamlity from O (no variability) to 100%
(connection weights in different animals are puralydom with a Poisson statistics) are shown.
In all cases the impact of biological variabilis/found to be insignificant.
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Figure 7: Impact of added noise in the measurements on thens&uction of neural
connectivity using stochastic GRASP. Although theonstructions are stable (i.e., they do not
break down in the presence of small amounts ofenpike sensitivity is substantial and only up
to 4-5% of added noise can be tolerated at themmainkK~10,000. Larger sample size can be
used to mitigate the impact of higher levels ofetidoise.

Figure 8: Impact of errors in detected GRASP expression petten the reconstruction of
neural connectivity using stochastic GRASP. AltHouthe reconstructions are stable, the
sensitivity is again high with only up to 5-6% afr@s that can be tolerated at the minimal
K~10,000. Larger sample size can be used to mitihatenpact of such errors at higher rates.

Figure 9: Comparison with two different prospective connettts paradigms, namely, serial
electron microscopy (EM, panels A and B) and ensnhpasr-wise cell recordings (PCR, panels C
and D). Reconstructions are characterized by ttenstruction effortE, whereE=1 corresponds

to the effort sufficient to obtain a single complegconstruction (i.e. image one entire circuit). |
C. elegans, we estimate thdE=1 currently corresponds tdl-2 man-years of work for EM and
~3-30 man-years of work for PCR. A) Quality of EMcoastructions as a function of the
reconstruction effort in the ideal case (i.e., rmsa, compare Figure 5). B) Quality of EM
reconstructions as a function of the reconstruceffort in the presence of errors (compare
Figure 7 and 8). Errors are characterized by tlodatility of one point error in a trace of an
axon on its interval between two subsequent sysajiage to long reach of such point errors EM
reconstructions are vulnerable to their small an®u@) Quality of PCR reconstructions as a
function of the reconstruction effort in the idease. D) Quality of PCR reconstructions as a
function of the reconstruction effort in the preserof errors. Errors are characterized by the
probability of an error in the detection of a coci@n between two random cells. PCR
reconstructions are found to be robust to suchtpairors and can successfully tolerate their
large amounts.

Table 1. Libraries of genetic lines such as Gal4 linesDrosophila can provide a natural
classification and identification system for newgtuits. Each neuron can be identified by the
set of genetic lines in which it appears, i.e.dach neuron one can associate a pattern of 1's and
0’s corresponding to the sets of genetic lines aamg it. E.g., a pattern 110... identifies a
neuron that is present in linés and B but not lineC, etc. Neurons that are present always
together in the same genetic lines comprise grofigsdistinguishable, equivalent neurons with
respect to such identification system. Such groops be accessed and manipulated via
associated combinations of genetic lines and thénads from (Luo et al., 2008). This allows
conducting experiments involving such neurons amndysng their properties even if it is not
possible to locate and identify such neurons aniagdy.
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Mishchenko Table 1

Groups of
neurons

ABC...
BC...
AC...
AB...
A...
B...
C...

Present in expression pattern of...

line A

yes
no
yes
yes
yes
no
no
no

line B

yes
yes
no
yes
no
yes
no
no

lineC
yes
yes
yes
no
na
no
yes
no

Code

111...
011...
101...
110...

100...

010...
001...
000...



