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The ability to measure or manipulate network connectivity is the main challenge in the field of 
connectomics. Recently, a set of approaches has been developed that takes advantage of next 
generation DNA sequencing to scan connections between neurons into a set of DNA barcodes. 
Individual DNA sequences called markers represent single neurons, while pairs of markers, called 
barcodes contain information about connections. Here we propose a strategy for ‘copying’ or ‘cloning’ 
connectivity contained in barcodes into a clean slate tabula rasa network. We show that a one marker 
one cell (OMOC) rule, which forces all markers with the same sequence to condense into the same 
neuron, leads to fast and reliable formation of desired connectivity in a new network. We show that 
OMOC rule yields convergence in a number of steps given by a power law function of the network size. 
We thus propose that copying network connectivity from one network to another is theoretically 
possible.     

The connections between neurons determine the 
computations performed by a neural network. In both 
biological and artificial neural networks, these 
connections are established and tuned by experience 
and learning. The learned connections can thus be 
considered a “summary” of the statistical structure of 
the experience—data—on which the network was 
trained. This summary, which can be represented as 
a list of connections, may be considerably more 
compact and efficient than the original data. For 
example, typical deep networks for implementing 
object detection require tens of millions of 
connections, derived from data sets containing 
hundreds of billions pixels, which results in more than 
1000-fold compression [1, 2]. It would therefore be 
more efficient to copy these connections onto a new 
network than to retrain a new network from scratch. 

Most current implementations of artificial neural 
networks are on digital computers and GPUs [2]. On 
these architectures, connections are stored explicitly 
and therefore straightforward to extract and copy into 
a new network. However, in biological networks, 
there is no central repository for connections, so 
reading out the connections of a network and copying 
them into a new network represents a difficult 
challenge.   

.

 

Figure 1. Network cloning as a way to copy connectivity 
from one network to another. The original network is read 
out into a set of barcodes carrying information about 
connections. Each half of the barcode (marker) represents 
one of the cells that are connected, while the link 
represents the direction of the connections. These 
barcodes are then introduced into a tabula rasa network 
that has no structure. Barcodes are capable to shape the 
tabula rasa network to match the target connectivity.  

We have recently proposed a new way to read out 
neuronal connections using DNA barcodes [3, 4]. In 
this strategy, individual neurons produce 
distinguishable pseudo-random DNA identifiers 
called markers. Pairs of markers, called here 
barcodes, represent individual synaptic connections. 
Barcodes are read out using high-throughput 
sequencing technology, either in situ  [5] or ex vivo 
after individual neurons are disassociated. This 
strategy allows to convert connections between 
neurons into an ensemble of DNA barcodes that can 
be identified using sequencing methods.  
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Figure 2. One marker one cell (OMOC) rule yields target 
connectivity. (A) A target network of four cells. (B) The 
connection (weight) matrix corresponding to the target 
connectivity. Each network node is associated with a 
random nucleotide sequence that we call a marker. (C) 
Barcodes are pairs of markers connected by a directional 
spacer. Each barcode represents a non-zero entry in the 
connection matrix in (B). (D) Instead of using full 
sequences, we will represent markers by unique letters of 
an alphabet. (E) The barcodes are initially arranged 
randomly in neurons connected in all-to-all function. The 
barcodes can move through the network by jumping from 
synapse to synapse using three moves as illustrated: jump 
(1), swap (2), and flip (3). (F) The proposed model forces 
all markers facing every neuron to be the same. This 
arrangement is called OMOC. Once OMOC solution is 
achieved, we eliminate all synapses that contain no 
barcodes, such as the synapse between cells “A” and “B”.  
Our hypothesis is that OMOC solution yields the copying 
of the original connection matrix.   

Here we formulate a different question: Given an 
ensemble of connections represented by barcodes, 
can we copy them into a new network? In other 
words, can original network be cloned? We explore a 
computational model that simulates the behavior of 
barcodes introduced into a tabula rasa network with 
unstructured connectivity and test its ability to 
recreate target connectivity in such networks (Fig. 1). 
We require that the underlying mechanisms be purely 
local, i.e. the behavior of each cell and barcode is 
based on the information available in this cell or in its 
synapses only. Below we present the model that 
allows robust copying of connectivity based on such 
local interaction rules only.  

Our model attempts to recreate the target 
connectivity between neurons (Fig. 2A). The 
connectivity can be represented as a connection 
matrix (Fig. 2B). We assume that every network node 
(neuron) is identified by a unique barcode sequence 
that we call a marker (Fig. 2B). Marker is a sequence 
of nucleotides long enough to uniquely label every 
neuron in the network. The network connectivity is 
encoded by pairs of markers that we call barcodes. 
Each barcode contains the marker corresponding to 
the presynaptic cell, a postsynaptic marker, and a 
spacer between two markers indicating the 
connection’s direction (Fig. 2C). Thus, each barcode 
encodes a unique connection between cells. The 
number of barcodes is equal to the number of non-
zero entries in the connection matrix or to the total 
number of connections in the network. To simplify 
notations, we represent each marker by an individual 
letter of an alphabet that is long enough to describe 
every neuron in the network (Fig. 2D).     

The barcodes are introduced into synapses of a 
tabula rasa network that is, initially, all-to-all. Since 
connectivity in our model is directional (Fig. 2), we 
assume that, between every two cells, synapses are 
formed initially in both directions. The full connectivity 
assumption is made here to simplify the description 
of network dynamics, however, a more sophisticated 
synaptic dynamics is also possible [6]. The 
assumption of all-to-all initial connectivity is also not 
so far from reality, as cortical neurons typically form a 
network that is 10% sparse (pairs of neurons that can 
be physically connected are connected with >10% 
probability) [7], while, during development, the 
synapses are overproduced by a factor of 10-20 [6, 
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8], rendering both potential and developmental 
connectivity that is close to full [7]. The number of 
neurons in the tabula rasa network is assumed to be 
equal to the number of nodes in the desired network, 
i.e. equal to the number of markers.  
 
The barcodes are initially introduced into synapses 
randomly (Fig. 2E). The barcodes are then allowed to 
be rearranged in the network via three types of 
moves. First, we allowed the barcodes to hop from 
one synapse to another synapse of the same cell 
(jumps). Second, we allowed two barcodes located in 
the same neuron to trade their places (swaps). 
Although a swap can be viewed as a superposition of 
two jumps, we use swaps as an independent type of 
moves to avoid issues with the network lingering in 
metastable states for too long. Finally, each barcode 
is permitted to be reinserted in the synapse between 
the same pair of cells in different orientation (flips). In 
implementing these moves we keep track of the 
direction of barcodes and synapses, i.e. barcodes 
are introduced into synapses of the correct 
orientation. The arrangement of a barcode in the 
direction opposite to the direction of a synapse is 
considered to be energetically prohibitive. The moves 
that we use are also local which means that the 
barcodes can only be relocated between synapses of 
the same neuron.  

Using this set of moves, we rearrange barcodes in 
the network implementing one marker – one cell 
(OMOC) rule. OMOC rule forces all markers (half-
barcodes) in the synapses of the same cell, facing 
this cell, to be the same (Fig. 2F). Thus, in Fig. 2F, all 
markers in the rightmost cell are described by letter C 
(A, B, C, D is a short-hand notation for much longer 
nucleotide sequences). Similarly, all markers in the 
leftmost cell are labeled by letter B. We surmised that 
if the logic of the interaction of cells and barcodes 
implements OMOC rule, cells will discover their 
identity as encoded by markers (half-barcodes). 
Because every cell in the tabula rasa network has a 
potential to become any cell as defined by the 
markers, a specific arrangement of barcodes 
respecting OMOC rule is associated with a symmetry 
breaking, whereby the network selects one possible 
assignment of markers into cells out of !N   
combinations ( N  is the number of cells in the 
network equal to the number of markers). We also 

surmised that if we then eliminate all synapses that 
are not occupied by a barcode, the remaining 
synapses will implement the target connectivity.  

To practically implement OMOC solution, we defined 
a cost-function, H ,  that is minimized by the barcode 
dynamics. Although many choices are possible for 
the cost function, we chose this particular form:  
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This cost function depends on the distribution of 
barcodes via matrix cmn  defining, for each cell 
number c , the number of markers of type m   located 
on this cell. The cost-function depends on two 
parameters,    and  . To implement OMOC rule, 
the former parameter has to be larger than one (in 
our simulations, we used 2  ). With 2  , the first 
term of the cost-function can be viewed as the 
measure of sparseness of marker distribution cmn  [9, 
10]; minimizing the measure of marker sparseness 
will yield a single marker dominating each cell, i.e. 
OMOC solution. The second term in the cost-function 
defines the penalty for placing a non-dominant 
marker in each cell. This penalty is controlled by an 
independent parameter 10    in our simulations. 
For 2  , the cost function can be written as 
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, where cn  is the vector of marker 

abundances in cell number c , and  
ˆ ˆ ˆ(1 )U I Y     . Here Ŷ  is the matrix of all ones.  

Because the diagonal part of matrix Û  (~ Î ) is 
negative, it facilitates single marker type per cell, 
while the off-diagonal part ( ˆ~ Y ) penaltizes multiple 
marker types in a cell. Both of these components 
help achieve OMOC solution.  
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Figure 3. OMOC rule allows copying desired network 
connectivity matrix. Results of a single MMC simulated 
annealing run for 20x20 (A-C) and 100x100 (D-F) 
networks. Red/green channels show target/actual 
connection matrices. Yellow matrices at the end of the 
simulation run (C and F) indicate a perfect copy. (G) 
OMOC rule yields target connectivity in a number of steps 
given by a power law of network size. Number of steps 
required for convergence as a function of a combination of 
network parameters ( N , the size of the network, and f , 
the fraction of non-zero connections). Dashed line is the 
best linear fit corresponding to the number of steps 

4 1.17
steps ( )N fN .   

The approach based on minimizing a cost-function is 
one of the ways to quantitatively describe biological 
processes and has been used successfully to 
describe establishing connectivity, especially when 
competition or interdependence between cells is 
important [11-13]. To minimize the cost function we 
use a conventional Metropolis Monte Carlo (MMC) 
simulated annealing procedure [11, 12] and three 
types of barcode moves as described above. After 
the cost function is minimized, at the end of MMC 
procedure, we remove synapses that carry no 

barcodes. This step is based on the assumption that 
synapses carrying barcodes are more stable than 
their barcodless counterparts. Overall, we 
hypothesized that, when OMOC solution is reached, 
the final connectivity between cells will reproduce the 
connectivity between barcodes.  

Our results show that, indeed, OMOC rule yields 
desired connectivity after several MMC steps (Figure 
3). We tested the convergence on a set of randomly 
generated asymmetric sparse networks, with the 
fraction of non-zero connections determined by 
parameter f . We find that, even for substantially 
large connection matrices (Figure 3D-F), the target 
connectivity can be reached in relatively small 
number of steps in 100% of cases. To quantify the 
speed of convergence, for each MMC simulation, we 
computed the number of attempts to move barcodes 
before a perfect OMOC solution was achieved, stepsN  

. We find that this parameter is well approximated by 
a power-law function  

 4
steps ( )N fN    (2) 

Here N  is the number of cells in the network (the 
size of the connection matrix), 1.17   is the scaling 
exponent. This means that OMOC rule yields target 
connectivity in 4.68~ N   steps, i.e. a power law 
function of the network size. This result suggests that 
even for large networks, the original connectivity can 
be reached in a finite, i.e. non-exponential, number of 
steps. Overall our results show that copying the 
target connectivity to the new network is possible 
with OMOC rule and the convergence of this rule is 
relatively fast.  

If one assumes that the scaling exponent 1.17   is 
approximately equal to one, the number of steps to 
convergence can be represented as 2

stepsN BN , 

where 2B fN   is the total number of barcodes 
(synapses) in the network. The number of steps that 
each barcode has to make is given by 2

steps /N B N

. Thus, to a first approximation, each barcode has to 
explore 2~ N  potential positions before OMOC 
solution is achieved, the number that is independent 
on other barcodes. This may explain why the rate of 
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convergence is given by a power law function and is 
not exponential in the number of neurons.  

Here we addressed the question whether 
connectivity can be copied from one neural network 
to another. We assumed that the connections are 
represented by an ensemble of DNA barcodes [3, 4]. 
We analyzed the dynamics of barcodes introduced 
into a clean slate tabula rasa network. The particular 
form of dynamics that we considered is described by 
one marker one cell rule (OMOC), which favors 
positioning of a single type of DNA sequence in a 
single neuron. We showed that OMOC dynamics 
leads to fast and reliable recreation of desired 
connectivity in the new network. The formation of 
new connectivity is achieved in a number of steps 
given by a power law of the network size. Thus, 
copying connectivity from one neural network to 
another using DNA barcodes is theoretically possible.  

Methods 

To minimize the cost function (1), we used simulated 
annealing procedure [11, 12]. We started from a 
random distribution of barcodes in synapses of a fully 
connected directed network. Barcodes were 
relocated between synapses as described, according 
to Monte Carlo statistical rules. The temperature was 
gradually lowered from 210  to 610  of the initial 
value. The number of steps in the algorithm was 
chosen to be 10 times the value given by equation 
(2). The probabilities of three operations, jumps, 
swaps, and flips, were 1 f , 1 /f N , and 1 / N  
respectively. During each of the first two operations, 
a barcode was inserted in a random orientation. To 
compare to the target connectivity, we used a greedy 
procedure that finds dominant markers for each cell.  
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