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Abstract 

 

Systematic classification and accepted nomenclature of neuron types are still lacking and much 

needed. This article describes a possible taxonomical solution, focusing on GABAergic 

interneurons of the cerebral cortex. We developed a novel, web-based interactive system 

allowing experts to classify neurons with pre-determined criteria. Using Bayesian analysis and 

clustering algorithms on the resulting data, we investigated the suitability of several anatomical 

terms and neuron names. Moreover, we show that supervised classification models could 

automatically categorize interneurons in agreement with experts’ assignments. These results 

demonstrate a practical and objective approach to advance neuron naming, characterization, and 

classification based on community consensus. 
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The problem of classifying and naming neurons has been a topic of debate for over a hundred 

years. Nevertheless, a satisfactory consensus remains to be reached, even for restricted neuronal 

populations such as the GABAergic interneurons of the cerebral cortex. Over the last two 

decades, the amount of morphological, molecular, physiological and developmental data has 

grown rapidly, making classification harder rather than easier. A consistent neuronal 

classification and terminology will help researchers manage this multidisciplinary knowledge, 

and is needed for specialists in neuroscience subfields to establish and maintain effective 

communication and data sharing (Petilla Terminology; PING, 2008). As in other domains of 

science, taxonomies can be empirical or scientific. This distinction was well described by John 

Hughlings Jackson in 1874 in his chapter entitled “On classification and on methods of 

investigation” (Selected Writings; London, Hodder and Stoughton, 1931): 

“There are two ways of investigating diseases, and two kinds of classification 

corresponding thereto, the empirical and the scientific. The former is to be 

illustrated by the way in which a gardener classifies plants, the latter by the way 

in which a botanist classifies them. The former is, strictly speaking, only an 

arrangement. The gardener arranges his plants as they are fit for food, for 

ornament, etc. One of his classifications of ornamental plants is into trees, 

shrubs, and flowers. His object is the direct application of knowledge to 

utilitarian purposes. It is, so to speak, practical. The other kind of classification 

(the classification properly so-called) is rather for the better organization of 

existing knowledge, and for discovering the relations of new facts; its principles 

are methodical guides to further investigation. It is of great utilitarian value, but 

not directly.”  

 In spite of the many studies performed since the original findings of Santiago Ramón y 

Cajal, it is surprising that we still lack a catalog of neuron types and names that is accepted by 

the general scientific community. Recognizing this problem, the International Neuroinformatics 

Coordinating Facility (INCF) has recently established a Neuron Registry within the Program on 

Ontologies of Neural Structures (PONS), with the aim to identify known neuron types on the 

basis of their defining properties (Hamilton et al., 2012; http://incf.org/core/programs/pons). A 

collation of terms referring to neuron types is available as part of the Neuroscience Information 

Framework (NIF) from NeuroLex (Larson and Martone, 2009; 

http://neurolex.org/wiki/Category:Neuron). 

 A milestone towards a future classification of the GABAergic interneurons in the cerebral 

cortex (neocortex, hippocampus, and related areas) was the standardization of the nomenclature 

of their properties (PING, 2008). However, at that time it was not possible to identify a set of 

anatomical traits that unambiguously define an interneuron class. In this article, we describe a 
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new, community-based strategy for defining a morphological taxonomy. Our goal was to 

establish a list of terms that could be used by all researchers to distinguish neuronal 

morphologies. Because the developmental and evolutionary processes that gave rise to these 

morphologies are incompletely understood, we sought a utilitarian rather than a scientific 

classification: a ‘gardener’s approach’. To this end, we selected a limited number of neuron 

types and morphological properties, based on studies performed over the years in many 

laboratories. These neuron types and morphological properties are not meant to be imposed but 

rather are proposed, with the goals of incorporating community feedback and reaching 

consensus.  

 In this article, we first provide an overview of historical and current issues involved in 

classifying cortical neurons, and interneurons in particular. We then describe a novel, web-

based interactive system (Fig. 1) that collects data about the terminological choices for a set of 

320 cortical interneurons by 48 experts in the field. We used several analysis methods to 

empirically test the consistency, clarity, and emerging agreement on these terminological 

choices. This article deals primarily with neocortical GABAergic aspiny or sparsely spiny non-

pyramidal neurons with non-projecting axons. Unless otherwise specified, these are the neurons 

we refer to, for simplicity, as 'cortical interneurons'. 

 

Historical Overview 

Two major classes of cortical neurons: Principal cells and interneurons  

Before the discovery of the Golgi method, the existence of different morphological types of 

cortical neurons was already recognized (Kölliker, 1852). Since then, researchers have tried to 

deduce the functional role of neurons from their morphological characteristics. Using 

preparations stained with a carmine dye, a technique introduced by Joseph von Gerlach (1820-

1896), Rudolf Berlin (1833-1897) was the first to suggest a classification into three main cell 

types (Berlin 1858; quoted in Clarke and O’Malley, 1968): pyramidal cells (based on the 

triangular shape of their somata); granular cells (small and irregular somata); and spindle-

shaped cells (fusiform somata). This was the beginning of cytoarchitectural studies that were 

based mainly on the density and laminar distribution of different neuronal shapes. However, 

carmine staining and other methods available at that time only allowed visualization of neuronal 

cell bodies and a small portion of their proximal processes, making further characterization of 

cortical neurons difficult. In contrast, Golgi-stained preparations allowed much more complete 

staining of the neuron, including most of its parts (soma, dendrites and the unmyelinated axon), 

enabling visualization of their finer morphological details in young animals (Golgi, 1873). This 

led to a fuller characterization of neurons, allowing for the first time the exploration of their 

possible interconnections. 
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According to Cajal (1892), Golgi suggested that, in general, there were two morphologically 

and physiologically different types of neurons: motor (type I) neurons and sensory (type II) 

neurons. Motor neurons had long axons that gave rise to collaterals but also projected outside of 

the gray matter. Sensory neurons had short axons that arborized near the parent cell and did not 

leave the gray matter. The former cells were thought to have a motor function because their 

axons were considered to be continuous with the motor roots, whereas the second type was 

thought to be sensory because their axonal branches were linked with afferent fibers. Cajal 

argued that it was not possible to maintain such a physiological distinction and designated 

Golgi’s two types as cells with a long axon (projection neurons) and cells with a short axon 

(intrinsic neurons or interneurons), avoiding any consideration of their possible physiological 

roles. Since then, the term ‘interneuron’ has commonly been used as synonymous with short-

axon cell (Rakic, 1976; DeFelipe, 2002). Notably, some neurons are axonless, such as retina 

amacrine cells and olfactory granule cells. 

 Researchers soon realized that in the cerebral cortex the majority of neurons were pyramidal 

cells whose axons were seen to enter or be directed towards the white matter (e.g., Meynert, 

1871). Therefore, pyramidal cells started being generally considered as both ‘principal cells’ 

and projection neurons (that is, cells with long axons). 

 Furthermore, using the Golgi method, it was obvious that neurons showed a great diversity 

of morphologies. Thus, in addition to the terms based on the shape of the soma, neuroanatomists 

described neurons with names that were somewhat descriptive of their dendritic morphology 

and axonal arborization, alone or in combination. However, with few exceptions, no general 

consensus has emerged for naming cortical neurons. For example, at present most 

neuroscientists agree on the usage of terms such as pyramidal neuron, non-pyramidal neuron, 

interneuron, and chandelier (or axo-axonic) cell. These cell types are readily distinguished by 

their clear morphological attributes. However, other common names, such as double bouquet 

cell, Martinotti cell, neurogliaform cell, and basket cell, seem to lack a consensual definition. In 

these cases, the same name is often assigned to neurons of varying morphologies by different 

authors, and a variety of terms are inconsistently adopted in different laboratories to represent 

the same cell classification. As a consequence, virtually every author has his/her own 

classification scheme and neuron terms, making the comparison and exchange of information 

among laboratories rather difficult, if not impossible.  

 

What is a cortical interneuron? 

By our definition, a cortical interneuron is a short-axon cell — i.e., a neuron whose axon does 

not leave the neocortex — and has a soma that is located in the cerebral cortex. Most cortical 

interneurons lack the typical somatodendritic morphological characteristics used to identify 
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projection neurons, namely a pyramidal-shaped cell body and an apical dendritic tree that is 

distinct from and lies opposite to the basal dendritic arbor. However, the absence of these 

features should not be used to define interneurons, as they are neither necessary nor sufficient 

for distinguishing interneurons from projection neurons. Indeed, there are interneurons that have 

a somatodendritic morphology resembling that of pyramidal cells (e.g., the so-called ‘pyramidal 

basket cells’ (Amaral and Lavenex, 2006)), and projection neurons that have a non-pyramidal 

appearance in their somata and dendrites (Peters and Jones, 1984). 

 Traditionally, interneurons have been subdivided into two main groups (Peters and Jones, 

1984): spiny non-pyramidal cells and aspiny or sparsely spiny non-pyramidal cells. Spiny non-

pyramidal cells are located in the middle cortical layers, especially in layer IV of primary 

sensory cortices. They comprise a morphologically heterogeneous group of interneurons with 

ovoid, fusiform, and triangular somata. Most spiny non-pyramidal cells are excitatory 

(glutamatergic (Feldmeyer et al., 1999)), and their axons are distributed within layer IV or in the 

adjacent layers above or below the somatic location (Staiger et al, 2004). Aspiny or sparsely 

spiny non-pyramidal cells usually have axons that remain near the parent cell, although some 

run prominent collaterals in the horizontal (parallel to the cortical surface) or vertical dimension 

(ascending and/or descending, reaching other cortical layers). These interneurons appear to be 

mostly GABAergic and constitute ~10-30% of the total neuron population, the percentage 

varying substantially between cortical layers, areas and species (DeFelipe et al., 2002; Meyer et 

al., 2011). They are the main component of inhibitory cortical circuits.  

 Following the approach of the Petilla Terminology (PING, 2008), we concentrate our effort 

on GABAergic cortical interneurons, thus excluding the majority of spiny non-pyramidal cells 

from the classification attempt. This choice is motivated by functional considerations, in that the 

neurotransmitter released by a neuron is intimately linked to the role played by this neuron in 

the circuitry. Moreover, restricting the scope of this classification to GABAergic interneurons 

has also a practical utility, given the availability of reliable methods to identify GABA and 

related chemicals, such as its synthesizing enzymes (glutamate decarboxylase (GAD) 65 and 

GAD67). Despite this relatively narrow definition, GABAergic cortical interneurons are located 

in all cortical layers and show a great variety of morphological, biochemical, and physiological 

characteristics. Thus, rather than attempting a comprehensive classification of cortical 

interneurons, we focus on a group of less controversial cell types for which relatively more 

abundant experimental evidence converges on a limited number of defining properties within 

the anatomical domain. 

 

Clarifications and remarks 
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In light of the above definitions, and before classifying specific interneuron types, it is useful to 

consider from the collective work of many investigators a number of points regarding the 

morphology and naming of cortical neurons. 

 First, over the years, the term interneuron has been most commonly used when referring to 

aspiny or sparsely spiny GABAergic non-pyramidal cells. These cells represent the majority of 

interneurons, and have come to epitomize the ‘typical’ cortical interneuron. As noted above, 

however, a minority of GABAergic interneurons are spiny (Kubota et al., 2011). Moreover, 

many interneurons that will become aspiny as they develop are spiny in the neonate (Peters and 

Jones, 1984). For clarity, we propose to add the term ‘spiny’ to their name. 

 Second, some GABAergic non-pyramidal cortical cells (spiny and aspiny alike) project to 

other cortical areas (Tomioka and Rockland, 2007; Melzer et al., 2012) and might not, therefore, 

be strictly considered as interneurons. We propose to add the term ‘projecting’ to their name. 

 Third,  there are glutamatergic spiny non-pyramidal and pyramidal cells (mostly in layer IV 

of sensory cortices) with locally confined axons that are distributed near the parent cell soma 

and do not leave the cortical gray matter. Therefore, they might be considered to be short-axon 

neurons. However, because these cells are both morphologically and neurochemically rather 

distinct, we prefer to avoid the term ‘interneuron’ for glutamatergic spiny cells, and propose 

instead to call them ‘intrinsic (or local) glutamatergic spiny cells’. 

 Fourth, although most GABArgic interneurons have a non-pyramidal somatodendritic 

phenotype, some display a pyramidal (triangular) somatic shape. To minimize confusion, we 

propose to use the term ‘triangular’ to describe the somatic morphology of these interneurons. 

 Fifth, interneurons are highly diverse with regard to the morphology of their somata and of 

their dendritic and axonal arbors. For instance, interneurons displaying the same 

somatodendritic morphology may have different patterns of axonal arborization. Importantly, 

the axonal geometry is pivotal in establishing circuit connectivity. In several cases, axonal 

morphology is very distinct, facilitating comparisons of different interneurons. We therefore 

recommend, whenever historically tenable, using terms such as fusiform, stellate, multipolar, 

bitufted (neurons with two main dendrites running in opposite directions which, after a 

relatively short trajectory, resolve into two dendritic tufts), and bipolar (neurons with two 

principal long dendrites running in opposite directions and showing few dendritic collaterals) 

only to describe the somatic and/or dendritic morphology and not to name a particular 

interneuron type. Although these terms are useful descriptors of interneuron somatodendritic 

morphologies revealed by immunohistochemical staining against calcium-binding proteins and 

neuropeptides, such staining does not label the full extent of the axonal arbor and therefore does 

not allow one to unambiguously identify interneuron types. A good example is the double 

bouquet cell, a term adopted inconsistently in the literature. Some authors used this name for 
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neurons with a bitufted dendritic morphology, regardless of the pattern of axonal arborization. 

Other authors use the term double bouquet cells for neurons whose descending axons form 

tightly intertwined bundles of long descending vertical collaterals resembling a horse tail 

(DeFelipe, 2002). Although these cells may have bitufted dendrites, interneurons with the same 

axonal patterns but with different somatodendritic morphologies also exist (Peters and Jones, 

1984). We propose that cortical interneurons identified by these characteristic axonal bundles be 

called horse-tail cells.   

 Sixth, numerous neurons exist whose axon collaterals do not exhibit any orientation 

preferences. That is, they present more or less equal numbers of horizontal, oblique or vertical 

branches. In fact, most interneurons visualized in Golgi preparations or following intracellular 

labeling could match this description. We propose to introduce the term ‘common type’ to 

describe cells without strikingly recognizable shape. 

 Seventh, an important morphological feature of cortical interneurons is the laminar and 

columnar reach of their axonal arbors. Following the Petilla Terminology (PING, 2008), we 

propose to describe neurons whose axonal arbor is confined to a single layer as intralaminar; 

and neurons whose axonal arbor is not confined to a single layer as translaminar. Similarly, we 

refer to neurons whose axonal arbor is confined to a single column as intracolumnar, whereas 

neurons whose axonal arbor is not confined to a single column are referred to as transcolumnar 

(Fig. 2).  

Finally, a relevant morphological feature of interneurons is the relative location of dendritic 

and axonal arbors. We propose to use the term ‘centered’ for neurons whose dendritic and 

axonal arbors are largely colocalized, and to use the term ‘displaced’ otherwise (Fig. 2). In this 

latter case, axons of translaminar interneurons can be ‘ascending’ and/or ‘descending’ 

depending on whether, relative to the dendritic trees, they are distributed mostly towards the 

cortical surface, the white matter, or approximately equally towards both. 

 

Classification attempts 

The Petilla Terminology (PING, 2008) considered the characteristics that are suitable for 

describing GABAergic cortical interneurons and organized them into morphological, 

physiological, and molecular properties. Although the identity of a neuron is characterized by 

all of its properties, a typical experimental identification of a given neuron is commonly limited 

to a subset of properties. Indeed, most studies primarily (if not exclusively) rely on detailed 

anatomical, physiological or molecular evidence, and few studies use a balanced combination of 

these characteristics. Consequently, on the basis of existing data, neurons could in principle be 

classified using any of these groups of criteria. Several initial attempts at neuronal classification 

formulated from the Petilla Terminology effort are briefly summarized below. 
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Anatomical 

The anatomical classification established in the Petilla Terminology (PING, 2008) divided 

GABAergic cortical interneurons into those targeting pyramidal cells or displaying no target 

specificity and, at least in the hippocampus, those specifically targeting other interneurons. 

Interneurons targeting pyramidal cells were further subdivided on the basis of the target location 

and included interneurons targeting the axonal initial segment (axo-axonic or chandelier cells), 

interneurons targeting the perisomatic region (basket cells), and interneurons targeting the 

dendrites. Basket cells were further distinguished, on the basis of their axonal morphology, into 

interneurons with tangential (horizontal) axons, interneurons with radial (vertical) axons, 

interneurons with both tangential and radial axons, and interneurons with axons that are too 

local to discern a tangential/radial orientation. Dendrite-targeting interneurons were 

subclassified on an even finer scale as having either a shaft bias or a spine bias, with both of 

these categories finally separated based on their axonal morphology: shaft-biased interneurons 

have radial axons that either descend towards the white matter (willow cells) or ascend towards 

the pia (Martinotti cells); spine-biased interneurons were further divided on the basis of  their 

axonal patterns and include horse-tail and neurogliaform cells.  

 

Molecular 

The molecular classification of the Petilla Terminology (PING, 2008) divided cortical 

interneurons based on the expression of specific molecular markers. In particular, five main 

groups of interneurons can be distinguished: those expressing parvalbumin (PV), including 

chandelier and basket cells; those expressing somatostatin (SOM), such as Martinotti cells; 

those expressing neuropeptide Y (NPY) but not SOM; those expressing vasoactive intestinal 

peptide (VIP); and those expressing cholecystokinin (CCK), but neither SOM nor VIP. These 

five groups can be further subdivided in multiple subtypes based on several molecular 

categories: transcription factors, neurotransmitters or their synthesizing enzymes, neuropeptides, 

calcium-binding proteins, neurotransmitter receptors, structural proteins, ion channels, 

connexins, pannexins, and membrane transporters. For example, SOM-expressing interneurons 

can be subdivided depending on whether they also express NPY or calretinin (CR). Similarly, 

NPY-expressing interneurons and VIP-expressing interneurons can be subdivided depending on 

whether they also express CR (Karagiannis et al., 2009; Porter et al., 1998). A parallel effort to 

characterize interneurons based on transcription factors is also gaining traction (Welagen and 

Anderson, 2011). This developmental classification separates cortical interneurons with an 

origin in the medial ganglionic eminence (MGE), lateral/dorsocaudal ganglionic eminence 

(CGE), and preoptic area (POA). The former group encompasses neocortical interneurons 
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identified based on their molecular markers, including those expressing PV, SOM, and, early in 

development, NPY. The CGE group includes the interneurons expressing both CR and VIP 

(horse-tail cells) and those expressing NPY later in development. The POA group expresses 

NPY. This mapping does not apply exactly to the hippocampus as some differences have been 

reported (Tricoire et al., 2011). 

 

Physiological 

The physiological classification of the Petilla Terminology (PING, 2008)  identified six main 

types of interneurons. Fast-spiking (FS) neurons show non-adapting spiking at steady-state, 

brief spikes and large fast afterhyperpolarizations, and include continuous FS cells, delayed FS 

cells, stuttering FS cells, and continuous stuttering FS cells. Non-adapting, non-fast spiking 

(NA-NFS) neurons display no apparent increase in the interspike interval at steady-state, and 

include continuous NA-NFS cells and burst-firing NA-NFS cells. Adapting (AD) neurons 

display a visually obvious increase in the interspike interval at steady-state, and include 

continuous AD cells, bursting AD cells, and delayed AD cells. Accelerating (AC) neurons 

display a decrease in the interspike interval at steady-state, and include continuous AC cells and 

delayed AC cells. Irregular spiking (IS) neurons display an irregular interspike interval and 

include continuous IS cells and bursting IS cells. Lastly, intrinsic bursting (IB) neurons produce 

a stereotypical burst of two or more spikes riding on a depolarization envelope followed by a 

slow afterhyperpolarization potential, and include rhythmic IB cells and initial IB cells. 

 

Limitations of the Petilla Terminology 

Each of these classification schemes has limitations. For many cell types, the anatomical 

approach requires the identification of the subcellular postsynaptic target(s) in addition to the 

interneuron of interest. The molecular approach does not provide functional insight, as the 

functional roles of the most useful and commonly used markers are largely unknown. The 

physiological approach is greatly dependent on the experimental conditions, and requires a 

complete specification and possibly standardization of experimental conditions to be widely 

acceptable. Thus, each of these complementary classifications provide only partial knowledge 

when taken individually, yet a more comprehensive scheme involving multiple anatomical and 

functional criteria imposes considerable practical burdens. 

 

Feature-based nomenclature proposal 

As a pragmatic alternative and update to the anatomical characterization, we propose a 

taxonomic solution that is based mainly on axonal arborization patterns. We think that 
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identification of these patterns may be among the most powerful tools available for the sub-

classification of interneurons.  

 

 Our classification design is based on six axonal features numbered 1-6 (Fig. 2). These six 

features were selected as a representative subset of axonal morphological properties that may 

provide to be suitable for interneuron classification. After introducing all relevant definitions, 

we describe a web-based interactive system (Fig. 1) designed to evaluate this solution 

empirically, to test its potential for fostering consensus, and to explore preliminary statistical 

patterns among the generated data. Several statistical and pattern recognition techniques were 

employed to achieve this goal, including the computation of agreement indices and the use of 

clustering and supervised classification algorithms. 

  

First axonal feature  

The first axonal feature refers to the distribution of the interneuron axonal arborization relative 

to cortical layers (Fig. 2). Within this feature, we propose two categories: intralaminar, which 

refers to interneurons with axonal arbors distributed predominantly in the layer of the parent 

soma; and translaminar, which refers to interneurons with axonal arbors distributed mainly 

above and/or below the cortical layer of the parent soma. 

 

Second axonal feature  

The second axonal feature refers to the distribution of the axonal arborization relative to the size 

of cortical ‘columns’, from a broad anatomical point of view. Certainly, the term column is 

vague (Rakic, 2008; Rockland, 2010), since it can refer to small-scale minicolumns (diameter 

⊁50 μm), to larger-scale macrocolumns (diameter ⊁300-500 μm), and to multiple different 

structures within both categories (including barrel columns and ocular dominance columns, 

extent of arborization of single thalamic afferent fibers, cytochrome oxidase blobs, individual 

dendritic arbors of pyramidal cells, and tangential widths of axonal patches originated from 

pyramidal cells). Thus, we have arbitrarily set the size of a cortical column at a diameter of 300 

µm, a value that remains rather similar across several species and cortical areas for many of 

these structures (Malach, 1994; Mountcastle, 1998). Within this feature, we propose two 

categories: intracolumnar, which refers to interneurons with axonal arbors primarily distributed 

at a distance from the parent soma that does not exceed 300 µm in the horizontal dimension 

(Fig. 2); and transcolumnar, which refers to interneurons with horizontal axonal collaterals 

exceeding a distance of 300 µm from the parent soma in the horizontal dimension.  

 

Third axonal feature  
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The third axonal feature refers to the relative location of the axonal and dendritic arbors (Fig. 2). 

Within this feature, we propose the following categories: centered, which refers to interneurons 

whose dendritic arbor is located mostly in the center of the axonal arborization; and displaced, 

which refers to interneurons whose dendritic arbor is shifted with respect to the axonal 

arborization (Fig. 2).   

 

Fourth axonal feature 

If a neuron is categorized as being both translaminar (for the first axonal feature) and displaced  

(for the third axonal feature), it can be further distinguished into the following categories 

(PING, 2008): ascending, which refers to interneurons whose axonal arborization is distributed 

mostly towards the cortical surface; descending, which refers to interneurons whose axonal 

arborization is distributed mostly towards the white matter; or ascending and descending, which 

refers to interneurons whose axonal arborization is distributed towards both the cortical surface 

and the white matter (Fig. 2). 

 

Fifth axonal feature: Interneuron type 

We defined a limited number of cell types for this classification step 

(http://cajalbbp.cesvima.upm.es/gardenerclassification) on the basis of recognizable 

morphological characteristics (Fig. 2) and the common usage of their name in the literature 

(Peters and Jones, 1984). The first cell type, arcade or willow cells, denotes neurons with 

somata in layers II-VI, multipolar or bitufted dendrites, and axons that give rise to axonal 

arcades, with predominantly vertical arbors and relatively long descending collaterals. The 

second cell type, common basket cells, denotes neurons with somata in layers II-VI,  multipolar 

or bitufted dendritic arbors and axon collaterals that have numerous curved pre-terminal axon 

branches. The third cell type, large basket cells, denotes neurons with somata in layers II-VI, 

multipolar or bitufted dendrites, and horizontally oriented axon collaterals that can reach a 

length of several hundred micrometers. These collaterals show numerous curved pre-terminal 

axon branches that innervate the somata and proximal dendrites of neurons. Frequently, these 

cells display one or several long descending axonal branches. The fourth cell type, Cajal-

Retzius cells, denotes neurons with an axon plexus that is restricted to layer I and long dendrites 

with ascending branchlets to the pia. These neurons are not present in adult neocortex and in 

rodents persist only during the two first postnatal weeks (Chowdhury et al., 2010, but see 

Marín-Padilla, 1998). Cajal-Retzius cells proper do not contain GABA or express GABA-

synthesizing enzymes GAD65/GAD67 (Meyer et al., 1999; Hevner et al., 2003). There are also 

GABAergic neurons with somata in layer I and prominent long horizontal axon collaterals 

and/or dendrites (Meyer et al., 1999), and these are often also named Cajal-Retzius neurons in 
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the developing neocortex, in spite of their different molecular characteristics from Cajal-Retzius 

neurons proper (Hevner et al., 2003). Given the purely morphological nature of the present 

study, most of the authors practically considered any GABAergic neuron in layer I with 

horizontally oriented axonal arborization as a putative Cajal-Retzius cells. The fifth cell type, 

chandelier cells, denotes neurons with somata in layers II-VI, multipolar or bitufted dendritic 

arbors, and terminal axon branches that form short vertical rows of boutons resembling 

candlesticks. These interneurons are also referred to as axo-axonic cells as they synapse on the 

axonal initial segment of their pyramidal targets. The sixth cell type, horse-tail cells, denotes 

neurons with somata mostly in layers II-III, multipolar, bitufted or bipolar dendrites, and axons 

forming tightly intertwined bundles of long descending vertical collaterals. The seventh cell 

type, Martinotti cells, denotes neurons with somata in layers II-VI, multipolar, bitufted or 

bipolar dendrites, and ascending axons that give rise to two axonal arbors, one near the soma 

and another at a variable distance above. This second plexus may be dense (axonal tuft) or 

diffuse, and it can be either in the same layer as the soma of origin or in the layers above 

(ascending axons can travel from layer VI to layer I). The eighth cell type, neurogliaform cells, 

denotes neurons with somata in layers I-VI, with multipolar dendritic arbors, and are 

characterized by very small and dense local axonal arborization around the parent cell body. 

Finally, we included in the web-based interactive system the option common type to denote 

neurons with somata in layers I-VI, multipolar, bipolar or bitufted dendritic arbors, and axon 

collaterals without any apparent target or orientation preference (not shown in Fig. 2). Also, we 

added the option other to label any given neuron with an alternative name in case the expert 

considered another term more appropriate.  

 

Sixth axonal feature: Uncharacterized versus characterized neurons.   

Interneurons that are uniquely characterized by peculiar morphological features can often be 

easily recognized, even when their axon is rather incompletely labeled. However, in many other 

cases the axon needs to be fully labeled and reconstructed in order to distinguish the neuronal 

identity unequivocally. Thus, although it is not always necessary to visualize the full axonal and 

dendritic arborization to distinguish a given neuron, this is the preferred situation. 

Pragmatically, ‘sufficiently complete’ labeling simply means ‘clear enough’ to allow for the 

identification of a given morphological type. When an insufficient number of morphological 

axonal features are visualized for a given interneuron (because of incomplete staining, tissue 

slicing, etc.), we propose that the cell should be deemed an anatomically uncharacterized 

interneuron. 
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Proposal validation and inter-neuroscientist agreement 

We designed and deployed an interactive web-based system 

(http://cajalbbp.cesvima.upm.es/gardenerclassification) to test empirically the level of 

agreement among a representative sample of 48 experts in assigning the six features to 

individual cortical interneurons. The approach takes advantage of a common digital format to 

display, analyze, and manipulate three-dimensional neuromorphological tracings reconstructed 

from light microscopy (Ascoli, 2006). Images of the 320 interneurons included in the 

experiment were obtained either from NeuroMorpho.Org (Ascoli et al., 2007) or by scanning 

two-dimensional drawings from previous publications. Altogether, this pool includes 

interneurons from different areas and layers of the cerebral cortex of the mouse, rat, rabbit, cat, 

monkey, and human (Supplementary Online Information S1). The database does not 

necessarily constitute a representative sample from the neuron population in different areas, 

layers and species. Furthermore, most of the anatomy recovered from electrophysiological work 

in vitro is conditioned both by slice thickness and plane of cut, which may vary across 

laboratories. Nonetheless, these conditions reflect the typical experimental variability 

confronting researchers in the field. Experienced neuroscientists who are knowledgeable in this 

field were asked to ascribe the category (each possible value of every feature) they considered 

most appropriate (6 features, 21 categories; Fig. 2): 

- Feature 1 (F1): Intralaminar vs Translaminar 
- Feature 2 (F2): Intracolumnar vs Transcolumnar 
- Feature 3 (F3): Centered vs Displaced 
- Feature 4 (F4): Ascending vs Descending vs Both 
- Feature 5 (F5): Arcade vs Common basket vs Large basket vs Cajal-Retzius vs 
Chandelier vs Horse-tail vs Martinotti vs Neurogliaform vs Common type vs Other 
- Feature 6 (F6): Characterized vs Uncharacterized 

 

To study the agreement regarding the assignment of the features between 

neuroscientists, we computed typical statistical measures of inter-expert concordance for each 

feature and for each category (a possible value for a feature). We also identified sets of neurons 

using clustering algorithms. Furthermore, we induced from the data a Bayesian network model 

for each expert, to allow analysis of their choices by comparing the network structures of 

different neuroscientists (Supplementary Online Information S1). With this approach, the 

possible reasoning of the experts can be inferred from the probabilistic models. Finally, we built 

automatic classifiers to assign each neuron to one category for each of the six features 

(Supplementary Online Information S1). 

 

Analysis of the raw data 

First, we performed a preliminary exploratory analysis of the raw data to study how the votes of 

the experts were distributed for the different features. We assessed the relative frequency of 
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each category in the experiment, i.e. of each possible value for each feature. Less than 10% of 

neurons were rated as anatomically uncharacterized; as described above, this pertains to neurons 

with an insufficient number of morphological axonal features to allow classification. Thus, the 

vast majority of the neurons in the experiment were considered as ‘characterized’. The most 

frequently assigned categories of descriptive axonal features proposed in this study were 

translaminar, intracolumnar, and displaced. The categories ‘ascending’ and ‘descending’ 

received a similar percentage of the ratings, whereas fewer neurons were assigned to the 

category both. 

We then assessed the frequency with which interneurons were assigned to specific 

interneuron types. The most commonly assigned interneuron types were ‘Common type’, 

‘Common basket’, and ‘Large basket’. The interneuron types Martinotti, Neurogliaform, and 

horse-tail received an intermediate percentage of ratings, whereas chandelier and arcade 

received the lowest percentage of ratings. Only three cells were classified as Cajal-Retzius by 

six experts; the remaining experts classified these neurons as ‘uncharacterized’, Common type, 

Common basket, Large basket, Martinotti or ‘other’.  

Finally, we checked whether the names given to the 79 neurons that were scanned from 

original publications were maintained in the present experiment by the authors of those 

publications. Interestingly, the authors were frequently inconsistent for certain neurons. For 

example, some neurons named ‘neurogliaform cells’ in the publication were classified as 

‘uncharacterized’ in the current experiment by the same author.  

 

Experts’ agreement analysis 

We computed statistical measures of inter-expert agreement to analyze the degree of 

concordance between the ratings given by the experts (see Supplementary Online 

Information S1). Here, the goal is to quantify the agreement among experts for each feature 

independently. We studied the agreement for both features and categories using the two most 

studied agreement indices: Fleiss’ pi and Cohen’s kappa indices. Agreement indices correct the 

observed agreement values to take into account chance agreement. When the  inter-expert 

coincidence was not at random levels, the chance-corrected agreement indices yielded values 

above 0.  

 We first analyzed feature agreement. We found high level of observed agreement between 

experts in the classification of neurons according to Feature 1-4 and 6 (observed agreement 

values exceeding 0.7; Fig. 3B). The lowest level of inter-expert agreement (below 0.5) was 

found for Feature 5. 

 After correcting for chance agreement (i.e., correcting the observed agreement to erase the 

influence of chance agreements; see Supplementary Online Information S1), the highest 
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chance-corrected Fleiss’ pi inter-expert agreement was found for Feature 4 (Fig. 3B). Features 

1, 2, and 3 yielded intermediate chance-corrected agreement values, whereas Features 5 and 6 

had low agreement. The difference between ‘observed agreement’ and Fleiss’ pi index was 

particularly high for Feature 6, that is, for the decision on whether or not a neuron could be 

characterized; this feature had the highest observed agreement and the lowest Fleiss’ pi value. 

This was due to the fact that the category prevalence of this feature was very unbalanced, such 

that characterized neurons were much more frequent than uncharacterized ones, reducing the 

values of the agreement measures (see Supplementary Online Information S2). 

 We then calculated the chance-corrected agreement achieved for each category of every 

feature (see Supplementary Online Information S2). Ascending and Descending were the two 

categories with the highest inter-expert agreement as indicated by the high values obtained for 

the chance-corrected Fleiss’ pi index (Fig. 3C and Supplementary Online Information S2; 

Fig. S7). Medium-high agreement levels were found for categories Intralaminar, Translaminar, 

Intracolumnar, Transcolumnar, Centered, and Displaced. 

 Regarding Feature 5, we found that the Chandelier category yielded the highest agreement 

(that is, there was little disagreement between all experts over whether a given neuron should be 

classified as a Chandelier cell). The level of agreement was also high or medium for Martinotti, 

Horse-tail and Neurogliaform cells, whereas it was lower for the rest of the proposed 

interneuron types (Large basket, Common basket, Common type, Cajal-Retzius, Arcade and 

Other). As in the above agreement analysis for Feature 6, Characterized and Uncharacterized 

were the categories with the lowest level of chance-corrected inter-expert agreement 

(Supplementary Online Information S2). Moreover, a specific analysis of chance-corrected 

Fleiss’ pi index excluding one or three experts showed similar results, further revealing those 

experts who contributed to the low agreement for some features (Supplementary Online 

Information S2; Fig. S8).  

 Additionally, we assessed whether Fleiss’ pi values changed if two categories of Feature 5 

were merged into one category. The rationale for this was that certain pairs of categories seemed 

to overlap in terms of the neurons that were assigned to them. In fact, Fleiss’ pi values increased 

when categories Common type, Common basket, and Large basket were merged with each other 

(Supplementary Online Information S2; Table S1), revealing ill-defined neuron types. In 

contrast, when the Martinotti and/or Chandelier categories were combined with other categories, 

a lower chance-corrected agreement value was obtained, suggesting that these neuron types are 

well defined. Furthermore, the above results were confirmed in a separate analysis using 

Cohen’s kappa index  (Fig. 4C, G-I). This index is defined for scenarios with two experts and 

two categories. Thus, we assessed the level of agreement between all possible pairs of experts 

resulting in a comparison of each expert with all the other experts (Supplementary Online 
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Information S2; Figs. S9-S11). For example, the first blue box in Fig. 4C summarizes the 

agreement between the first expert and the other 41 experts regarding the categorization of a 

neuron as Martinotti. Thus, this high-valued box means that this expert categorized as Martinotti 

the same neurons as the majority of the remaining experts. Also, we can conclude that there was 

a high agreement between experts for category Martinotti, since all boxplots (excluding expert 

#41) showed high Cohen’s kappa index values. In contrast, a low level of agreement was found 

for Common type, Common basket, and Large basket cells, as reflected by the low values of the 

boxplots (Fig. 4G-I). See Supplementary Online Information S2 for further analyses 

regarding Cohen’s kappa index. 

	

Neuron clustering 

We used clustering algorithms on the classification data from the experts to find groups of 

interneurons (clusters) with similar morphological properties. The rationale for this analysis was 

not to define interneuron types. Instead, the goal was to check whether or not the experts’ votes 

for a given feature could separate neurons into clear groups matching the categories of the 

features. We performed the clustering analysis at two levels: neuron clustering for each feature 

and neuron clustering for all the features (Supplementary Online Information S1).  

First, we grouped the 320 neurons considering each feature independently. Thus, the 

clustering algorithm takes into account, for a given feature, which category was selected for 

each neuron by each individual expert. For Features 1-3 and 6 (Supplementary Online 

Information Figs. S12-14 and S17), clear clusters of neurons could be identified for 

each category, whereas the clusters for Feature 4 (Supplementary Online Information 

Fig. S15) showed confusion about the category ‘Both’. With regard to Feature 5, we run 

the algorithm to divide the set of 320 neurons into eight clusters (Supplementary Online 

Information S1). Fig. 4D shows one cluster of neurons clearly corresponding to Martinotti 

cells. On the contrary, panels J-L of Fig. 4 show clusters that did not identify neurons 

corresponding to a single category, mainly corresponding to those categories for which no 

agreement was achieved by the experts. Results for the remaining clusters of Feature 5 are 

reported in Supplementary Online Information S2; Figs. S16. These results indicate that, 

while some concepts were clear for the scientific community (Features 1-3 and 6), other 

categories (in Feature 4 and 5) were controversial. 

Next, we used another clustering algorithm to analyze the neurons taking into account 

all the features at the same time. In this case, for a given neuron, the algorithm analyzes the 

number of experts who selected each category of each feature, without distinguishing between 

individual experts. Thus, we can study possible relationships between the features. Fig. 5 
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represents the clusters obtained in the analysis. We found some clusters containing neurons with 

clearly identified categories. For example, Fig. 5A shows a cluster of neurons that were clearly 

categorized as Intralaminar, Intracolumnar, Centered, and Characterized. Furthermore, some of 

these neurons were mainly categorized as either Common type, Chandelier, Common basket or 

Neurogliaform. Similarly, Fig. 5B shows neurons that were mainly categorized as Translaminar, 

Transcolumnar, Displaced, Ascending, Martinotti, and Characterized. On the contrary, Fig. 5C 

shows a cluster of neurons mainly categorized as Translaminar and Intracolumnar, but were not 

clearly categorized for the rest of the features. Finally, Fig. 5F shows a cluster of neurons 

showing no clearly identified categories, corresponding mainly to Uncharacterized neurons. 

 

Bayesian networks for modeling experts’ opinions 

Bayesian network models  can capture the way by which an expert understands the 

(probabilistic) relationships among all the features (see Pearl, 1988; and López-Cruz et al., 2011 

for an application to neuroanatomy). As opposed to previous analyses, which focused on 

studying each feature independently, Bayesian networks allow us to analyze the associations 

between a set of features. The graphical representation of a Bayesian network allows one to 

visualize and inspect the relationships between the features. Here, we trained a probabilistic 

graphical model for each expert and used these models to analyze the experts’ choice behaviors. 

In general, some Bayesian networks presented similar structures whereas others showed 

different relationships between the features. For example, Fig. 6 shows the Bayesian networks 

learned for experts 16 and 27 when they selected ‘Martinotti’ or ‘Common basket’. The two 

models had a different structure as shown by the variations in the relationships between the 

features (Fig. 6 and Supplementary Online Information S2, Fig. S18). Additionally, Bayesian 

networks allow us to draw conclusions about the categories from a probabilistic point of view. 

Based on Bayes’ rule, we can also infer the likely reasoning of each expert and compare the 

behaviors of the different experts. Here, we select some of the categories of Feature 5 as 

evidence, and infer the most probable values for the rest of the features. This enabled the 

identification of the main properties for each interneuron type, allowing us to study the different 

conceptual thinking of the experts. In general, when we studied categories with high level of 

agreement, the propagated probabilities were similar in all the Bayesian networks. For example, 

when the category Martinotti was analyzed, Bayesian networks yielded similar propagated 

probabilities (e.g., Fig. 6A and B and Supplementary Online Information S2, Fig. S18). On 

the contrary, when we analyzed a category with low level of agreement, the propagated 

probabilities were clearly different (e.g., Common basket in Fig. 6C and D and Supplementary 

Online Information S2, Fig. S19). That is, experts had a similar concept for Martinotti cells 
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whereas for Common basket cells they rather differed in their reasoning for assigning this 

interneuron type (see Supplementary Online Information S2 for further details). 

 

Supervised classification of neurons: automatic classification 

The ultimate goal of our experiment was to build a model that could automatically classify a 

neuron on the basis of its morphological characteristics and more specifically in terms of the six 

features defined in the present study. A supervised classifier is a model which can assign a 

category to a neuron based on its characteristics. Such a classifier must be trained with a dataset 

of neurons for which the true category is known. For this purpose, we used those neurons from 

the experiment (241) that had been reconstructed in 3D. We first measured 2886 morphological 

parameters using Neurolucida Explorer. Then, we built mathematical models that could 

automatically classify these 241 neurons according to the values of their morphological 

parameters (Duda et al., 2001; Jain et al., 2000). Because supervised classification tools require 

a single class value for each neuron, we used a naive approach of assigning to each neuron the 

category that received the highest number of votes (Supplementary Online Information S1; 

Raykar et al., 2010). As a first approach, we built six classifiers, one per feature (Feature 1 up to 

Feature 6). Moreover, we tested multiple different supervised classifier algorithms 

(Supplementary Online Information S1). The easiest problem was classifying the neurons as 

either characterized or uncharacterized, and was solved with the highest accuracy, with only two 

misclassified neurons for this feature; that is, for this feature the result of the classifier matched 

that of the (majority of the) experts. For Features 1, 2 and 3, the classifiers also yielded fairly 

high accuracies (Supplementary Online Information S2; Table S3). By contrast, the accuracy 

for Feature 4 was much lower. This could be explained by two main reasons. First, the Both 

category was confusing for the experts, so the assigned category using the majority of votes 

might not capture the true morphological properties of the neurons for this feature. Second, 

none of the used morphological variables (Supplementary Online Information S1) might 

adequately capture the vertical orientation of the axon with respect to the soma. Considering 

additional variables specifically referring to the orientation of the axon might help improve the 

accuracy of the classifiers for this feature. The classifiers also yielded low accuracies when 

distinguishing the categories in Feature 5.(Supplementary Online Information S2). These 

results were not surprising because distinguishing the 9 proposed neuronal types proved to be 

difficult for the experts.  

Additionally, we further analyzed Feature 5 by training binary classifiers which 

distinguished one category against all the other categories considered together. We drew similar 

conclusions as those obtained in previous analyses (Supplementary Online Information S2). 

Finally, since throughout the analyses of the supervised classification experiment we observed a 
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frequent disagreement between Common type, Common basket, and Large basket categories, 

we merged these three neuronal types and repeated the automatic classification experiment. 

Higher accuracy was obtained when merging Common type, Common basket, and Large basket 

categories into one single category (Supplementary Online Information S2). 

 

Discussion and future directions 

The present study empirically and quantitatively demonstrates that the ’gardener’s’ approach to 

neuron classification is untenable at this time, confirming the impression that different 

investigators use their own, mutually inconsistent schemes for classifying neurons based on 

morphological criteria. Many ambiguities are independent of the relative reconstruction quality 

and completeness of the tested neurons. A striking indication of the problem is that in several 

cases experts assigned a different name to a neuron than the term they had chosen in their own 

original publication from which that same neuron was taken. This takes us back to the time of 

Cajal, who also inconsistently named various morphological types of interneurons. For 

example, Cajal termed neurons that show different dendritic and axonal morphologies ‘double 

bouquet cells’ (células bipenachadas in Spanish; bitufted cells in English) (DeFelipe, 2002). In 

the present study, however, statistical analyses of inter-expert agreement, application of 

Bayesian networks, and different clustering and supervised classification algorithms clearly 

separated readily distinguishable interneuron types from apparently confusing interneuron 

names. High-consensus terms included chandelier and Martinotti cells, indicating that these are 

more easily identifiable interneuron types. Low-consensus terms included arcade, basket cells, 

and Cajal-Retzius cells, suggesting that these are potentially less useful names. Researchers 

generally agreed on specific morphological features, such as ascending vs. descending and 

intracolumnar vs. transcolumnar axonal arbor. 

 

A solution: the Neuroclassifier 

How might the situation be improved? Based on the supervised classification models described 

here, we envision a future computer tool for automatic classification of neurons, a 

Neuroclassifier. This machine will initially use probabilistic labels — based on the categories 

provided by experts — as neuron names and will evolve by combining supervised (known 

labels) and unsupervised (new labels) classification techniques. This may foster naming 

unification, robust classification, and education of new students in the field through online 

learning techniques. As the scientific community uses the tool, more data will be incorporated 

into the Neuroclassifier, allowing model updates, and increasing classification robustness and 

accuracy. Furthermore, other morphometric measurements, encoding different aspects of 

neuronal anatomy, could be considered. Eventually, multiple correlative criteria including 
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molecular, physiological, and synaptic connectivity attributes would enable a more complete 

neuronal classification, a critical step towards better understanding of neuronal circuits. 

 Finally, it should be kept in mind that the present analysis is limited to neurons from a 

small number of species, representing mammals commonly used in brain research. These 

include one lagomorph, two rodents, one felid, and two primates. Although the results from our 

analysis may be consistent among these mammalian orders, the level of inter-expert agreement 

was not compared between species. Furthermore, the selection of interneurons from these 

species does not cover the likely variability of interneuronal morphologies among all 

mammalian families. In fact, except for the cat, the species in our study all belong to only one 

mammalian superorder – the Euarchontoglires. Although several ‘canonical’ neuronal 

morphologies are doubtlessly common to all placental mammals, some species (such as 

cetartiodactyls and xenarthrans) depart from the commonly observed neuron types (Hof et al., 

1999; Sherwood et al., 2009). Future inclusion of other species in the Neuroclassifier will allow 

detailed analysis of evolutionary conservation and species-specific neuron types.  
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Figure legends 

 

 

Fig. 1. Web-based interactive system. Screenshot of one of the 320 neurons included in the 

web-based interactive system, along with the categories (each possible value for each feature) of 

the six axonal features displayed for the experts to select as most appropriate to describe the 

illustrated morphology. 
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Fig. 2. Schematics of the morphological features. Feature 1, Intralaminar (a,b) vs 

Translaminar (c,d). Feature 2, Intracolumnar (e,f) vs Transcolumnar (g,h).  Feature 3, Centered 

(i-l) vs Displaced (m-p). Feature 4, Ascending vs Descending vs Both (only when neurons are 

translaminar and displaced; o, p). Feature 5, interneuron types: Arcade vs Common basket vs 

Large basket vs Cajal-Retzius vs Chandelier vs Horse-tail vs Martinotti vs Neurogliaform vs 

Common type (not shown) vs Other (not shown). When an insufficient number of 

morphological axonal features are visualized for a given interneuron the cell is considered 

anatomically uncharacterized (Feature 6; not shown). Dashed horizontal lines indicate the extent 

of the layer. Vertical grey shadows indicate the extent of the column. Axonal arborization is 

represented by blue dots. Soma and dendritic arborization is represented in red. Possible 

variations on the relative position of the somata with respect to the axonal arborization of 

displaced neurons are represented by red dotted ovals.  
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Fig. 3. Agreement analysis. (A) Relative frequency of each category for each feature (F1 to 

F6), i.e., the number of times a category was selected divided by the total amount of ratings for 

the feature. (B) Overall observed agreement (circles) and chance-corrected Fleiss’ pi index 

(crosses; Supplementary Online Information S1) for each feature, indicating the degree of 

concordance between the experts. (C) Chance-corrected (Fleiss’ pi index) agreement achieved 

in each category of each feature. Categories of the same feature are shown using lines with the 

same color, e.g., categories Intracolumnar and Transcolumnar corresponding to the second 

axonal feature are shown with green lines. Interneuron types easily distinguished by the experts 

yielded high agreement (e.g., Chandelier or Martinotti categories), whereas confusing categories 

such as Common type, Common basket or Large basket yielded low chance-corrected 

agreement values. 
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Fig. 4. Examples of agreement (Martinotti category) and disagreement (Common type, 

Common basket, and Large basket categories). (A,B) Examples of neurons (neurons 3 and 

272) categorized by 41 out of 42 experts as Martinotti. (C) Agreement between pairs of experts, 
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quantified by Cohen’s kappa index, when comparing cells categorized as Martinotti against all 

the other interneuron types. For example, the first blue box shows the agreement values between 

the first expert and the other 41 experts when classifying interneurons as Martinotti cells. High 

values of the kappa index yield high agreement. Apart from expert 41, all the other experts 

yielded fairly high agreement when categorizing interneurons as Martinotti cells. (D) 

Representative cluster of neurons (44 neurons) indicating the way each neuron was assigned to 

one of ten categories (each in different color) in Feature 5 by every expert. A vertical bar is 

shown for each category and each neuron (x axis), representing the number of experts (y axis) 

who selected the category. High bars (e.g., for category Martinotti) show high agreement when 

classifying the neurons in this neuronal type. Contrarily, short bars (e.g., for categories 

Common basket or Other) represent low agreement. Neurons are sorted in ascending order 

according to the category with the majority of votes (Martinotti). (E) Example of a neuron 

(neuron 31) that was categorized by 12 experts as Common type, 12 as Common basket, 15 as 

Large basket, and 2 as Arcade. (F) Example of a neuron (neuron 274) that was categorized by 

11 experts as Common type, 12 as Common basket, 14 as Large basket, 1 as Chandelier, 1 as 

Arcade, and 1 as Other. (G-I) Low agreements between pairs of experts, quantified by Cohen’s 

kappa index, when categorizing interneurons as Common type (G), Common basket (H), and 

Large basket (I) against all the other interneuron types. (J-L) Examples of clusters of neurons 

(54, 54 and 80 neurons, respectively) that show no unique category with high bars (cf. panel 

4D). The neurons included in each cluster were categorized as Common type, Common basket, 

and Large basket by different experts. Note that a high number of experts also categorized 

neurons as Neurogliaform or Common basket (high bars in panels K and L, respectively). Also, 

note that the category with the majority of votes (Large basket, Common basket and Common 

type in panels J, K and L, respectively) show shorter bars than the ones shown in panel D for 

category Martinotti. 
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Fig. 5. Clustering of neurons considering all features. (A-F) Parallel coordinates diagrams of 

clusters of neurons obtained with the k-means algorithm (k = 6) considering all the features at 

the same time. Each line represents one neuron, showing the number of experts who selected 

each category of every feature when classifying that neuron. For example, panel B shows a 

cluster where the majority of neurons were categorized by many experts as Translaminar (blue), 

Transcolumnar (red), Displaced (green), Ascending (light blue), Martinotti (purple) and 

Characterized (ochre). 
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Fig. 6. Examples of Bayesian networks. Bayesian network models when selecting Martinotti 

(A, B) or Common basket (C, D) categories in Feature 5 for expert 16 (A, C) and expert 27 (B, 

D). In a Bayesian network structure, each feature is represented with a node (box) in the graph, 

and an arrow from one node X to another node Y in the graph represents the probabilistic 

dependence of Y on X (see Supplementary Online Information S1 for further details). Note 

that the direction of an arrow between two nodes does not necessarily reveal causality or 

hierarchy. Instead, an arrow connecting two nodes (independent of its direction) shows a 

probabilistic relationship between the two corresponding features. When a category is selected 

(e.g., Martinotti as neuron type in panels A and B), probabilistic rules are used to propagate this 

information and to compute the conditional probability of any other node (e.g., ascending as 

Feature 4), shown by bar charts in this figure. Thus, the blue bar in Feature 4 of panel A means 

that if expert 16 called a neuron ‘Martinotti’, there would be a 64% probability s/he would 

consider it ascending. Similarities and differences between experts can be identified by 

comparing their Bayesian networks. For instance, arrows connecting Feature 4 to Feature 5 

appear in both Bayesian networks, showing a common relationship for experts 16 and 27. Also, 

the propagated conditional probabilities can be used to compare experts’ opinions. When 

selecting Martinotti, the propagated probabilities (shown by percentages and colored bars) are 

similar in the two Bayesian networks, e.g., Translaminar in Feature 1 has 96% probability in 

panel A and 91% probability in panel B. In contrast, the propagated probabilities when selecting 

Common basket differ greatly, e.g., Intracolumnar in Feature 2 has 75% probability in panel C 

and 27% probability in panel D. 


