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Abstract 

Physical organization of the nervous system is a topic of perpetual interest in 
neuroscience. Despite significant achievements here in the past, many details of the 
nervous system organization and its role in animals' behavior remain obscure, while the 
problem of complete connectivity reconstructions has recently re-emerged as one of the 
major directions in neuroscience research (i.e. connectomics). We describe a novel 
paradigm for connectomics reconstructions that can yield connectivity maps with high 
resolution, high speed of imaging and data analysis, and significant robustness to errors. 
In essence, we propose that physical connectivity in a neural circuit can be sampled using 
anatomical fluorescent synaptic markers localized to different parts of the neural circuit 
with a technique for randomized genetic targeting, and that high-resolution connectivity 
maps can be extracted from such datasets. We describe how such an approach can be 
implemented and how neural connectivity matrix can be reconstructed statistically using 
the methods of Compressive Sensing. Use of Compressive Sensing is the key to allow 
accurate neural connectivity reconstructions with orders-of-magnitude smaller volumes 
of experimental data. We test described approach on simulations of neural connectivity 
reconstruction experiments in C. elegans, where real neural wiring diagram is available 
from past electron microscopy studies. We show that such wiring diagram can be in 
principle re-obtained using described approach in 1-7 days of imaging and data analysis. 
Alternative approaches would require currently at least 1-2 years to produce a single 
comparable reconstruction. We discuss possible applications of described approach in 
larger organisms such as Drosophila. 

1. Introduction 
In recent years the problem of complete reconstructions of neural connectivity has re-emerged as 
one of the major goals of modern neuroscience (Sporns et al., 2005; Briggman and Denk, 2006; 
Smith, 2007; Lichtman et al., 2008; Helmstaedter et al., 2009). Several “connectomics” projects 
had been thus proposed relying on classical electron microscopy (Briggman and Denk, 2006; 
Smith, 2007), injections of tracer viruses (Bohland et al., 2009), sparse expression of fluorescent 
cytoplasmic markers (Svoboda, Personal Communication), diffusion tensor imaging (Hagmann 
et al., 2007; Hagmann et al., 2008), among others. Despite significant progress made along these 
directions this problem remains far from being solved and significant limitations continue to 
exist in the resolution or practically feasible volume of possible reconstructions. E.g., diffusion 
tensor imaging (DTI) allows one to obtain connectivity maps for the entire human brain, but only 
very large-scale projections, such as between entire cortical areas, can be mapped (Hagmann et 
al., 2007; Hagmann et al., 2008). Electron microscopy (EM), on the other hand, can produce 
reconstructions at the level of individual synapses, but is very difficult to scale to large volumes 
(White et al., 1986; Briggman and Denk, 2006). Due to the ability of EM to map neural circuits 
at the level of individual synapses, EM remains the favorite approach for the new connectomics 
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reconstructions (White et al., 1986; Briggman and Denk, 2006; Smith, 2007). Yet, EM 
reconstructions are known to be extremely labor intensive (White et al., 1986; Briggman and 
Denk, 2006), while tracing of axons and dendrites over large distances through densely cluttered 
EM images has proven difficult to automate (Jurrus et al., 2006; Jain et al., 2007; Macke et al., 
2008; Mishchenko, 2009). Also, significant sensitivity of EM reconstructions to point errors 
during imaging and analysis had been recently revealed (Mishchenko, 2009; Mishchenko et al., 
2010b).  

In this paper, we describe a different paradigm for reconstructions of neural connectivity that can 
combine high level of detail of produced connectivity maps with high speed of fluorescent light 
microscopy imaging and significant robustness to errors. In essence, we propose that neural 
connectivity can be sampled using anatomical fluorescent synaptic markers introduced into 
different parts of a neural circuit genetically or otherwise and that high-resolution connectivity 
maps can be subsequently extracted from such datasets using statistical techniques. We describe 
a specific setup for such an experiment that utilizes two-component fluorescent synaptic markers 
(Feinberg et al., 2008; Mishchenko, 2010) and a recombinase system for stochastic gene 
expression (Livet et al., 2007; Lichtman et al., 2008; Luo et al., 2008) to randomly express the 
synaptic marker in a neural circuit and produce a sample of certain simple connectivity 
measurements. We show that synaptic connectivity matrix can be accurately reconstructed from 
such data using the techniques of Compressive Sensing (Donoho, 2006; Candes and Wakin, 
2008). Use of Compressive Sensing is the key to allow accurate neural connectivity 
reconstructions with orders-of-magnitude smaller volumes of the experimental data.  We test the 
feasibility of this approach by simulating a hypothetical neural connectivity reconstruction 
experiment in C. elegans, a popular neuroscience model where a real neural wiring diagram is 
available from EM (White et al., 1986). Using such an actual wiring diagram, we show that the 
complete connectivity matrix in C. elegans can be in principle re-obtained with the described 
approach in only 1-7 days of imaging and data analysis, whereas the best alternative available 
EM approach currently would require at least 1-2 years for a single comparable reconstruction. 
We also discuss different strategies that can allow applying the described approach with different 
connectivity probes and genetic targeting techniques in larger organisms such as Drosophila. 
Our results open new possibilities for quantitative data-rich empirical studies of neural circuits’ 
organization and functions in the brain. 

2. Materials and Methods 

2.1. Probing specific synaptic connectivity with fluorescent synaptic markers 

Recently certain two-component fluorescent synaptic markers had been developed that can be 
used to label and individually observe synapses between specific neurons. These include the 
synaptic marker GRASP (Feinberg et al., 2008) and the two-component co-localization synaptic 
marker (Mishchenko, 2010).  

The synaptic marker GRASP relies on the process of recombination of the two fragments of the 
split-GFP molecule to label synaptic contacts between specified neurons. Split-GFP molecule 
consists of a pair of proteins that by themselves are not fluorescent, but can chemically 
recombine into a functional fluorescent protein (GFP) when in close proximity from each other 
(Sarkar and Magliery, 2008). In GRASP, such split-GFP fragments are genetically tailored to the 
proteins normally present on the external surfaces of pre- and post-synaptic regions of neurons 
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and are separately expressed in selected neurons using gene-fusion (Fig. 1A). When two such 
neurons form a synapse, split-GFP fragments recombine over its synaptic cleft and produce a 
functional GFP, thus, fluorescently tagging that synapse. 

The principle of (Mishchenko, 2010) is essentially the same with that of GRASP. This synaptic 
marker consists of a pair of different wavelength fluorochromes targeted to the proteins normally 
present on pre- and post-synaptic surfaces of neurons (Fig. 1B). Unlike in GRASP, such 
fluorochromes are not required to be chemically complementary; instead, detection of synapses 
is performed by observing spatial co-localization of fluorescence from these fluorochromes. At 
existing synapses such pre- and post-synaptic fluorochromes are co-localized naturally due to 
dimensions of the synaptic clefts. Such co-localization may also occur randomly, e.g., due to 
random oppositions of pre- and post-synaptic surfaces of nearby synapses. However, in 
(Mishchenko, 2010) it was shown using electron microscopy data that such random oppositions 
should be extremely rare for optical instruments with sufficient resolving power, including array 
tomography (Micheva and Smith, 2007) and structured illumination microscopy (Gustafsson, 
2000, 2005), in which case synapses can be detected with such an approach typically with an 
accuracy of better than 95%. 

The connectivity probe considered in this work is essentially a replica of the two-component 
construct described above with one difference. Because the above synaptic markers originally 
only label synapses of affected neurons, corresponding cell bodies remain unaffected. For our 
purposes, however, it will also be necessary to label cell bodies of the neurons expressing such 
markers. For that, to the above construct we introduce a “helper” element consisting of a 
fluorescent nuclei marker that can be used to identify neurons expressing the synaptic marker 
post-factum, Fig. 2A-B.  

2.2. Probing synaptic connectivity stochastically with fluorescent synaptic markers and a 

recombinase system 

Recombinase systems such as the Cre/Lox system or the Flp/Frt system can be used to express 
the synaptic marker in a neural circuit stochastically and, thus, to allow sampling different 
connections in that circuit in a high-throughput manner. Recombinase systems are well known 
genetic tools for manipulating gene expression and, in particular, for expressing genes 
stochastically in a population of cells. A particularly ingenious tour-de-force demonstration of 
this latter aspect had been recently produced with the Brainbow mouse using the Cre/Lox system 
(Livet et al., 2007; Lichtman et al., 2008; Lu et al., 2009a; Lu et al., 2009b).  In the Brainbow 
mouse (or rather one of its implementations) a cassette of several genes encoding different 
emission spectra fluorochromes (e.g., GFP, YFP, etc.) is flanked in the genome with inversely 
oriented loxP-sites. The Cre action then consists in flipping orientation of such sequences (Fig. 
1C). In this process, loxP-enclosed sequences stochastically assume either direct or reverse 
orientation in different cells. Since the cells where orientation of the sequence is reversed cannot 
transcribe the respective genes successfully, Brainbow succeeds in randomly deactivating 
different fluorochromes in different cells. Different cells then attain distinctive cytoplasmic 
colors depending on the combination of the fluorochromes that are “active” there, and can be 
distinguished merely by color. This makes analysis and tracing of projections of such neurons 
significantly simpler and at the same time more reliable (Livet et al., 2007). A number of larger 
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axons and synapses in several neural circuits had been thus reconstructed using this approach (Lu 
et al., 2009a; Lu et al., 2009b).  

In our settings, we use the recombinase system to randomly deactivate expression of the synaptic 
marker in different cells of a neural circuit. In one possible implementation, the sequences for the 
post- and pre-synaptic components of such marker (sA and sB, respectively) are placed into 
reverse-tandem flanked jointly with loxP-sites, Fig. 2A. Two different outcomes of Cre-
recombination then can occur with equal probability. In outcome (i) sequence sA is transcribed 
leading such neurons to express the post-synaptic marker fragment.  The respective nuclei tag nA 
is also transcribed, thus, labeling the nuclei of such neurons with a distinctive color. In outcome 
(ii) sequence sB is transcribed leading such neurons to express the pre-synaptic fragment and the 
nuclei tag nB. Neurons always express exclusively either sA or sB and never sA and sB together. 
This may be advantageous if the expression of both marker fragments simultaneously in the 
same neuron is undesirable (Bargmann, Personal communication). Fluorescent puncta are 
formed by all synapses made by the neurons that express complementarily the pre- and post-
synaptic marker fragments, Fig. 2C.  

In another implementation, Fig. 2B, the sequences for the post- and pre-synaptic marker 
fragments are flanked with loxP individually. Four outcomes of Cre-recombination are then 
possible with equal probability. In outcome (i) both sA and sB are transcribed and both pre- and 
post-synaptic sites of the neurons are tagged and visualized. In outcome (ii) only sA sequence is 
transcribed and, thus, only post-synaptic sites of such neurons are visualized. In outcome (iii) 
only sB sequence is transcribed and only pre-synaptic sites of such neurons are visualized. And 
in outcome (iv) neither sA nor sB are transcribed and synapses of such neurons are not observed. 
If homogeneous action of a single recombinase system across all neurons cannot be achieved, 
mixtures of multiple recombinase systems can be used in the manner described above. 

Other implementations are obviously possible; Fig. 2 provides only one possible “real life” 
example of such an implementation together with all appropriate recombination outcomes. 

2.3. Sampling neural connectivity with stochastically expressed fluorescent synaptic 

markers 

We suggest combining a two-component fluorescent synaptic marker and a recombinase system 
for stochastic gene expression to stochastically sample synaptic connectivity in a neural circuit as 
illustrated schematically in Fig. 3. In Fig. 3A three subsets of neurons from a hypothetical neural 
circuit are shown expressing at random the post- and pre-synaptic marker fragments and the 
respective nuclei tags. These three samples can correspond to three different specimens from the 
genetic line containing implementation of such construct, i.e. its three different phenotypes. 
Whenever two neurons that express complementarily the pre- and post-synaptic marker 
fragments form a synapse, a fluorescent punctum is also formed allowing one to observe such 
synapses with fluorescent microscopy. Obviously, different synapses are visualized in different 
specimens.  

Because single synaptic marker labels all synapses in the same way (e.g., GRASP labels tags all 
its synapses with the same fluorochrome - GFP), in general, it will be impossible to determine 
which labeled synapses belong to which neurons. Instead, a cumulative measure should be 
obtained such as the total count of all puncta or the combined fluorescence size of all puncta. We 
will denote such measurement with symbol n. Identity of the neurons expressing the synaptic 
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marker in each experiment should be also recorded using associated nuclei tags. We will denote 
such expression patterns for the post- and pre-synaptic marker fragments with symbols a and b. 
That is, a is just a list of all neurons that express given “post-synaptic” nuclei tag in a given 
specimen and b is that for the neurons expressing “pre-synaptic” nuclei tag. The set of 
observations that is thus procured is that of the triples, {(n, a, b)}, for different specimens. Such 
a sample is a characteristic of the above stochastic phenotype (Fig. 3B), and can be used to 
exactly reconstruct the underlying neural connectivity matrix, as we discuss below. 

2.4. Reconstruction of the neural connectivity matrix with stochastically expressed 

fluorescent synaptic markers 
The key observation of this work is to recognize that the measurements introduced in Section 
2.3. can be interpreted as certain sums over the neural connectivity matrix (Fig. 3C). 
Specifically, if Cij is an element of such neural connectivity matrix describing, e.g., the number 
or the size of all synapses between different pairs of post-synaptic and pre-synaptic neurons i and 
j, respectively, the measurement n in a specimen k can be mathematically represented as the 
following sum, 
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 For recombinase systems such as the Cre/Lox or Flp/Frt, )(k
ia  and )(k

jb  will be essentially 

random vectors with approximately 50% of ones and 50% of zeros (Livet et al., 2007; Lichtman 
et al., 2008; Luo et al., 2008). 

Using Eq. (1), we can expect that it may be possible to estimate the neural connectivity matrix Cij 
statistically from the collection of measurements {(n(k), }{ )(k

ia , }{ )(k
jb ), k=1,…,K}. Specifically, 

we can search for Cij that can best describe the available set of measurements (1) within the class 
of sparse matrices. We know that connectivity in the neural systems is typically very sparse, and 
sparse priors previously had been shown to allow significant reduction in the amount of data 
necessary for a reliable reconstruction of linearly encoded signals. Although such a problem may 
appear to be hopelessly ill-defined (e.g., all expression patterns are broad and nonspecific, sparse 
prior is nonspecific as well, etc.), contrary to this impression it is possible to recover the 
connectivity matrix under these conditions quite accurately. In fact, it can be mathematically 
shown that the connectivity matrix can be extracted exactly from relatively small number of 
measurements (1) using the methods of Compressive Sensing (Candes and Romberg, 2005; 
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Donoho, 2006). In subsequent sections we describe the mathematical procedures that can be used 
to identify the connectivity matrix from such data.  

2.5. Reconstruction of the neural connectivity matrix using Compressive Sensing  
Compressive Sensing (CS) (Candes and Romberg, 2005; Candes et al., 2006; Donoho, 2006; 
Candes and Wakin, 2008) is a recently emerged field of signal processing that deals with 
decoding of linearly encoded sparse signals. Linear encoding here means that a signal, f(t), is 
encoded by a collection of linear measurements ∑== )()(*)( tftfky kk ϕφ (sum is over all 

t=1,…,T). Sampling f(t) at a set of predefined points {ti} or observing the Fourier components of 
f(t) would be examples of linear encoding. The goal of CS is to accurately reconstruct f(t) from 
an incomplete set of such linear measurements, while knowing that the original signal is sparse 
(i.e. that f(t)=0 for most t, but not knowing where f(t) is zero). For example, we know that the 
connectivity matrix in the neural systems should be sparse, but we may not know exactly which 
neurons are connected. CS is provably nearly optimal approach for addressing this problem. 

Certain remarkable mathematical properties of CS had been recently rigorously established and 
should be mentioned (Candes and Romberg, 2005; Candes et al., 2006; Candes and Wakin, 
2008). First, it was shown that it is possible to reconstruct sparse signal exactly from a small 
number of its measurements, spTTK )log(∝ , where Tsp<<T is the number of nonzero elements in 

f(t).  Second, appropriate reconstruction procedure is tractable: with probability approaching to 1 
exponentially in T the sought signal is the smallest l1-norm solution of the set of linear equations 

},...,1),()()({ ∑ == Kktftky kϕ . Third, such exact reconstruction can be obtained essentially 

independently of the specific form of )(tkϕ , i.e., exact reconstructions can be achieved using 

nearly arbitrary set of probing waveforms )(tkϕ . 

Recall now that our measurements of the count or combined size of labeled synapses, n, can be 
interpreted as following sums over the neural connectivity matrix, 
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where )(k
ia  and )(k

jb  are the indicator functions for the respective expression patterns of the post- 

and pre-synaptic marker fragments in animal k, Sections 2.3-2.4. We now immediately recognize 
in these settings the linear encoding problem described above. According to CS (Candes et al., 
2006), then, the connectivity matrix can be accurately recovered from a sample of such 
measurements by solving a linearly constrained l1-optimization problem, 
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Problem (3) is a standard linear-program (LP) and powerful methods exist for solving it 
efficiently, e.g., such as the interior point methods (Wright, 1997; Vanderbei, 2001; Boyd and 
Vandenberghe, 2004). For large connectivity matrices, however, the issue of computational 
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scalability should be addressed. In particular, Matlab’s LP solver fails to solve problem (3) when 
N exceeds N≈50 neurons due to computer memory limitations. Remember that there are N2 
variables to be optimized in problem (3). 

In (Candes and Romberg, 2005) an alternative method for solving Eqs. (3) for very large N2 was 

proposed. Specifically, if l1-norm of the connectivity matrix, ∑∑
= =
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solution of problem (3) can be found as the intersection of two convex sets – the l1-cube 
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and ∑
=

=
N

i

k
i

k a
N

a
1

)()( 1
. According to the central theorem of CS, such intersection is unique and 

corresponds to the exact solution of problem (3) when K is sufficiently large (Candes and 
Romberg, 2005).  

To actually find said intersection, the algorithm of alternate projections was used (Bregman, 
1965). In this algorithm one starts with a random guess for the connectivity matrix, )0(C , and 
then repeats the two steps of consequently projecting the current guess, )(lC , onto the hyper-
plane (3b) and then onto the l1-cube SC

l
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In Eq. (4a) we used vector notation for clarity, i.e., NxN connectivity matrix Cij was represented 
by a N2x1 vector over joint indices (ij) and P denoted the KxN2 matrix )()();( k

j
k

i baijkP = . In such 

notation Eq. (3b) clearly corresponds exactly to the dot-product of P and C, 

∑=⋅=
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ijCijkPCPn . Eq. (4a) describes the step of projecting )(lC  onto the hyper-plane 

(3b): it can be trivially checked that nCP l =⋅ + )2/1( . Eq. (4b) describes the step of projecting 
)2/1( +lC  onto the l1-cube SC

l
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1
. γ(l) is chosen at each iteration to achieve SC

l
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)1( and 

controls retraction of )2/1( +lC  onto the nearest face of that cube. Steps (4a) and (4b) are repeated 
until convergence, which typically can be achieved rapidly because the process proceeds 
between two hyper-planes - the hyperplane of the constraints and one of the faces of the l1-cube. 

2.6. A hypothetical neural connectivity reconstruction experiment using stochastically 

expressed synaptic marker GRASP in C. elegans 

We evaluate performance of the described approach using simulations of a hypothetical neural 
connectivity reconstruction experiment in C. elegans. C. elegans is a popular neuroscience 
model organism and the only organism where real wiring diagram is known from prior electron 
microscopy work (White et al., 1986). In particular, this motivated our attention specifically to 
that system, although our method obviously is not restricted to applications in C. elegans.  
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We simulated connectivity reconstruction experiments involving from 500 to 10,000 
measurements performed with the described system using the synaptic marker GRASP 
(stochastic GRASP). For each observation we generated pre- and post-synaptic GRASP 
expression patterns according to Section 2.2. For the construct in Fig. 2A, each neuron was 
assumed to express pre- and post-synaptic GRASP fragments uniformly and mutually 
exclusively with probability 50%. For the construct in Fig. 2B each neuron was assumed to 
express pre- and post-synaptic GRASP fragments uniformly and non-exclusively with 
probability 50%. Using thus generated )(k

ia  and )(k
jb , we simulated measurements n(k) according 

to Eq.(1). 

We also considered a number of “noise” factors that can affect actual experiments. One of such 
factors considered was biological variability, i.e., that actual connectivity matrix could vary from 
one stochastic GRASP animal to another. In that case for each animal k a slightly different 
connectivity matrix )(k

ijC  was prepared using following formula,  

][)1()(
ijbbij

k
ij CavaCC +−= .                                                     (5) 

Here ijC  was the test wiring data from (White et al., 1986), i.e. for each pair of neurons i and j 

ijC  described the number of synaptic contacts between these neurons from the EM data in 

(White et al., 1986). ][ xv  was a Poisson-distributed random variable with mean x  and modeled 
the variation in Cij among animals. Parameter ab controlled the degree of such variation - ab=0 
corresponded to no variability and ab=1 corresponded to the case where synapses were formed 
completely at random with certain number of synapses between given neurons on average. The 
objective of the reconstruction in this case was to recover the average connectivity matrix ijC . 

Second, we considered noise that could be added into the observations during the measurement 
process itself, e.g., due to imperfections in the experimental setup. For that we altered the 
measurements n(k) by adding white noise, )1)(()( vaknkn o+→ . Here,v  was a Normally-

distributed random variable with zero mean and unit variance, and ao controlled the relative 
strength of such “measurement” noise.  

Finally, we considered errors that could be made during measurements of the expression patterns 
)(k

ia  and )(k
jb . Since such errors typically would lead reconstruction algorithm to use wrong 

projecting matrix P, such errors clearly could result in deviations of the reconstruction from the 
truth. To consider this factor in our model, we corrupted the “true” expression patterns by 
randomly shuffling identities of a small number of neurons. In that sense, we assumed that the 
total number of neurons was known a-priori (as is in fact in C. elegans) and the only errors that 
could be committed were due to confusion of nearby neurons. 

2.7. Comparison with alternative approaches for connectomics reconstructions 

We performed a comparison of our approach with potential applications of several alternative 
methods for connectomics reconstructions – serial electron microscopy (EM) and pair-wise cell 
recordings (PCR). We inspected such applications vs. the amount of the reconstruction effort 
involved, E, and the impact of different degrees of noise and contributed errors, f. In order to 
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perform simulations we used real neural wiring data from C. elegans, similar in essence to 
Section 2.6.  

In EM, reconstruction effort E refers to the fraction of the neural tissue volume imaged in respect 
to the total volume of the neural circuit, and in PCR that refers to the fraction of all neural pairs 
recorded from. The part of the neural connectivity matrix that is recovered for given E with EM 
is that corresponding to the neurons whose cell bodies are contained inside the reconstructed 
volume, of which the fraction is obviously E. Note that, although a larger number of synapses 
may be observed in the reconstructed volume, only a fraction of these can be identified 
corresponding to the neurons whose cell bodies can be found inside the reconstructed volume. 
Therefore, to simulate the result of EM reconstructions for different E we considered the 
connectivity matrix in which only connections between EN randomly chosen neurons were 
retained, while all other connections were assumed to be unknown. To simulate the result of 
PCR reconstructions for different E, respectively, we considered the connectivity matrix in 
which EN2 randomly chosen neural connections were retained.  

In order to inspect the impact of biological variability on the result of EM and PCR 
reconstructions, we simulated connectivity matrices for individual specimens using the scaled 
Poisson model, given by Eq. (5). Since EM or PCR would produce connectivity reconstructions 
essentially within individual such specimens, to simulate the impact of biological variability we 
compared such individual scaled Poisson matrices with the average ijC . In general, we found 

that the impact of biological variability on such reconstructions was insignificant, i.e., the 
members of scaled Poisson family could generally be expected to be similar with their average 

ijC . 

Errors in EM reconstructions generally are comprised of the mistakes made in the traces of thin 
axons due to local misinterpretations of images or photographing defects (Mishchenko, 2009; 
Mishchenko et al., 2010b). For example, an axon can be confused with a similar nearby axon in 
an image and, thus, continued as such of a wrong neuron. Such errors can be characterized by 
their rate, f, i.e., the probability for one such error to occur in the reconstruction of an axon over a 
given interval, e.g., such as between two its consecutive synapses. To simulate the impact of 
such errors we proceeded as follows. For each neuron j we traversed all its post-synaptic 
connections in Cij in (White et al., 1986) in random order, one by one. During each step the error 
event was generated with probability f. If error event was generated, then the effective identity of 
the pre-synaptic neuron was changed to another random neuron, j*, and subsequent connections 
for the reconstruction of the original neuron j were selected from Cij*. This was meant to model 
confusion of similar nearby axons during tracing. This process was repeated until all connections 
from Cij were exhausted, so that all rows of the corrupted reconstructed connectivity matrix were 
thus filled.  

Errors in PCR reconstructions typically would correspond to failures to observe a connection 
when stimulating one neuron and recording from another. This can occur, e.g., due to failure of 
the target neuron to get stimulated or failure to observe a weak post-synaptic sub-threshold 
response, etc. Such errors are mathematically described as point errors in the connectivity matrix 
and can be characterized by their probability per one neural pair, f. To simulate the impact of 
such errors, therefore, we deleted at random a fraction f of the connections from the 
reconstructed connectivity matrix and compared such corrupted result with the original Cij. 
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Additive noise in the measurement of the connection strength can also be present in PCR due to 
fluctuations in the membrane potential levels. This factor was not considered in this work. 

3. Results 

3.1. Feasibility of the wiring diagram reconstructions in C. elegans using stochastic GRASP 

To test our approach we simulated a hypothetical neural connectivity reconstruction experiment 
in C. elegans. C. elegans is a popular neuroscience model and the only animal where complete 
wiring diagram is known from serial electron microscopy (White et al., 1986). This, in particular, 
motivated our attention specifically to this system, although our approach obviously is not 
restricted to C. elegans. 

The neural wiring diagram in C. elegans in (White et al., 1986) was produced as follows. Entire 
body of one C. elegans specimen was imaged at extremely high resolution using serial electron 
microscopy. (More accurately, several specimens were imaged partially in order to achieve a 
dataset equivalent to one full body coverage.) Consequently, synapses were manually found in 
the images and associated with the corresponding axons and dendrites, and axons and dendrites 
were traced to the respective cell bodies through multiple EM images, also manually. Total count 
of synapses between different pairs of neurons was thus tabulated, and the table describing these 
counts was compiled as the neural wiring diagram of C. elegans (now available from 
wormatlas.org). We used this actual wiring diagram as the ground truth for a simulated neural 
connectivity reconstruction experiment, see Section 2.6. The wiring diagram of C. elegans 
contains N≈300 neurons connected via a grand total of about 6000 synapses in 2500 distinct 
neural connections. 

We simulated a neural connectivity reconstruction experiment with stochastically expressed 
synaptic marker GRASP (stochastic GRASP) using from K=500 to K=10,000 animals, and 
inspected obtained reconstructions both in matrix form and as a scatter plot of the reconstructed 
vs. actual connection weights (Fig. 4). Quantitatively, we characterized the reconstructions using 
the correlation coefficient between the reconstructed and actual connection weights, r2. r2=0 

would correspond, naturally, to no correlation between the reconstructed and true connection 
weights, and r2=1 would correspond to a reconstruction that was perfect or exact. 
Reconstructions with r2=0.5, as we observed in particular, already were generally good enough 
to provide a practically meaningful estimate of the neural connectivity matrix, Fig. 4. 

In Fig. 5 we show r2 for the stochastic GRASP reconstructions plotted vs. the number of 
measurements K. As can be seen from this figure, perfect reconstructions were obtained already 
with ≈10,000 measurements. This is in excellent agreement with the CS theory and far below 
≈90,000 measurements that can naively be expected to be necessary to completely characterize 
the connectivity matrix of 300x300 neurons in C. elegans at least once. Practically meaningful 
reconstructions could be obtained with ≈5,000 measurements. These results were obtained for 
both exclusive and non-exclusive constructs, Fig. 2A and 2B. Compressive Sensing was critical 
here as, e.g., a naïve solution using a more conventional L2 regularization (i.e., 

∑∑=
2

minmin
2

ijl
CC  s.t. ∑∑= ij

k
j

k
i Cbakn )()()( ) resulted in practically useless 

reconstructions with the sample of this size. 
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These results indicate that complete reconstructions of the wiring diagram in C. elegans using 
stochastic GRASP can be feasible and in principle can be performed with quite modest 
experimental effort, relying only on already existing technologies such as Cre/Lox or Flp/Frt 
recombinase systems, GRASP, and low-end light microscopy.   

3.2. Impact of biological variability on the wiring diagram reconstructions using stochastic 

GRASP 

It may be expected that the connectivity matrix in different animals of the same species may vary 
from animal to animal. In this case, in each stochastic GRASP experiment a slightly different 
connectivity matrix will be probed. Although it is not yet known to what degree real neural 
circuits should be expected to vary (in fact directly opposite opinions exist on this topic among 
neuroscientists), we inspected potential impact of such variability on the neural connectivity 
reconstructions using stochastic GRASP, see Section 2.6. Results of this study are shown in Fig. 
6. In every case, we found that the impact of biological variability on the connectivity 
reconstructions was insubstantial. 

3.3. Impact of added noise on the wiring diagram reconstructions using stochastic GRASP 

It can be expected that a perfect measurement of the total puncta count or size may not be 
possible to obtain under realistic conditions. Such noise added during the process of collecting 
the measurements themselves may obviously distort the results of the connectivity 
reconstructions. We inspected potential impact of such noise on the reconstructions using 
stochastic GRASP, see Section 2.6. Results of this study are shown in Fig. 7. Reconstructions 
were found to be stable under small additions of noise, i.e., small amounts of noise caused only 
proportionately small deviations in the reconstruction result (Candes et al., 2006; Candes and 
Wakin, 2008). Yet, sensitivity to noise was substantial, and only up to 3-4% of added noise could 
be tolerated for the minimal K≈10,000. Robustness improved with the number of measurements 
K, so that higher levels of noise could be potentially mitigated by collecting datasets with a 
larger number of measurements. Although we did not extend this study to larger K, because such 
an extension would be very computationally expensive, the specifications for particular target 
reconstruction accuracy and specified noise levels can be computed straightforwardly using the 
methods in Sections 2.5 and 2.6. 

3.4. Impact of misidentifications in detected GRASP expression patterns on the wiring 

diagram reconstructions using stochastic GRASP 

It can be expected that a perfect measurement of GRASP expression patterns, a and b, may not 
be possible to obtain under realistic conditions, so that a certain amount of errors in the detected 
expression patterns should be anticipated. Clearly, such errors can result in deviations of the 
reconstructed connectivity matrix from the truth. We inspected potential impact of such errors on 
the reconstructions using stochastic GRASP in greater detail, see section 2.6. Results of this 
study are shown in Fig. 8. Although reconstructions were found to be stable again, sensitivity to 
errors in the expression patterns was substantial, and only up to 5-6% of misidentified neurons in 
the detected expression patterns (i.e. 15-20 misidentified neurons per 300 in C. elegans) could be 
tolerated for the minimal K≈10,000. As before, reconstructions with larger number of 
measurements K were more robust to errors, so that higher error levels could be tolerated with 
datasets of larger size. Although we did not extend this study to K greater than 10,000, again 
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because that would be very expensive computationally, the specifications for particular target 
reconstruction accuracy and specified error levels can be computed using the methods in 
Sections 2.5 and 2.6. 

4. Discussion 

We describe a new approach for reconstructions of neural connectivity that utilizes two-
component fluorescent synaptic markers (Feinberg et al., 2008; Mishchenko, 2010) together with 
a recombinase system for stochastic gene expression (Livet et al., 2007; Lichtman et al., 2008; 
Luo et al., 2008) to randomly sample synaptic connectivity in a neural circuit. Complete 
connectivity matrix is reconstructed from produced fluorescent measurements using the methods 
of Compressive Sensing (Candes and Romberg, 2005; Candes et al., 2006; Donoho, 2006; 
Candes and Wakin, 2008).  

We use real neural wiring data for C. elegans, available from EM (White et al., 1986), to show 
that described approach in C. elegans is feasible and can be executed with already existing 
technologies. In C. elegans, we find that 5,000-10,000 measurements performed with 
stochastically expressed synaptic marker GRASP (Feinberg et al., 2008) will suffice to 
successfully recover the complete wiring diagram. Given small size (100x100x1000 µm) and fast 
development (2-3 days) of C. elegans, 10,000 animals can be incubated on a single Petri-dish in 
the span of several days. Modern C. elegans phenotype screens, in fact, routinely work with the 
populations that large. Fluorescent measurements can be obtained by performing 3D-scans of the 
specimen bodies, while GRASP expression patterns can be obtained at the same time using 
associated nuclei-targeted fluorescence. Computer algorithms such as (Long et al., 2008) can be 
used to automatically determine GRASP  expression patterns in C. elegans from produced 
imaging data. Although, according to our calculations, the identification error rates reported in 
(Long et al., 2008) are still quite high for this purpose (i.e., 95% correct identifications and 5% 
errors), significant improvement from this first attempt in the computerized cell identification 
can be naturally expected in the near future. Assuming that the imaging data at resolution ≈0.5 
µm/pixel can be acquired with a confocal microscope at the speed of at least 10MHz, it should 
be possible to perform such a full scan of one specimen’s body in 1 minute or less using a 
specialized imaging setup (Kerr, Personal communication). 10MHz acquisition rate can be 
achieved, e.g., with a 1000x1000 pixel CCD camera mounted on a confocal microscope and 
taking images at the frequency of 10 frames per second. The body of one C. elegans specimen at 
the resolution of 0.5 µm/pixel contains approximately 80 million pixels. Using a CCD camera 
with 1000x1000 pixels and by taking one image of the part of the longitudinal section of C. 
elegans of 1000x200 pixels every 1/10 of a second, 80 million pixels can be acquired in [80*106 
pixels]/[2*105 pixels/frame]/[10 frame/second] = 40 seconds. We may also note that the entire 
body of the specimen may not need to be imaged, since the neural connections will typically be 
localized only to small regions in the specimen’s body. Then, the total imaging time for the 
entire sample of 10,000 animals can be estimated in only 1-7 days. Subsequent reconstruction of 
the connectivity matrix from such data is computationally straightforward and can be performed 
in several hours of computations on a laptop computer, as was shown here. 

Several remarkable features of such reconstruction approach should be explicitly mentioned. 
Complete connectivity can be recovered using what can be considered a grossly incomplete and 
non-specific dataset, with the number of available measurements 2log~ NNNK sp << , where 
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spN  is the number of connected neural pairs in the circuit and N is the total number of neurons 

(Candes and Romberg, 2005). Clearly, should we have known the identity of all connected 
neural pairs in the circuit, we could use spNK ~  measurements to determine the connectivity 

matrix, e.g., by using pair-wise cell recordings.  With Compressive Sensing we can achieve 
similar performance bound without any prior knowledge about the identity of the connected 
neural pairs. Reconstructions with smaller than minimally sufficient number of measurements K 
will produce the best possible approximations to true connectivity matrix with ≈K terms 
(Romberg, 2008). Described approach does not involve tracing of neurons, recordings from 
individual neurons, genetically targeting individual neurons or small groups, or other explicit 
association of synaptic connection with remotely located neurons, which is the main difficulty of 
many other connectomics paradigms. Synapses are associated with the relevant neurons a-
posteriori, and detailed connectivity matrix is obtained even when all neural “targeting” patterns 
are broad and nonspecific (e.g., stochastic). 

We can compare our approach with alternative existing connectomics paradigms, although such 
comparison is admittedly complicated by the diversity of existing approaches, making it difficult 
to bring them to a common denominator, and the fact that none of the existing approaches is yet 
capable of detailed reconstructions of connectivity even in a system such as C. elegans (with the 
exception of serial electron microscopy). Here, we compare two such paradigms that in our 
opinion have the best prospects for complete neural connectivity reconstructions in the near 
future – serial electron microscopy (EM) (White et al., 1986; Briggman and Denk, 2006; Smith, 
2007; Mishchenko, 2009) and optically assisted pair-wise cell recordings (PCR) (Bureau et al., 
2004; Baker et al., 2005; Petreanu et al., 2007). We have left out a number of promising 
techniques for estimating neural connectivity from functional correlations between neurons, e.g., 
using calcium imaging (Broome et al., 2006; Jones et al., 2007; Pillow et al., 2008). Although 
these now potentially allow reconstructions of circuits with hundreds and thousands of neurons 
(Stevenson et al., 2009; Mishchenko et al., 2010a), only an effective connectivity matrix is 
produced with such an analysis, whose relationship to the physical circuit structure is yet to be 
clearly elaborated. 

EM reconstruction paradigm comprises: a) directly imaging a block of neural tissue with serial 
electron microscopy; b) finding synapses in the images and associating them with corresponding 
axons and dendrites; c) tracing associated axons and dendrites through multiple images to 
corresponding cell bodies; d) recording a connection between a pair of neurons.  The main 
advantage of EM reconstructions is their ability to assess the physical structure of a neural circuit 
directly, as individual synapses, axons, and dendrites can be all directly seen in EM images. 
Furthermore, details of neural morphology such as arbor shape, branching structure, synapses 
bunching, etc., can be extracted from EM images. Such data can be used to directly model 
physical processes and signal transmission inside axons, dendrites, and neurons as well as to 
study sub-cellular organization of neurons and micro-organization of neuropil.  

The main disadvantage of EM approach is very low speed with which the data can be acquired 
and extreme difficulty of subsequent image analysis. Analysis of EM data is characterized by 
very high labor-intensity – manual reconstructions in one C. elegans specimen in (White et al., 
1986) took over 10 years to complete. Modern automation techniques can reduce this time, but 
has to rely on complex and brittle image-understanding algorithms, making reliable scaling of 
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such approaches difficult (Jurrus et al., 2006; Jain et al., 2007; Macke et al., 2008; Helmstaedter 
et al., 2009; Mishchenko, 2009; Mishchenko et al., 2010b). In (Mishchenko, 2009; Mishchenko 
et al., 2010b), in particular, a complete automation approach was presented and reconstruction 
speed of about 5 µm3/man-hour in dense neuropil in rat hippocampus was demonstrated, 
estimated to correspond to at least a 10-fold improvement over the purely manual analysis. Such 
automation in C. elegans potentially could allow another complete connectome reconstruction in 
1-2 years of work by a single operator, with subsequent speedup possible by parallelizing. Of 
course, this estimate should be only viewed as a rough, order of magnitude estimate, since many 
different factors will play role in the actual performance including simpler longitudinal 
organization of axons in C. elegans (which may help reconstruction), their smaller size (which 
may make reconstruction more difficult), etc. Also note that (Mishchenko, 2009; Mishchenko et 
al., 2010b) deals with full volume neural tissue reconstructions in which the contours of all 
neurons are completely recovered. Computer assisted manual skeleton-based reconstructions 
such as recently reported in neuroscience conferences by W. Denk potentially may allow yet 
faster analysis of EM data.  

PCR reconstruction paradigm comprises: a) stimulating different neurons individually 
electrically or optically; b) observing sub-threshold electrical responses in a selected neuron 
using an electrode patch. While this approach is responsible for the bulk of the information 
available today about neurons and their circuits, such measurements are also notoriously difficult 
to perform. Normally, only as few as 10-100 neural pairs can be patched and tested a day. In C. 
elegans, in particular, this implies that a complete scan of the connectivity matrix would take 
anywhere from 3 to 30 years to complete, although we should also note that patching neurons in 
C. elegans is admittedly more difficult due to their extremely small size. With optical stimulation 
and optical readout techniques such as ChR2 and voltage sensitive dyes, however, this time can 
be dramatically reduced, making complete scans possible in the span from several minutes to 
hours. We will further revisit this option a little later in this section. 

We inspected performance of EM and PCR reconstructions in terms of the degree of the 
reconstruction effort involved (Figure 9A and C) and noise and contributed errors (Figure 9B 
and D). See Section 2.7. for the details of these calculations. In EM, reconstruction effort refers 
to the fraction of the neural tissue volume imaged in respect to the total volume of the neural 
circuit, and in PCR this corresponds to the fraction of all neural pairs recorded from. Errors in 
EM reconstructions are typically introduced via point errors in the traces of thin axons, e.g., such 
as confusing and mixing similar nearby axons or “losing” axons due to local mistakes in 
interpretation of images or defects in the photographs (Mishchenko, 2009; Mishchenko et al., 
2010b). Because each such error affects a large number of synapses located downstream on the 
affected axon (e.g., causing all such synapses to be lost or mis-assigned to a different neuron), 
EM reconstructions can be very sensitive to such small errors. In Fig. 9B, in particular, the 
quality of EM reconstructions in C. elegans vs. the rate of such errors is shown. The error rate is 
characterized by the probability of an error in the trace of an axon on its interval between two 
consecutive synapses, f. For instance, if EM reconstruction contains on average one error in a 
trace per 1000-2000 serial EM sections, i.e., 50-100 µm under typical conditions, the chance of 
an error on the 5-10 µm axonal segment comprising the typical distance between two 
consecutive axonal boutons in mammals is f≈10%. When tracing an axon from one synaptic 
connection to the next, then, there will be a 10% chance to make a point error affecting that 
reconstruction. From Fig. 9B, we observe that the largest error rate that can be tolerated in C. 



14 

 

elegans in such settings is only about 10%, or one error per 50-100 µm. Interestingly, an estimate 
of EM error rates in (Mishchenko, 2009; Mishchenko et al., 2010b) indicates that these may be 
in fact as large as f≈5-10%. At the same time, also note that the above error rate bound may 
depend on the size of the reconstructed neural circuit and may become progressively smaller as 
the circuit size becomes larger than that in C. elegans. 

In PCR, errors typically correspond to failures to detect a connection when recording from a pair 
of neurons. This can occur, e.g., due to failure of the target neuron to get stimulated or failure to 
observe a weak post-synaptic sub-threshold response in the recorded neuron, etc. Such errors are 
mathematically represented as point deletion errors in the connectivity matrix and can be 
characterized by their probability per one tested neural pair, f. From Fig. 9D we observe that 
PCR is quite robust to such errors, and error levels of up to 40-60% can be easily tolerated.  

While we show that the proposed approach can be successful already today in C. elegans, it is 
important to think about possible strategies for its applications in larger systems, e.g., such as 
Drosophila. In particular, in Drosophila with N≈105 neurons and on average 100 synapses per 
neuron the neural circuit complexity is Nsp≈107 connections, and an experiment such as we 
described may appear prohibitive.  

We must note that this problem is not confined to our method per se. Even though reconstruction 
of the circuit with 2500 connections in one C. elegans specimen had been completed with EM 
(White et al., 1986), and connectivity studies involving ≈1000 neural connections had been 
conducted in the past with other techniques (Ikegaya et al., 2005; Song et al., 2005; Broome et 
al., 2006; Pillow et al., 2008; Mishchenko et al., 2010a), scaling of any of these techniques to a 
circuit with ≈107 connections is highly nontrivial to say the least. 

Notwithstanding, three general directions can be proposed that can allow applying our strategy to 
a circuit as large as that in Drosophila. First, while we assumed that only a single measurement 
can be obtained from one stochastic GRASP animal, this does not need to be the case in 
principle. Whereas synaptic marker GRASP utilizes chemical reconstitution of a particular 
protein across synaptic cleft, it is bound to be essentially a single-color marker. However, 
recently the author had shown that mere spatial proximity of two different wavelength pre- and 
post-synaptic fluorochromes can allow detecting synapses without the need for such chemical 
reconstitution (Mishchenko, 2010). In this case, fluorochromes can be multiplexed onto synapses 
in large numbers, allowing for up to cN2  different synaptic labels for Nc distinct color 
fluorochromes [similar in essence to the idea employed in the Brainbow mouse (Livet et al., 
2007; Lichtman et al., 2008)]. This case can be accommodated by our framework without any 
modifications - the number of measurements obtained from one animal then will be cN2  instead 
of 1. This will allow accelerating data acquisition dramatically and may allow reconstruction of 
the neural circuits as large as that in Drosophila by imaging, e.g., 10 synaptic fluorochromes in 
1000 animals. 

Second, one may consider formulating connectivity reconstructions in terms of certain neural 
populations rather than individual neurons (Luo et al., 2008). As the role of individual neurons 
vs. neural classes in the animal behavior is still being debated, such approach may prove to be 
not only less practically involving but also more behaviorally relevant. The connectivity matrix 
in that case would describe couplings between different neural populations rather than individual 
neurons, and can be “sampled” using the same general strategy that we described here. In 
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particular, in Drosophila libraries of Gal4 lines provide particularly convenient tool for accessing 
as well as cataloguing such neural populations. Then, the connectivity matrix can be accessed in 
a series of experiments targeting synaptic markers to different neural populations using different 
Gal4 lines and their combinations, e.g., using the methods from (Luo et al., 2008). The 
expression patterns a and b in that case will be known a-priory from the identity of the Gal4 lines 
used in each experiment and will not need to be measured. The connectivity matrix in terms of 
the smallest resolved groups of neurons for the set of used Gal4 lines, as defined below, will be 
produced even if none of the neurons were targeted specifically in any of the experiments. An 
approximation to the true connectivity matrix given incomplete available data can be obtained 
and then continuously improved as more data is obtained. 

Third, our strategy need not be constrained to use of anatomical synaptic markers but can be 
employed also with other modalities that may ultimately allow faster neural connectivity 
reconstructions. Of these, pair-wise recordings using optical stimulation [e.g. see (Bureau et al., 
2004; Petreanu et al., 2007)] and optical observation of the membrane potential with voltage 
sensitive dyes [e.g. see (Baker et al., 2005)] appear to be the most promising. Post-synaptic sub-
threshold responses after activation of a group of pre-synaptic neurons, at least in the first 
approximation, can be represented as linear sums of the connectivity matrix elements 
corresponding to these for individual neurons, thus, allowing application of the same formalism 
that we developed here. Specifically, we can represent post-synaptic sub-threshold response in 
neuron i, observed after stimulation of a group of neurons )(tb j  during trial t, as follows, 

 ∑=
j

jiji tbCtV )()( . (6)  

Here, )(tVi  is a measure of the integrated evoked post-synaptic response (iEPSP) in the imaged 

neuron, and Cij is the connectivity matrix describing the iEPSP strength for all different post- and 
pre-synaptic neurons in the circuit. As is easy to see, Eq. (6) is identical to Eq. (1) and can be 
analyzed using the same approach. Note that the ability to observe sub-threshold changes in the 
membrane potential is critical in Eq. (6) and, thus, the use of voltage-sensitive dyes and not 
calcium sensitive dyes is required.  

Our method calls for identification of neurons expressing the synaptic marker during each 
experiment. Thus, another important question that can be asked is whether our strategy can be 
applied in the organisms where neurons are not individually identifiable. While it is known how 
to identify neurons in C. elegans and some other organisms such as leech, in general methods for 
and even possibility of identification of individual neurons in larger organisms are subject of 
significant debate. It is important to ask, therefore, how our approach can be applied in such 
settings where neurons cannot be individually identified. 

This question, again, is not specific to our approach per se. A degree of “identifiability” is 
required for results of any neural connectivity experiment to be comparable or generalizable 
across different animals.  Really, if individual neurons in an organism cannot be identified, this 
also means that it is impossible to co-relate neurons in different animals. In turn, this means that 
neural connectivity reconstructions obtained in one animal cannot be compared with that 
obtained in another and, even more generally, any similar experimental results in one animal 
cannot be compared or generalized to that in another. “Identifiability” in some form should 
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always be available and, indeed, it is always present in neuroscience experiments. In C. elegans, 
specifically, neurons can be identified individually; in Drosophila genetic lineages and Gal-4 
lines are used to identify neurons and their populations; in higher organisms morphological 
classes and anatomical landmarks such as cortical layers, neural nuclei, and functional areas are 
used to characterize connectivity. If any such system is available in a target organism, then the 
framework developed in this work can be immediately applied in the context of such a system.  

Specifically, consider a case where one has a large neural circuit and a system of different 
morphological classes for classification of its neurons. In each experiment, then, one can count 
neurons expressing the synaptic marker in such different morphological classes. Such counts can 
be used to replace the indicator functions )(k

ia  and )(k
jb  in our formalism, and the connectivity 

matrix Cij can be subsequently calculated from such measurements following exactly the same 
procedure as described in Section 2.5. In this case, clearly, i and j will refer to the different 
morphological classes and not individual neurons, and Cij will describe the connectivity in the 
neural circuit as it exists between such classes. Similarly, if one has an atlas of anatomical 
landmarks such as a map of brain areas or neural nuclei, one can count how many neurons 
expressed the synaptic marker in different areas and use such counts in place of the indicator 
functions )(k

ia  and )(k
jb  to recover the connectivity matrix in terms of such anatomical 

landmarks.  

Libraries of genetic classes, such as Gal4 lines or lineages in Drosophila, have recently emerged 
as a powerful tool for classifying neural structures in large neural systems (Phelps and Brand, 
1998; Luo et al., 2008). Such libraries can provide the means for identifying and cataloguing 
neurons even when morphology and location cannot be used for that reliably. Having a library 
consisting of certain genetic lines A, B, C, etc., one can associate with each neuron a pattern of 
1’s and 0’s describing whether that neuron is present in the expression patterns of lines A, B, C, 
etc. For example, pattern “110…” can correspond to a neuron that is present in the expression 
patterns of lines A and B but not C, etc. Different such patterns will constitute an identification 
system for the neural structures, whereas different neurons will be identified by the combinations 
of the genetic lines containing them. One does not need the ability to detect or identify these 
neurons directly anatomically: as long as such neurons can be accessed in reproducible manner 
by manipulating the Gal4 lines, experiments with such groups of neurons can be conducted and 
connectivity between them as well as their properties can be reliably determined. Note that 
neurons that are present in all the same lines will be indistinguishable and equivalent for such an 
identification system, and will constitute what we shall call the smallest resolved group of 
neurons, or the equivalence class in mathematical terms, in such an identification system (see 
Table 1). By introducing synaptic markers into the neural circuit using such different genetic 
lines and their combinations and performing the measurements and the calculations that we 
described above the reconstruction program can be completed successfully. Detailed connectome 
in terms of the smallest resolved groups of neurons for the set of Gal-4 lines will be recovered. 

One may argue that such “class-wise” reconstructions that we thus described fall far short from 
the ideal neuron-wise connectome that EM can potentially deliver. However, class-wise 
reconstructions already contain substantial amount of significant information and can be of 
substantial interest to researchers. Class-wise connectomes in fact had been already widely used 
in neuroscience research in the systems where individual neurons cannot be identified, including 
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large EM studies of the optic lobe organization in Drosophila (Meinertzhagen and Sorra, 2001), 
studies of the organization of the cortical micro-circuits in the mouse (Shepherd and Svoboda, 
2005), etc. Where neurons in principle may not have explicit “individual identities”, class-wise 
connectomes may not only prove to be significantly more practically accessible, but also may 
provide a more physiologically adequate viewpoint on the organization of the neural circuits 
(Luo et al., 2008).  

 

5. Conclusion 
We describe a new neural connectivity reconstruction paradigm that utilizes random or pseudo-
random sampling of neural connectivity with anatomical fluorescent synaptic markers localized 
genetically or otherwise to different parts of a neural circuit.  Synaptic connectivity matrix is 
recovered statistically from a collection of fluorescent measurements obtained with such a probe. 
While conventional neural connectivity reconstruction paradigm focuses on finding individual 
synapses in neuropil and explicitly relating these with remotely positioned neurons, we propose 
here to collect large samples of simple fluorescent measurements of connectivity and combine 
these using minimal model assumptions to determine detailed configuration of the probed neural 
circuit. 

The key contribution of this paper is to recognize that physical connectivity in a neural circuit 
can be recovered using a sample of simple observations produced with anatomical fluorescent 
synaptic markers such as GRASP. We observe that a certain type of fluorescent measurements 
that can be obtained with such markers can be mathematically represented as linear sums over 
the elements of the synaptic connectivity matrix. This allows us to propose an algorithm for 
accurate and efficient reconstruction of such connectivity matrix from such observations. 
Compressive Sensing (CS), in particular, is especially attractive framework for such an analysis 
since neural connectivity is expected to be sparse: in C. elegans, e.g., the total number of 
connections is ≈2500 out of the total possible ≈90,000 and sparseness is 0.03; in Drosophila the 
number of connections per neuron is ≈100 out of the total possible ≈100,000 and sparseness is 
10-3, etc. CS algorithms are mathematically tractable and provably nearly optimal for 
reconstructions of sparse signals from ensembles of linear measurements.  

The method that we proposed potentially can allow high speed, high detail connectome 
reconstructions in many model organisms in the future. The advantages of the proposed approach 
are: the method relies on relatively fast and easy to obtain fluorescent light microscopy 
measurements; the measurements are simple – the total count or the total fluorescence strength of 
labeled synapses and the patterns of co-expressed nuclei tags; analysis of the data is 
computationally straightforward and uses well understood statistical methodologies; tracing of 
neural projections or any other explicit association of synapses with neurons over macroscopic 
scales is not required; highly detailed connectivity maps can be produced without targeting 
individual neurons or their small groups. Practically meaningful strategies are available for 
extensions to larger organisms such as Drosophila including the use of multiplexed fluorescent 
synaptic markers (Mishchenko, 2010), use of libraries of genetic lines such as Gal4 lines (Luo et 
al., 2008), and use of different modalities such as voltage sensitive dyes (Baker et al., 2005), as 
described in the Discussion. The approach can yield the average connectivity matrix for an entire 
population of animals at once as well as the variability in the connectivity matrix, which can be 
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calculated, e.g., using bootstrapping – producing reconstructions from different parts of the same 
dataset. 

Among the disadvantages of the present approach is its relatively high sensitivity to noise. In 
particular, stringent conditions on the data quality should be maintained if one wishes to recover 
useable reconstructions with the near-minimal set of measurements. The method yields the 
average connectivity matrix and, thus, can only be used to study general or stereotypical neural 
connectivity or gross structures and not the connectivity in individual animals, as opposed to the 
techniques of electron microscopy and pair-wise cell recordings. The discussion that we 
presented here is theoretical and no actual implementation or experimental data are shown. 
Although we consulted to the fullest degree the latest literature and experimentalists to 
realistically assess the approach’s feasibility and possibility of its practical implementation 
(Livet et al., 2007; Micheva and Smith, 2007; Feinberg et al., 2008; Long et al., 2008; 
Bargmann, Personal communication; Kerr, Personal communication), the impact of a number of 
different experimental factors remains unknown and cannot be assessed now due to lack of 
experimental data. For example, it is not yet known quantitatively how specific synaptic marker 
labelings can be, how effective GRASP can be in inhibitory vs. excitatory synapses, how well 
pan-neuronal expression can be achieved and how uniform such expression can be, etc. 
Unfortunately, answering these questions is currently beyond the limited capabilities of the 
author, who does not have access to experimental facilities or resources needed to carry out 
extensive experimental program associated with answering these questions. While recognizing 
the many uncertainties that remain, the author believes that the data available in the literature 
today support a very favorable view on the prospects of the practical implementations and 
utilization of the described approach (Livet et al., 2007; Micheva and Smith, 2007; Feinberg et 
al., 2008; Long et al., 2008; Bargmann, Personal communication; Kerr, Personal 
communication).  

This work opens many exciting possibilities for new quantitative data-rich studies of neural 
connectivity in large neural circuits. In C. elegans, in particular, described approach in principle 
allows reconstructions of complete wiring diagram in the span of several days using existing 
genetic and off-the-shelf fluorescent light microscopy tools and straightforward data processing. 
For comparison, the alternative approach of serial electron microscopy would require at least 1-2 
years of imaging and analysis to obtain reconstruction of a single neural circuit of comparable 
size, employing sophisticated and expensive high-end imaging equipment and complex and 
fragile image understanding algorithms. Described approach can be also employed in larger 
organisms such as Drosophila using different connectivity probes and/or genetic targeting 
techniques.  
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 Figures Legends and Tables Legends 
Figure 1: Schematic description of GRASP (Feinberg et al., 2008), two-component co-
localization synaptic marker (Mishchenko, 2010), and the Cre/Lox system for stochastic 
expression of genes (Livet et al., 2007). A) Two fragments of a split-GFP (sA and sB) are 
expressed separately at post-synaptic (left) and pre-synaptic (center) sites of different neurons. 
Separately, split-GFP fragments do not produce fluorescence. At the location of synapses split-
GFP can recombine into a functional GFP molecule and produce fluorescence, thus, 
fluorescently tagging respective synapses (right). B) Two different wavelength fluorochromes 
(sA and sB) are used to tag separately post-synaptic (left) and pre-synaptic (center) surfaces of 
different neurons. Co-localization of fluorescence from such fluorochromes can be used to detect 
and identify synapses with high accuracy (right).  C) Schematic description of the Cre/Lox 
system for stochastic expression of genes. A cassette with two genetic sequences for two 
different wavelength fluorochromes (red and green, left) in mutually inverted orientations is 
introduced into the genome and flanked with inversely-oriented loxP-sites. When Cre is 
introduced into cells, recombinase reacts with loxP-sites in such a way that orientation of the 
flanked sequence is flipped at certain rate. When Cre is removed, the sequence may be found in 
either original or reversed orientation (right). When fluorochrome sequences in the cassette are 
transcribed, only those in the direct orientation can be produced successfully. Thus, different 
cells produce either green or red fluorochromes at random.  

Figure 2: Schematic description of the action of the stochastic synaptic marker, combining a a 
two-component fluorescent synaptic marker (Figure 1A-B) with a recombinase system for 
stochastic gene expression (Figure 1C) .  A) In the first implementation, a cassette with two 
inversely oriented sequences encoding pre- and post-synaptic marker fragments (sA and sB) and 
associated nuclei-bound fluorescent proteins (nA and nB) is introduced into genome and flanked 
with inversely-oriented loxP-sites. Effect of Cre is to randomize the orientation of such cassette 
in different neurons leading to two recombination outcomes: (i) post-synaptic fragment and 
associated nuclei XFP are expressed, tagging post-synaptic sites and nuclei of such neurons, and 
(ii) pre-synaptic fragment and associated nuclei XFP are expressed. A promoter (p) can be used 
to additionally restrict cassette expression to a defined population of neurons. B) In the second 
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implementation, a cassette with two loxP-flanked sequences for pre- and post-synaptic marker 
fragments is introduced into genome. Effect of Cre is to randomize orientation of both sequences 
leading to four recombination outcomes: (i) pre- and post-synaptic fragments are expressed 
together in a neuron, (ii) post-synaptic fragment is expressed only, (iii) pre-synaptic fragment is 
expressed only, and (iv) neither of the fragments is expressed. C) When two neurons form a 
synapse while expressing the synaptic marker fragments complementary a fluorescent punctum 
is formed. Nuclei of the cells expressing the synaptic marker are labeled at the same time with 
the associated nuclei XFP and also can be observed. 

Figure 3: Schematic description of the neural connectivity reconstructions using stochastically 
expressed synaptic markers. A)  In different animals random neurons in a circuit express the 
synaptic marker. Three random expression patterns (phenotypes) are shown for illustration.  In 
each pattern all synapses formed by “affected” neurons produce same-color fluorescent puncta 
that can be observed with a light microscope. An overall measure such as the total count or the 
combined size of all labeled puncta is produced. B) For reconstruction of the connectivity matrix 
it is sufficient to collect the above overall measurements, n, along with the pre- and post-synaptic 
marker fragments expression patterns, a and b, for a sample of such stochastic phenotypes. C) 
The sample (n,a,b) can be mathematically represented as a sample of linear measurements over 
the connectivity matrix. Specifically, n can be related to certain sums over the connectivity 
matrix elements that correspond to the intersection of the rows and columns associated with the 
neurons expressing the pre- and post-synaptic marker fragments. We recognize in these settings 
an instance of Compressive Sensing problem (Donoho, 2006; Candes and Wakin, 2008) that 
allows tractable recovery of the synaptic connectivity matrix from a sample of such data. 

Figure 4: Result of a hypothetical neural connectivity reconstruction experiment in C. elegans 
simulated using real wiring diagram for that animal available from electron microscopy (White 
et al., 1986). Shown are the scatter plots of the reconstructed connectivity weights versus that for 
the true connectivity weights. Reconstructions with 4000-6000 measurements can be already 
practically meaningful and the reconstruction with 10,000 measurements is exact. 

Figure 5: Result of a hypothetical neural connectivity reconstruction experiment in C. elegans 
simulated using real wiring diagram available from electron microscopy (White et al., 1986).  
Shown is the correlation coefficient square, r2, for the true and reconstructed connectivity 
weights as a function of the number of measurements K. Reconstructions from 4000-6000 
measurements are already practically meaningful and the reconstruction from 10,000 
measurements is exact. No significant difference in the performance is observed when using 
exclusive (Fig. 2A) or non-exclusive (Fig. 2B) constructs. These results allow us to estimate that 
complete wiring diagram in C.Elegans could be re-obtained using described approach in the span 
of 1-7 days. Result of a similar reconstruction using simpler L2 regularized algorithm is shown to 
emphasize dramatic improvement conferred by Compressive Sensing algorithms. 

Figure 6: Impact of biological variability on the reconstruction of neural connectivity using 
stochastic GRASP. Biological variability describes possible variation in the connection matrix 
from one animal to another. Different degrees of variability from 0 (no variability) to 100% 
(connection weights in different animals are purely random with a Poisson statistics) are shown. 
In all cases the impact of biological variability is found to be insignificant.  
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Figure 7: Impact of added noise in the measurements on the reconstruction of neural 
connectivity using stochastic GRASP. Although the reconstructions are stable (i.e., they do not 
break down in the presence of small amounts of noise), the sensitivity is substantial and only up 
to 4-5% of added noise can be tolerated at the minimal K≈10,000. Larger sample size can be 
used to mitigate the impact of higher levels of added noise.  

Figure 8: Impact of errors in detected GRASP expression patterns on the reconstruction of 
neural connectivity using stochastic GRASP. Although the reconstructions are stable, the 
sensitivity is again high with only up to 5-6% of errors that can be tolerated at the minimal 
K≈10,000. Larger sample size can be used to mitigate the impact of such errors at higher rates.  

Figure 9: Comparison with two different prospective connectomics paradigms, namely, serial 
electron microscopy (EM, panels A and B) and en-mass pair-wise cell recordings (PCR, panels C 
and D). Reconstructions are characterized by the reconstruction effort, E, where E=1 corresponds 
to the effort sufficient to obtain a single complete reconstruction (i.e. image one entire circuit). In 
C. elegans, we estimate that E=1 currently corresponds to ≈1-2 man-years of work for EM and 
≈3-30 man-years of work for PCR. A) Quality of EM reconstructions as a function of the 
reconstruction effort in the ideal case (i.e., no noise, compare Figure 5). B) Quality of EM 
reconstructions as a function of the reconstruction effort in the presence of errors (compare 
Figure 7 and 8). Errors are characterized by the probability of one point error in a trace of an 
axon on its interval between two subsequent synapses. Due to long reach of such point errors EM 
reconstructions are vulnerable to their small amounts. C) Quality of PCR reconstructions as a 
function of the reconstruction effort in the ideal case. D) Quality of PCR reconstructions as a 
function of the reconstruction effort in the presence of errors. Errors are characterized by the 
probability of an error in the detection of a connection between two random cells. PCR 
reconstructions are found to be robust to such point errors and can successfully tolerate their 
large amounts. 

Table 1: Libraries of genetic lines such as Gal4 lines in Drosophila can provide a natural 
classification and identification system for neural circuits. Each neuron can be identified by the 
set of genetic lines in which it appears, i.e. for each neuron one can associate a pattern of 1’s and 
0’s corresponding to the sets of genetic lines containing it. E.g., a pattern 110… identifies a 
neuron that is present in lines A and B but not line C, etc. Neurons that are present always 
together in the same genetic lines comprise groups of indistinguishable, equivalent neurons with 
respect to such identification system. Such groups can be accessed and manipulated via 
associated combinations of genetic lines and the methods from (Luo et al., 2008). This allows 
conducting experiments involving such neurons and studying their properties even if it is not 
possible to locate and identify such neurons anatomically. 
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Mishchenko Table 1

Groups of 
neurons

Present in expression pattern of… Code

line A line B line C

ABC… yes yes yes 111…

BC… no yes yes 011…

AC… yes no yes 101…

AB… yes yes no 110…

A… yes no no 100…A… yes no no 100…

B… no yes no 010…

C… no no yes 001…

… no no no 000…


