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Neuron anatomy structure reconstruction
based on a sliding filter
Gongning Luo1, Dong Sui1, Kuanquan Wang1* and Jinseok Chae2*

Abstract

Background: Reconstruction of neuron anatomy structure is a challenging and important task in neuroscience.
However, few algorithms can automatically reconstruct the full structure well without manual assistance, making it
essential to develop new methods for this task.

Methods: This paper introduces a new pipeline for reconstructing neuron anatomy structure from 3-D microscopy
image stacks. This pipeline is initialized with a set of seeds that were detected by our proposed Sliding Volume Filter
(SVF), given a non-circular cross-section of a neuron cell. Then, an improved open curve snake model combined with a
SVF external force is applied to trace the full skeleton of the neuron cell. A radius estimation method based on a 2D
sliding band filter is developed to fit the real edge of the cross-section of the neuron cell. Finally, a surface reconstruction
method based on non-parallel curve networks is used to generate the neuron cell surface to finish this pipeline.

Results: The proposed pipeline has been evaluated using publicly available datasets. The results show that the proposed
method achieves promising results in some datasets from the DIgital reconstruction of Axonal and DEndritic Morphology
(DIADEM) challenge and new BigNeuron project.

Conclusion: The new pipeline works well in neuron tracing and reconstruction. It can achieve higher efficiency, stability
and robustness in neuron skeleton tracing. Furthermore, the proposed radius estimation method and applied surface
reconstruction method can obtain more accurate neuron anatomy structures.

Keywords: Neuron anatomy structure reconstruction, Radius estimation, Sliding filter, Open curve snake model

Background
Neuron morphology and structure information is critical
for neuroscience research. Hence, reconstructing the
entire anatomy structure of a neuron is an essential task
in the field of neuron informatics [1, 2]. However, recon-
structing the anatomy structure of a neuron artificially is
labor intensive. Efficient, advanced methods for anatomy
structure reconstruction of neurons are greatly demanded
in this field. Specifically, with the rapid development of
microscopic imaging technology, a wide range of scales of
bio-images can be obtained, which is helpful for us to
develop new methods and algorithms to meet the needs
in neuroscience research [3, 4]. The reconstructed digital
neuron structure, including axons and dendrites as well as
thickness information, can be used in conjunction with

electrophysiological simulations to determine the complex
mechanisms of the nervous system [5, 6].
The computer-aided manual neuron reconstruction

method was first proposed in 1965 and was achieved by a
biologist using a microscope [7]. Following this milestone,
numerous algorithms and open softwares were introduced
to reduce manual labor consisting of the boring task of tra-
cing and analysis [8–11], but most of them were still limited
to semi-automation and required manual validation by ex-
perts to achieve accurate reconstruction of whole neurons.
Hence, the lack of powerful and effective computational
tools for automatically reconstructing neuron cells has
emerged as a major technical bottleneck in neuroscience
research. This problem motivated the DIgital reconstruc-
tion of Axonal and DEndritic Morphology (DIADEM) chal-
lenge [12] and BigNeuron project [13, 14], which began in
2010 and 2015 respectively. They provided an open-source
platform for researchers from all over the world and aimed
to promote the development of computer algorithms for
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reconstructing the full anatomy structure of neurons. The
data sets from DIADEM are most widely used in the
domain of neuron reconstruction to date. However, the
BigNeuron proposed some new challenges for the further
research in the field of neuron reconstruction.
Generally speaking, before the DIADEM project, the

neuron tracing methods were categorized into several
types: shortest path methods [15, 16], minimum span-
ning tree methods [17, 18], sequential tracing methods
[19, 20], skeletonization methods [21, 22], neuromuscu-
lar projection fiber tracing methods [23–25] and active
contour-based tracing methods [26–28]. Based on these
methods, some new improved methods were proposed
[29]. The DIADEM final listed five well-performed algo-
rithms: the model-based method [30], geometry-based
method [31], probabilistic approach-based method [32],
open snake-based method [33] and cost minimization
trees-based approach [34]. In the model-based method,
Myers’s team employed the idea of shortest paths to
refine local tracing, which is based on the model of Al-
Kofahi [19] and a formal tube model. This pipeline can
reconstruct the neuron from raw or preprocessed images
[30]. In the geometry-based method, Erdogmus’s team
introduced a principal curve to represent the skeleton of
axons, and they then extracted the topology information
using a recursive principal curve tracing method [31]. In
the probabilistic approach-based method, Gonzalez’s
team built a set of candidate trees to choose the best
one by a global objective function, which combined
geometric priors from image evidence [32]. In the open
snake-based method, Roysam’s team proposed a three
dimensional open curve snake model that was initiated
automatically by a set of skeletons from binary images
generated by the 2-D graph cut pre-segmentation
method, and the snake curve could be stretched bi-
directionally along the centerline to trace the neuron cell
structure [33]. Stepanyants’s team proposed trees-based
method, which can merge individual branches into trees
based on a cost minimization strategy [34]. After the
DIADEM final, Liu’s group proposed a 3D neuronal
morphology reconstruction method based on the aug-
mented ray burst sampling method [35]. This method
consisted of a single step to achieve the tracing and
reconstruction, in which the centerline extraction or the
extra radius estimation was unnecessary but the first
seed must be set artificially. Peng’s team proposed series
of efficient methods for neuron reconstruction, such as
an anisotropic path searching method [36], an all-path
pruning method [37], a hierarchical-path pruning method
based on a gray-weighted image distance-tree [38], an
automatic distance-field neuron tracing method based on
global threshold foreground extraction [39], a smart
tracing method based on machine learning [40] and a
method based on reverse mapping and assembling of 2D

projections [41]. These methods can work well with the
neuron center lines tracing under the complex and
noisy background. Kakadiaris’s team proposed a learn-
ing 3D tubular models-based method, which can use a
morphology-guided deformable model to extract the den-
dritic centerline and use minimum shape-cost tree to rep-
resent the neuron morphology [42]. In addition, to achieve
more accurate neuron tracing results, some open source
softwares have been developed, such as flNeuronTool [35],
FarSight [33], V3D [10], and Vaa3D [43, 44]. Along with all
the existing algorithms, these open source softwares also
promote the development of neuron reconstruction.
Despite the large number of proposed neuron tracing

algorithms mentioned above, few methods can automat-
ically reconstruct the complete and detailed neuron
morphology, including complex dendritic and axonal
arbors and variable thickness information. Moreover,
because of the limited computer power, the automatic
and accurate reconstruction of neuron anatomy struc-
ture is still a significant challenge.
In this paper, we propose a new 3D seed detection

method based on Sliding Volume Filter (SVF) to initialize
our framework, and we designed an open curve snake
model combined with a SVF external force for centerline
extraction and tracing. This open curve snake model has
higher efficiency in the convergence of endpoints and de-
tection of branch collision. In addition, radius estimation is
another critical problem in neuron reconstruction, and ac-
curate radius estimation can benefit simulation and func-
tional research. Hence, this paper also proposes a new
radius estimation method based on a 2D sliding band to es-
timate the radius of a neuron. The proposed radius estima-
tion method can fit the real edges of neuron non-circular
cross-sections better than previous methods. Finally, a sur-
face reconstruction method based on contour lines is
adopted to reconstruct detailed neuron morphology.

Methods
As shown in Fig. 1, some critical steps, such as seeding,
tracing, radius estimating and surface reconstruction, are
included in the pipeline of our protocol. The details of
every critical step will be explained.

Seed detection
Seed detection is a critical procedure in the open snake-
based tracing protocol, and an ideal seed list can ensure
tracing accuracy. The proposed seeding method includes
the following two stages:

(1) We used the proposed SVF based method to select
coarse seeding points in the interior of neuron cells.

(2) The ridge criterion was used to achieve the further
filter to obtain better seeding points, which are
always near the center of the neuron cell.

Luo et al. BMC Bioinformatics  (2015) 16:342 Page 2 of 19



A. SVF-Based seeding
In the field of computer vision and image processing,
the convex region is defined as follows:

a) A rounded convex region is a region with higher
intensity in the center than the edge, and the
gradient vectors of this region point to its center.

b) A tube-like convex region is a region with higher
intensity along its centerline than the edge, and the
gradient vectors point to the centerline from the edge.

Quelhas’s group proposed a 2D Sliding Band Filter (SBF)
for cell nucleus detection based on the characteristic of a
rounded convex region [45]. In the data sets of microscopic
imaging, a 3D neuron cell has not only a tube-like convex
region but also a non-circular cross-section. Given these two
characteristics, we extended the SBF into 3D space and
designed a Sliding Volume Filter (SVF) to enhance the tube-
like convex region for seed detection of neuron volume data.
To explain the calculation of SVF, we first explained the

Voxel Convergence Index (VCI). As shown in Fig. 2a, O is

an interested voxel in 3D volume datasets with its
coordinate located at (x, y, z). A sphere support region R is
located around the center O, and P are the voxels in the
support region R except at O, whose coordinate is (i, j, k).
ϕ(i, j, k) is the angle between PO and the gradient vector
direction. The VCI of P is defined as follows:

VCIp ¼ cosφ i;j;kð Þ ð1Þ

Figure 2b and c show the calculation scheme of the
sliding volume filter in a support region R whose radius
is rad. To finish the discretization computation effi-
ciently, the polar coordinate is introduced into this
scheme, and the SVF is calculated as

SVFO ¼ 1
M

X2π
a¼0

Xπ
b¼0

max
Rmin<r<Rmax

1
d þ 1

Xrþd=2

r−d=2
VCIQ

� �

ð2Þ

with

Fig. 1 Pipeline of neuron anatomy structure reconstruction

Fig. 2 Scheme of Spatial Convergence Index. a The model of 3D spatial convergence index. b The model of 3D sliding volume filter in y-z plate
section. c the discretization calculation of SVF using the polar coordinates
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VCIQ ¼ cosφ qxρ; qyρ; qzρ
� �

¼ cosφ ρ sinb cosa; ρ sinb sina; ρ cosbð Þ ð3Þ

where M is the number of support region lines radiating
from the center pixel O(x, y, z), ρ denotes the radial coord-
inate, a and b stand for the angular coordinates, d is the
thickness of sliding volume, r is the center position of the
sliding volume in the support region line ranging from Rmin

to Rmax, Q is the points between [r−d/2,r + d/2], and φ(qxρ,
qyρ, qzρ) is the angle between the gradient vector at Q and
the direction of QO. Additionally, the angles a ∈ [0, 2π] and
b ∈ [0, π] are divided into 2 L parts and L parts, respectively.
Thus, M=2 L2. Specially, the number of parts of L deter-
mines the accuracy and efficiency of computation.
After the SVF was applied to the neuron volume data

for seed detection voxel by voxel, we selected the voxels
as the raw seeds whose SVF response values are higher
than the threshold T. Notably, there are more gradient
vectors that point to the center of a tube-like structure
in the marginal regions than in the other regions [45].
Hence, the sliding volumes of support regions of interior
points are more likely to converge in the marginal re-
gions. As shown in Fig. 3a, the voxel A in the interior of
the nerve is more likely to be selected as a raw seed than
the external voxel B. Because A has a higher SVF re-
sponse value than voxel B, the orientations of gradient
vectors in the sliding volumes of support region of A are
more likely to point to A. However, the orientations of
gradient vectors in the sliding volumes of the support
region of B are not consistent and sometimes point away
from B. Moreover, a nerve cell is not a uniform tube-like
structure but instead has variable thickness. Therefore,
SVF is the proper filter for raw seed selection.

B. Ridge criterion
The Aylward’s ridge criterion method was applied to the
raw seeds for the final seed choice [20]. As shown in
Fig. 3a, I is the volume data set, ∇I(p) is the gradient vec-
tor at voxel p with its coordinate (x, y, z) in I, and ev1, ev2
and ev3 are the eigenvectors computed from Hessian

matrix of I. ev1(p) is the principle direction along the cen-
ter lines of the tube-like structure, and ev2(p) and
ev3(p) are the other two orthogonal eigenvectors. The
seeds near the center of the tube-like structcure meet
the condition of Eq. 4.

ev2 pð Þ�∇I pð Þ < 0:001 and ev3 pð Þ�∇I pð Þ < 0:001

ð4Þ

The raw seeding points were further chosen according
to the ridge criterion Eq. 4. As shown in Fig. 3b, after
the steps of SVF and ridge criterion, the proper seeds
near the center line of the nerve are chosen and in-
cluded in the seed list, in which the seed points are
sorted by the response values. Simultaneously, response
values from SVF are used to enhance the intensity of
voxels in the original data, which benefits the deform-
ation of the open curve model in the following step. The
SVF volume enhancement method is denoted as

ISVF pð Þ ¼ 15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min I pð Þ � 1þ SVF pð Þð Þ; 255½ �

p
ð5Þ

where ISVF(p) is the intensity of point p after SVF en-
hancement, I(p) is the intensity of point p before SVF
enhancement, and SVF(p) is the SVF value of point p.

SEF-OCS Neuron tracing
Tracing the full neuron skeleton is still a challenging
task in neuron science, although many methods have
been proposed. In this section, a new tracing model is
proposed called an SVF external force open curve snake
(SEF-OCS, SEF-Open Curve Snake). The open curve
snake model was initially applied to automated actin fila-
ment segmentation and tracking [33, 46]. Extended the
application of the open curve snake model to neuron tra-
cing. However, the computation was tedious in the tracing
framework of [33], especially in the step of branch detec-
tion. The proposed SEF-OCS includes three parts: open
curve deformation, curve extension, and collision detection.

Fig. 3 Scheme of computation of Sliding Volume Filter, as well as the selection of seed points. a The procedure of seed points filtrate, after the
SVF and ridge criterion, proper seed points are chosen. b The seeding points selection after step1 and step2
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A. Open curve deformation
This model is a parametric open curve model, and the
total snake energy can be defined as

ETotal ¼ EInternal þ EExternal ð6Þ
ETotal is the total image energy combined with internal

energy and external energy. This model is a traditional
deformable model, which resembles previous work in
[16]. The open snake model is a parametric curve,
c(s) = (x(s), y(s), z(s)), s∈ [0, 1], and the snake internal
and external energy are defined as follows:

EInternal ¼
Z 1

0
α cs sð Þj j2 þ β css sð Þj j2ds ð7Þ

EExternal ¼
Z 1

0
Eim c sð Þð Þ þ Estr c sð Þð Þ ds ð8Þ

with

∇Eim ¼ −∇ISVF pð Þ

∇Estr c sð Þð Þ ¼ −

−cs sð Þ
cs sð Þk k

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2λ3j jp

λ1 þ 0:01j j−1
������

������ s ¼ 0

cs sð Þ
cs sð Þk k

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2λ3j jp

λ1 þ 0:01j j−1
������

������ s ¼ 1

0 s∈ 0; 1ð Þ

8>>>>>>>><
>>>>>>>>:

In Eq. 7, α and β are the “elasticity coefficient” and “stiff-
ness coefficient”, respectively, in internal energy, and they
can control the regularity of the curve in the process of
evolution. In Eq. 8, the external energy term is used to
make the snake deform near the center line of the neuron
and stretch the endpoints to the tail of the neuron. ∇Eim is
the negative normalized Gradient Vector Flow (GVF) of
the volume data enhanced by SVF, p signifies point (x(s),
y(s), z(s)) on the open curve, and ISVF is the volume after
SVF enhancement in this paper. Instead of the original 3D
image GVF, we calculated the GVF of ISVF. The SVF can
enhance the tube-like convex region to smooth the GVF.
As shown in Fig. 4a, the blue arrows show examples of gra-
dient vectors from the volume enhanced by SVF. The

vectors point toward the centers of neurons, which can
make the seed points (the yellow points in Fig. 4a) move to
the center position (the position of the red points in Fig. 4a).
Specifically, the stretching force ∇Estr(c(s)) is only imple-
mented to the final endpoints c (0) and c (1). The cs(s)/
||cs(s)|| denotes the direction of the stretching force. The
value

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
= λ1 þ 0:01ð Þ−1�� �� is used to measure the

tube-like level around the end point. When a curve reaches
the end of a neuron, the end points will lose the tube-like
characteristic. Hence, ∇Estr(c(s)) approaches zero, and the
open active curve converges. According to a large number
of experiments, this strategy is not only efficient and reli-
able but also can avoid the leakage of the neuron boundary.
To minimize the energy function ETotal, the points on the
snake curves are updated as:

xt ¼ γISVF þ Að Þ−1 γxt−1 þ ∂Eext xt−1; yt−1; zt−1ð Þ=∂xð Þ;
yt ¼ γISVF þ Að Þ−1 γyt−1 þ ∂Eext xt−1; yt−1; zt−1ð Þ=∂yð Þ;
zt ¼ γISVF þ Að Þ−1 γzt−1 þ ∂Eext xt−1; yt−1; zt−1ð Þ=∂zð Þ;

ð9Þ

where the parameters t and γ control the iteration num-
bers and size of the step at each iteration, respectively.
The iterations are stopped when t reaches the threshold
of the max iteration number.

B. Curve extension
The initial open snake curve is formed by three points
(fewer than three points will not be traced as a branch of
neuron). The first point p has the best response value in
the seed list, and the other two points are generated by
extending along the first principal direction to ev1(p)
and − ev1(p). As shown in Fig. 4b, along with the open
snake curve moving to the center of neuron, it also
extends toward the two inverse tangential directions,
cs(p0) and − cs(p1), in which the p0 and p1 are the two
temporary endpoints. During the procedure of extension,
the seed points belonging to one curve were labelled with
new values (the default value is zero) in accord with the
ID of the curve. For example, in Fig. 4b the yellow points
and green points belong to different curves.

Fig. 4 Scheme of SEF open curve snake model. a The open curve is driven to the center of neuron by external force in the volume after SVF.
b The procedure of open snake curve extension and collision detection in the branching region

Luo et al. BMC Bioinformatics  (2015) 16:342 Page 5 of 19



C. Collision detection
Neurons have many branches, especially in the dendrite
region. Hence, detecting branching points and handling
collision are essential. In the proposed scheme, two types of
collision exist in the collision region and are shown in
Fig. 4b. The first collision is branching point collision, which
occurs when the open snakes reach a seed point whose
value is not zero, and this point is recorded as the branching
point (pink point in Fig. 4b). This branching point detection
strategy is based on labelling seeds and is highly efficient. It
also can handle the second type of collision, contour lines
collision. The contour lines coming from the following step
of radius estimation are the foundation of neuroanatomy re-
construction. However, due to the ambiguity of radius esti-
mation in the collision region, the contour lines from two
curves easily intersect. In Fig. 4b, this situation is illustrated
in the imaginary pink circle and the embedded image, which
is an experimental result in the branching region. This
collision will influence the accuracy of the following recon-
struction algorithm. Hence, a backoff strategy is proposed to
avoid contour line collision. First, radius estimation in the
branching points will not be executed. Second, if an
extending curve reaches the branching point, it will
be cut back the length of D, which is usually set as
double the average estimated radius of the current
curve.
In other words, the imaginary pink circle is not neces-

sary in radius estimation because the following recon-
struction algorithm would interpolate the information
using triangular meshes automatically. Finally, the tracing
algorithm ends when all the seed points are traversed.
The entire tracing algorithm procedure is shown as

follows:

In summary, compared to the open snake method in
[33], we improved this model in the following three
aspects. First, the volume after SVF enhancement has
more straightforward gradient vectors, which point to
the center line of the neuron and can be used in driving
the initial lines to the center of the neuron. Second, the
proposed method can cut down the computation of the
stretching force of end nodes. Third, in the step of
collision detection, compared to the method based on
labelling neighbor voxels, the method based on labelling
seeds has higher detection efficiency and benefits the
following reconstruction procedure.

Radius estimation
Radius estimation is another critical task in neuron anat-
omy reconstruction, and it can provide more quantitative
information for neuroscience research. Peng, Aylward,
and Wang had proposed some radius estimation methods
[16, 20, 33], but most of them are based on the assump-
tion that the neuron have a uniform tube-like structure,
whose cross-sections are regular circles. However, the real
cross-sections are not regular circles, as shown in the em-
bedded image of Fig. 5. To reconstruct the neuron mor-
phological structure more accurately, fitting the real edge
of the neuron cell is achieved by a new proposed radius
estimation method based on a 2D Sliding Band Filter
(SBF) [45]. The SBF can converge on the real edge of
a neuron cross-section that has the rounded convex
region in [45].
Figure 5 shows the scheme of the radius estimation

method based on a 2D sliding band filter. We could
obtain the cross-section according to the normal vector
v1, which points to the tangential direction of the open

Luo et al. BMC Bioinformatics  (2015) 16:342 Page 6 of 19



Fig. 5 Illustration of radius estimation of the neuron cross-section. The left embedded image shows the real cross-section of neuron, and the
estimation result with different parameters. And in the right image v1 is the tangential direction in Si, v2 and v3 are the orthogonal vectors
which define the cross-section

Fig. 6 Process of contour reconstruction. a Construction of projective plate MA [48]. b Projection of points and lines on MA [48]. c Triangulation
of adjacent contour lines [48]. d The contour lines of neuron cell. e The initial surface from triangulation of adjacent contour lines. f The final
surface model after smoothing
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Fig. 7 Process of neuron reconstruction in branching region. a The input branching data from [48]. b The reconstruction result of input data
of (a). c The input data of neuron contour lines. d The reconstruction result of (c), in which different branches are labelled by different colors

Table 1 Parameter selection

Parameter Value/range Notes

Sliding filter rad 20–30 (voxel) This parameter determines the size of the support region of SVF and SBF. Too large or too small of
a region will lead to computation-intensive processes or a reduction in the quality of seeding point
selection and radius estimation.

d 8 (voxel) This parameter is the width of the sliding volume and sliding band, and it remains constant in the
following experiments.

L 20 This parameter remains constant in the following experiments. Too large of an L value will lead to
computationally intensive processes.

Rmax rad-d/2 This parameter is same in seeding and radius estimation.

Rmin (d/2, rad-d/2) This parameter is same in seeding and radius estimation. If the datasets are generated from bright field
microscopy, a larger Rmin should be set. Otherwise, a smaller Rmin should be set.

n 8–32 The larger the n value, the better the radius estimation and the lower the computation efficiency.

T 0.7 This parameter is the threshold used to select the coarse seeding points, and it remains constant in the
following experiments.

SEF-Open curve
snake

t 10–25 In most experiments, 10 is sufficient for the curve evolution in the GVF field of volume after SVF
enhancement.

γ 2 This parameter controls the steps of evolution, and it is a fixed constant in following experiments.

ɑ 0.8 This parameter representing the elasticity coefficient remains constant in the following experiments. A
larger ɑ value makes the open snake smoother.

β β(s) = 0.2, 0 < s
< 1

This parameter of the stiffness coefficient remains constant in the following experiments. A larger β value
makes the snake stiffer.

β(s) = 0, s = 0 or
s = 1

Luo et al. BMC Bioinformatics  (2015) 16:342 Page 8 of 19



curve. Additionally, the v2 and v3 are the orthogonals in
the cross-section. To obtain an accurate estimation of
neuron cross-section, n radiuses radiating from the cen-
ter point S on the snake curve are estimated as different
lengths. The radius lengths are equal to r in the Eq. 10
with the maximum SBF response value.

B n; rð Þ ¼ max
Rmin<r<Rmax

SBFr
n xnr ; y

n
r ; z

n
r

� � ð10Þ

with,

SBFn
r xnr ; y

n
r ; z

n
r

� � ¼ 1
d þ 1

Xrþd=2

r−d=2
VCI

P

where B is the boundary points on the cross-section,
which are at the centers of sliding bands and will be
used to fit the real edge. (xr

n, yr
n, zr

n) are the spatial coordi-
nates of S. The computation method of SCI in point P,
which is in the range of [r−d/2, r + d/2], has been intro-
duced in Eq. 4. d is the width of the sliding band, r is
the distance between B and the center point S, and it
can slide in the range of [Rmin, Rmax] to obtain the
optimal position of B with the maximum SBF response
value. The boundary points B can be connected clock-
wise to fit the edge of the neuron cell.
In the proposed method, the parameter n is related to

the accuracy of radius estimation. As shown in the
embedded image of Fig. 5, the larger n is, the more
accurate the cross-section fitting will be. However,
considering the efficiency and accuracy in the actual
application, the parameter n should be adjusted flexibly.

Neuron surface reconstruction
Most of the traditional neuron reconstruction methods
were based on the fast marching method and some
supplemental processes for connecting different frag-
ments [33, 47]. However, in this paper, Liu’s non-parallel
contour lines surface reconstruction method is employed
for surface reconstruction [48], considering the non-
parallel characteristic of circles generated from previous
steps. On the premise of an accurate description of the
entire neuron anatomy structure, this method is effi-
cient. Although this method had been widely used in
other biological models, it has rarely been used in

neuron model reconstruction. The generated mesh
model of the neuron can benefit the future finite elem-
ent mesh subdivision and simulation.
Figure 6 shows the scheme of Liu’s method. First, it

constructs medial axes (MA) between adjacent contour
lines (Fig. 6a). Second, the points and lines from differ-
ent contours are projected on the MA (Fig. 6b). Third,
triangular meshes are used to connect the curve
networks to their projection points on the MA (Fig. 6c).
Finally, the surface meshes, which are connected with
different contour lines, are formed as the boundaries
between neighboring compartments [48]. To obtain a
smoother neuron surface, we use a surface diffusion
smoothing algorithm to minimize the curvature of the
model surface to obtain a smooth 3D model [49]. As
shown in Fig. 6, the initial neuron surface (Fig. 6e) is
formed by contour lines (Fig. 6d) which are obtained by
radius estimation, and the final smooth neuron surface
is shown in Fig. 6f. In addition, the most outstanding ad-
vantage of Liu’s method is that it can automatically han-
dle branch reconstruction, especially of circles without
intersections in the branching region (the intersection
problem was resolved through removing the collisions of
circles in the SEF-OCS neuron tracing step). As shown
in Fig. 7, in the branching region, two branches could be
automatically reconstructed with different label colors.

Table 2 Comparisons of different seeding methods on test datasets

Dataset Method Detected seeds Seeds in foreground Seeds in background Deviation (voxels)

Artificial helix body Global Threshold Seeding 47 44 3 3.7

LoG Threshold Seeding 33 30 3 3.5

SVF Seeding 67 67 0 1.7

OP_1 Global Threshold Seeding 909 763 146 3.2

LoG Threshold Seeding 829 704 125 2.9

SVF Seeding 727 722 5 1.5

The best values are highlighted with bold letters

Fig. 8 Comparison of seeding method on test dataset; a The seeds
detection result of global threshold method. b The seeds detection
result of LoG threshold method. c The seeds detection result of
SVF method
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Results and discussion
Parameters
We validated and evaluated the steps of seeding, tracing,
radius estimation and neuron reconstruction in the
proposed method using synthetic data and real data

from the DIADEM challenge [12] and parts of datasets
from BigNeuron project [13, 14]. All of the experiments
were performed on an ordinary computer (Intel Core i5
3.2 CPU, NVIDIA GeForce GTX 960, 8 GB RAM,
Windows 7). The proposed algorithm was developed

Fig. 9 Comparison of seeding method on drosophila olfactory axonal data sets (OP_1). a The seeds detection result of global threshold method.
b The seeds detection result of LoG threshold method. c The seeds detection result of SVF method and the enlargement image in intensive
region of dendrites

Fig. 10 Comparisons among seeding methods for image enhancement. The results of global threshold method lose the contrast information
between center and edge; The results of LoG threshold method extend the center region exorbitantly; The results of SVF seeding method can
enhance the original volume properly
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using C++ language. In addition, to compare the other
methods equally, we did not adopt any manual inter-
active operations shown in the Fig. 1, such as prepro-
cessing, picking and expending seeds, checking and
validating data, tracing editing, branch refining, and
rooting setting, although these operation can improve
the result of neuron tracing.

According to the image data sets (DIADEM challenge
and BigNeuron project) chosen in this paper, Table 1
shows the parameters selected for the following experi-
ments. Some experimental parameters such as d, T, L, γ,
ɑ, and β remain constant for the following experiments.
Other parameters such as rad, Rmax, Rmin, n and t could
be adjusted for optimal results.

Fig. 11 The tracing results of OP_1 and OP_4. a The tracing result of OP_1 from multi-view. b The magnified result of branch parts of
OP_1. c The tracing result of OP_4 from multi-view; d The magnified result of branch parts of OP_4

Table 3 Comparisons among different methods with different image datasets in tracing accuracy

Data
set

Size Precision/recall

SEF-OCS OCS NCT APP APP2 DF TM

OP_1 512*512*60 0.97/0.91 0.93/0.85 0.86/0.79 0.73/0.77 0.92/0.93 0.82/0.84 0.83/0.87

OP_2 512*512*88 0.93/0.94 0.87/0.89 0.81/0.72 0.97/0.91 0.95/0.65 0.89/0.74 0.77/0.79

OP_3 512*512*62 0.89/0.94 0.85/0.92 0.79/0.83 0.94/0.92 0.85/0.83 0.91/0.96 0.91/0.92

OP_4 512*512*67 0.91/0.85 0.92/0.79 0.83/0.76 0.61/0.65 0.93/0.86 0.72/0.79 0.75/0.79

OP_5 512*512*76 0.93/0.94 0.89/0.95 0.86/0.81 0.81/0.9 0.85/0.87 0.81/0.84 0.79/0.81

OP_6 512*512*101 0.85/0.89 0.79/0.82 0.76/0.73 0.82/0.63 0.89/0.83 0.93/0.82 0.67/0.71

OP_7 512*512*71 0.82/0.91 0.84/0.86 0.81/0.77 0.75/0.88 0.91/0.9 0.91/0.86 0.71/0.7

OP_8 512*512*85 0.86/0.94 0.73/0.94 0.79/0.74 0.7/0.86 0.93/0.91 0.83/0.92 0.73/0.74

OP_9 512*512*92 0.91/0.92 0.87/0.91 0.85/0.81 0.81/0.63 0.83/0.85 0.77/0.91 0.7/0.69

NC_1 512*512*60 0.89/0.87 0.73/0.84 0.79/0.76 0.96/0.93 0.9/0.89 0.67/0.71 0.71/0.75

NC_2 512*512*33 0.85/0.83 0.81/0.89 0.81/0.79 0.91/0.93 0.85/0.69 0.87/0.61 0.8/0.81

NC_3 512*512*44 0.9/0.85 0.72/0.71 0.71/0.69 0.89/0.85 0.89/0.7 0.75/0.71 0.73/0.76

NC_4 512*512*51 0.93/0.92 0.75/0.74 0.67/0.65 0.81/0.85 0.83/0.87 0.82/0.85 0.74/0.75

NC_5 512*512*50 0.88/0.89 0.7/0.67 0.73/0.65 0.87/0.86 0.84/0.8 0.73/0.7 0.79/0.73

NC_6 512*512*46 0.86/0.85 0.9/0.79 0.8/0.64 0.87/0.89 0.85/0.81 0.82/0.75 0.81/0.85

Average 0.89/0.9 0.82/0.83 0.79/0.74 0.83/0.83 0.88/0.82 0.82/0.8 0.76/0.78

(The best values are highlighted with bold letters)
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Seeding
Generally speaking, an ideal seed point is located in the
neuron body of the foreground, and its position is near
the center of the neuron cell’s cross-section. To quantify
the performance of SVF seed detection, we evaluated the
seeding method using an artificial helix dataset and the
real dataset of the DIADEM challenge [12], according to
following point deviation measurement principle:

D PS;Pg
� � ¼ 1

N

X
p∈PS

dmin p; Pg
� � ð11Þ

where Pg denotes point sets in the gold standard, Ps de-
notes point sets generated by tested methods and N is
the number of points in Ps. dmin is the distance between
a seeding point and its nearest point in the gold
standard.
We compared the proposed seeding methods with the

two most widely used seeding point detection methods,
the global threshold method [18] and the LoG threshold
method [50]. We set the parameters rad = 20, Rmax=16,
and Rmin=5 in this experiments.
In the proposed SVF filter method, compared with

two other methods, most of the seed points are in
the interior of the neuron body. Table 2 shows the
seed deviation results of the artificial helix body and
OP_1, in which the SVF seeding method can achieve
the lowest deviation.
As shown in Fig. 8, some seeds fall outside of the arti-

ficial helix body, which are detected by traditional
threshold methods and highlighted with arrows. Figure 9
shows the seeding results in drosophila olfactory axonal

datasets (OP_1 of DIADEM challenge), which are gener-
ated by the three mentioned methods. These results also
suggest that our method is better than the two other
seed detection methods.
We also compared the enhancement results from the

three methods, and we chose the same cross-section of
the neuron volume image to demonstrate that the SVF
seeding method can enhance the region around the center
line and simultaneously save the contrast information of
the tube-like volume. The results are shown in Fig. 10, in
which the red part has a higher response value than the
blue part. This result suggests that the SVF method can
extract the center region better than the other two
methods and can enhance the original volume data prop-
erly. Furthermore, the better results in both seed detection
and SVF volume enhancement can benefit neuron tracing.

Skeleton tracing
A. Tracing accuracy
We adopted the drosophila olfactory axonal datasets
(OP_1 to OP_9 from DIADEM challenge) and neocor-
tical layer 1 axons subset 1 datasets (NC_1 to NC_6
from DIADEM challenge) to evaluate the performance
of the proposed neuron skeleton tracing method in the
term of accuracy. Meanwhile, we compared the SEF-
OCS tracing method with some start-of-the-art algo-
rithms, such as the Open Curve Snake tracing method
(OCS) [33], Neural Circuit Tracer method (NCT) [34],
all-path pruning method (APP) [37], improved all-path
pruning method (APP2) [38], distance-field based
method (DF) [39], and 3D tubular models based method
(TM) [42].

Fig. 12 The box plot of DIADEM scores of the different methods for different datasets (OP_1 to OP_9 and NC_1 to NC_6 datasets). The median is
the middle pink bar. The box indicates the lower quartile (splits 25 % of lowest data) and the upper quartile (splits 75 % of highest data). The red
bar and blue bar are the maximum and minimum values. The blue diamond denotes the mean value of the scores
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Fig. 13 Comparison in signal removed image datasets. To achieve more clear comparison, we follow the same experiment design in [16]
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To compare with these methods fairly, we conducted
the experiments without any manual interactions and
corrections, using the widely used accuracy principle to
measure the test results. Similarly, we set the parameters
rad = 20, Rmax=16, Rmin=5, and t = 10 in the proposed
method, and we chose the better parameters for other
six methods according to the features of different data-
sets. The measured principle is defined as:

Precision ¼ Length Correctð Þ=Length TotalAutomaticTracesð Þ
Recall ¼ Length Correctð Þ=Length GoldS tandardð Þ

ð12Þ

where Precision is measured as the proportion of the
length of correct traces to the total length of the traces
generated by the tested methods, and Recall is the pro-
portion of the length of correct traces to the length of
the gold standard of adopted datasets.
Figure 11a and b show the reconstruction results of

OP_1, and Fig. 11c and d show the results of OP_4. All
of these results were generated by our proposed SEF-
Open curve snake method. To illustrate the higher per-
formance of our proposed method, we choose different
colors to indicate the differences; the blue lines are the
gold standard, and the green lines are the skeleton re-
constructed by our method. Additionally, more tracing
results of the other datasets are shown in the Additional
file 1.
Table 3 summarizes the comparisons between the

OCS and other six methods in terms of precision and
recall. We can see that SEF-OCS is far better than other
six methods in most datasets in terms of accuracy and

recall. In addition, the SEF-OCS outperforms other six
methods in average accuracy and recall. We also con-
ducted the DIADEM score test [51] to evaluate the
proposed method in the precision of reconstructed
neuron topology and compare with the other methods.
To the best of our knowledge, due to the various
features of different datasets, no methods can get higher
DIADEM score in all the datasets automatically. Hence
a box plot is adopted to show the DIADEM score distri-
bution of different methods tested in the different data-
sets. As we can see from Fig. 12, our method can
achieve higher DIADEM score in most of the tested
datasets and outperforms other six methods in average
value (0.87 ± 0.001), median (0.86) and minimum (0.81).
This results also proved that the proposed method has
higher stability. In order to evaluate the automaticity of
the proposed method, we used fixed parameters to test
our method in this paper. Actually, The changed param-
eters can also be tried to get more meaningful tracing
results. For instance, when the neuron data includes a
big cell body, the bigger rad parameter is needed. Add-
itionally, some other methods also can be tried to trace
neuron according to the features of different neuron
cells. For example, the APP, APP2 and DF methods can
achieve better results sometimes.

B. Tracing robustness
To verify the robustness of our method, we designed
three kinds of experiments. Firstly, the datasets with dif-
ferent levels of signal attenuation were tested. Secondly,
the datasets with deferent levels of Gaussian noise were
tested. Thirdly, the datasets (checked6_frog_scrippts,

Fig. 14 Changes of skeleton length with signal reduction (Unit: Volex)
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Fig. 16 The tracing results of the datasets from the BigNeuron project. a The tracing result of the done_err_Recon112012no2-2 data of
checked6_frog_scrippts. b The tracing result of image 7 data of checked6_human_culturedcell_Cambridge_in_vitro_confocal_GFP. c The
tracing result of in_house1 data of checked6_human_allen_confocal. d The tracing result of done_1_CL-I_X_OREGON_R_ddaD_membrane-GFP data
of checked6_fruitfly_larvae_gmu

Fig. 15 The tracing results of NC_2 dataset with different levels of Gaussian noise. a The dataset with a variance of 0.01. b The dataset with a
variance of 0.02. c The dataset with a variance of 0.03. d The dataset with a variance of 0.04. To prove the robustness of our method clearly, we
follow the similar design of experiment in [39]
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checked6_human_culturedcell_Cambridge_in_vitro_con-
focal_GFP,checked6_human_allen_confocal and check-
ed6_fruitfly_larvae_gmu) from BigNeuron project were
also tested using the proposed method.
Firstly, we compared the length of the traced skeleton

with OCS in handling image signal reduction. Compared
with the traditional robustness test method, which
always added Gaussian noise to the original volume, this
paper’s test method has a special meaning. Unbalanced
light will lead to different levels of signal attenuation in
the process of capturing images from a microscope. The
OP_1 data set is chosen as an example, and we reduced
the image signal from 10 % to 40 %. The content of the
neuron images with different degrees of reduction is
shown in Fig. 13. In Fig. 14, we list the lengths of the
neuron skeleton traced by the two methods for compari-
son. With the image information reducing from 10 % to
40 %, our method can trace more information than the
open curve snake in skeleton length. This result conveys
that our method has higher robustness upon image sig-
nal reduction. All these results suggest that the proposed
method performs better than the OCS method.
Secondly, we tested the robustness of our method

using the datasets with different levels of Gaussian noise
(The mean is 0 and the variances are 0.01, 0.02, 0.03 and
0.04 respectively.). As we can see from Fig. 15, the blue
lines represent the tracing results of the proposed
method. The tracing results are tolerable even when the
variance is 0.04 and the major branches of neurons are
not missed.
Thirdly, the datasets from the BigNeuron project were

also tested. To my best knowledge, the BigNeuron will
be a new trend in this field and most of datasets are
challenging. The Fig. 16 shows some tracing results of
the datasets of the BigNeuron project. Similarly, the blue
lines represent the tracing results of our method. The
results are tolerable even these datasets are complex and
sometimes include a big cell body (In the Fig. 16, the big
cell body is highlighted using the red rectangle). How-
ever, rad parameter must be set bigger (we set the
parameters rad = 35, Rmax = 31, Rmin = 5, and t = 10 in
the proposed method) to get better results when the
datasets contain a big cell body. Additionally, the APP2
from Vaa3D [43, 44] can also achieve good results auto-
matically when a big cell body exists in the datasets.

Radius estimation and surface reconstruction
Adaptive radius estimation and surface reconstruction
methods can improve the neuron model, which has
branches of varying widths. In radius estimation, the
proposed method can fit the edge of the cross-section of
the neuron cell. Furthermore, the credibility of radius
estimation can be adjusted by the parameter n. As we
can see from Fig. 5, the higher parameter n, the greater

the credibility of radius estimation and the higher the
computation intensity. Though a higher credibility of
radius estimation must be achieved by higher computa-
tion intensity, the proposed method has solved the non-
circular radius estimation problem mentioned in [33].
Generally, the parameter n = 16 is sufficient for most
applications. Hence, we set n = 16 in the efficiency
comparison experiments. Figure 17b shows the radius
estimation results of the entire neuron using the
proposed method based on the skeleton of the original
volume, which is shown in Fig. 17a.
The adopted reconstruction method can interpolate

meshes based on contour lines from radius estimation
and can also handle branching reconstruction problems

Fig. 17 Radius estimation and anatomical reconstruction of OP_1.
a The original result by volume rendering method. b The result of
radius estimation by 2D sliding band method, in which the blue
contour lines are used to fit the edges of neuron cross-sections. c The
anatomical reconstruction result based on the contour lines, in which
the different branches are labelled with different colors
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efficiently. To illustrate the performance of the proposed
framework, the reconstruction result of the most com-
plex data (OP_1) in the OP series data sets is shown in
Fig. 17. The morphology of a reconstructed neuron cell
of OP_1 was obtained, and the different branches were
labelled with different colors during reconstruction.

Computational efficiency
In the term of automatic computation efficiency, we
tested every step of the proposed pipeline and compared
with other methods to evaluate the 3D neuron recon-
struction efficiency. In addition, we set the parameters

rad = 20, Rmax = 16, Rmin = 5, and t = 10 in the pro-
posed method.
As we can see from Table 4, the proposed method is

more efficient than the OCS framework, especially in
the seeding step because seeding in the OCS framework
is based on a complex procedure including graph-cut
segmentation and skeleton and seeding point selection.
In contrast, our seeding method is more concise and
efficient. The higher tracing efficiency also demonstrated
the improvements in stretching force in the open snake
model and the collision point detection strategy. Add-
itionally, Table 4 also shows that the radius estimation
and reconstruction are more efficient in the SEF-OCS

Table 4 Comparisons with OCS method in the efficiency of the proposed pipeline

Data sets Size CPU time (s) GPU time (s)

OCS SEF-OCS OCS SEF-OCS

S T RE SR S T RE SR

OP_1 512*512*60 65 57 42 36 32 33 27 21 3.5 1.5

OP_2 512*512*88 77 69 53 50 41 47 48 36 4.6 2.5

OP_3 512*512*62 67 59 49 42 32 34 26 22 3.7 1.7

OP_4 512*512*67 69 61 46 44 33 34 29 23 4.1 1.9

OP_5 512*512*76 72 63 59 45 37 39 37 30 4.9 2.3

OP_6 512*512*101 89 73 67 65 45 57 46 45 6.7 3.5

OP_7 512*512*71 71 63 53 49 35 36 36 26 5.1 2.1

OP_8 512*512*85 75 69 58 53 41 43 42 34 5.9 2.4

OP_9 512*512*92 82 71 59 55 43 52 45 43 6.1 2.9

Average 74.1 65 54 48.8 37.7 41.7 37.3 31.1 4.96 2.31

(S: Seeding; T: Tracing; RE: Radius Estimation; SR: Surface Reconstruction; The best values are highlighted with bold letters)

Table 5 Comparisons in the efficiency of neuron tracing

Data sets Size SEF-OCS (s) NCT (s) APP (s) APP2 (s) DF (s) TM (s)

OP_1 512*512*60 1.1 191.5 5.3 0.6 9.2 163.5

OP_2 512*512*88 1.5 237.1 9.0 0.9 17.1 251

OP_3 512*512*62 1.2 178.3 14.0 0.6 10.5 165.7

OP_4 512*512*67 1.4 165.2 5.6 0.7 13.7 177.6

OP_5 512*512*76 1.7 233.5 28.5 0.6 15 201.2

OP_6 512*512*101 1.9 277.6 7.6 0.7 20 255.6

OP_7 512*512*71 1.4 136.7 16.4 0.6 14.3 182.1

OP_8 512*512*85 1.5 175.9 36.4 0.7 16.7 231.1

OP_9 512*512*92 2 256.3 7.8 0.7 17.9 245.5

NC_1 512*512*60 1.2 125.6 27.0 2.3 19.8 152.3

NC_2 512*512*33 0.5 57.6 11.7 1.0 6.7 81.2

NC_3 512*512*44 0.7 76.5 14.9 1.2 12.3 112.2

NC_4 512*512*51 1.1 91.3 21.7 2.5 13.5 131.7

NC_5 512*512*50 0.9 76.9 43.1 4.6 9.1 125.6

NC_6 512*512*46 0.9 57.2 21.1 2.1 7.5 121.9

Average 1.27 155.8 18.01 1.32 13.55 173.21

(The best values are highlighted with bold letters)
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framework than in the OCS framework. These results
prove that the proposed radius estimation and surface
reconstruction methods outperform the corresponding
methods in the OCS framework.
To test the ability of parallel computation, we also

developed our CUDA implementation for the four main
steps. The computation time is shown in the Table 4.
We can see that the proposed method is faster than
OCS method in the same parallel environment. In
addition, the average speedup ratio of SEF-OCS can
achieve 63.94, which is higher than OCS’s average
speedup ratio 48.8. This also demonstrates that the pro-
posed method has higher parallel computation ability.
Table 5 shows the efficiency comparison results with

some other methods from Table 3. Actually, most of
neuron reconstruction methods don’t contain the surface
reconstruction procedure. Hence, we conducted the
comparison experiments in another way. We cut down
the computational cost of the surface reconstruction
step in order to carry out the comparison among dif-
ferent methods fairly. What’s more, the experiments
are conducted three times for every method corre-
sponding to every data set to avoid the errors from the
operation system environment. The average results of
three times are shown in Table 5. The comparison re-
sults show that the proposed method achieve the low-
est average computational cost. We also can see that
the computational cost of our method mainly depend
on the size of the data sets and will realize higher ef-
ficiency with the development of computation parallel
capacity.

Conclusions
Neuron cell anatomy structure reconstruction plays a
very important role in the field of neurology. In this
paper, we have developed a new neuron tracing frame-
work, which is based on a sliding filter. We improved
every step of the traditional framework compared to the
OCS framework. First, given a non-circular cross-section
of a neuron, the sliding filter method was introduced to
the proposed seeding method (SVF) and radius estima-
tion method (SBF), which is critical for accurately
tracing skeletons and reconstructing real morphology.
Second, on the basis of better seeding results, the trad-
itional open curve snake model was improved by intro-
ducing a new external force to aid the curve evolution
for neuron skeleton tracing and a new strategy for colli-
sion detection. Finally, a surface reconstruction method
based on contour lines was used to generate whole
neuron morphology.
A series of experiments have proved that the proposed

framework has higher efficiency, stability and robustness
in tracing accuracy. In addition, the proposed estimation
method and adopted neuron reconstruction method can

obtain more accurate neuron morphology, which is mean-
ingful for future works such as simulation and analysis of
neuron function in the field of neuroscience research.

Availability of supporting data
The source code can be available in the website [52].
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project, it can be downloaded from [53]. The checked6_-
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