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a b s t r a c t

The greater expansion of the frontal lobes along the phylogeny scale has been interpreted

as the signature of evolutionary changes underlying higher cognitive abilities in humans

functions in humans. However, it is unknown how an increase in number of gyri, sulci and

cortical areas in the frontal lobe have coincided with a parallel increase in connectivity.

Here, using advanced tractography based on spherical deconvolution, we produced an

atlas of human frontal association connections that we compared with axonal tracing

studies of the monkey brain. We report several similarities between human and monkey in

the cingulum, uncinate, superior longitudinal fasciculus, frontal aslant tract and orbito-

polar tract. These similarities suggest to preserved functions across anthropoids. In addi-

tion, we found major differences in the arcuate fasciculus and the inferior fronto-occipital

fasciculus. These differences indicate possible evolutionary changes in the connectional

anatomy of the frontal lobes underlying unique human abilities.

ª 2011 Elsevier Srl. All rights reserved.
1. Introduction accompanied by changes in other anatomical features, such as
Comparative anatomy studies have shown that the frontal

lobes have expanded more than any other brain region along

the phylogeny scale, reaching its greatest relative size in great

apes and humans (Semendeferi et al., 2002). The relative

volume expansion along the phylogeny scale is also
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increase in the gyrification index (Zilles et al., 1988, 1989),

cortical volume (Hofman, 1985, 1988) and density of synapses

(Rockel et al., 1980; Chklovskii et al., 2002; DeFelipe et al., 2002;

Emes et al., 2008). In addition, other changes such as the

increase in relative size of area 10 (Semendeferi et al., 2001;

Petrides et al., 2012, this issue) and the relative quantity of
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frontal white matter (i.e. frontal hyperscaling of white matter;

Smaers et al., 2010, 2011) havebeen reportedasprimary factors

underlying the evolution of primate brain architecture. This

suggests that the evolution of complex human cognitive abil-

ities ismediated by frontal connectivity (Sherwoodet al., 2005).

Most of the evidences related to the hyperscaling of the frontal

connections are derived from volumetric measures of the

entire frontal lobe. Whether such anatomical differences are

general or specific to distinct pathways is unknown.

The connectivity of the monkey frontal lobe has been

studied in detail using axonal tracing (Yeterian et al., 2012, this

issue). Themonkey pattern of connectivity is often transposed

to humans, an assumption that may not hold true, especially

for the frontal lobes. Axonal tracing methods are not suitable

to study human connections, recent developments in diffu-

sion imaging tractography (Le Bihan and Breton, 1985;

Moseley et al., 1990; Basser et al., 1994; Jones et al., 1999;

Mori et al., 1999) offer a valid alternative to visualise the

in vivo organisation of human brain pathways. Preliminary

tractography studies suggest that some connections (e.g.,

uncinate fasciculus) as described in themonkey brain, are also

found in the human brain (Catani et al., 2002). Other tracts

have been described in humans but not in monkeys (e.g.,

inferior fronto-occipital fasciculus; Catani 2007; Schmahmann

and Pandya, 2007; Schmahmann et al., 2007). However, direct

comparisons between the detailed anatomical connections of

the human and monkey brain are not available.

Therefore in this study,weused tractography tobuildanatlas

of human frontal connections for a direct comparison with

a recent atlas of the fibres pathways of the monkey brain

(Schmahmann and Pandya, 2006). To increase the quality of the

in vivo human reconstructions, we have used tractography

based on Spherical Deconvolution (SD) imaging (Tournier et al.,

2004; Dell’Acqua et al., 2007). SD is a new method that has

recently been developed to partially overcome the limitations of

classical diffusion tensor tractography (Basser et al., 2000; Jones,

2008). It has the ability to identify and quantify the orientation of

different populations of fibres within a single voxel (Tournier

et al., 2007; Dell’Acqua et al., 2010). Preliminary results using SD

tractography show anatomical features that have close corre-

spondence to axonal tracing studies (Dell’Acqua et al., 2008;

Thiebaut de Schotten et al., 2011a). In this study the main asso-

ciation tracts of the human frontal lobe derived from SD trac-

tography are compared to classical axonal tracing findings of

equivalent tracts in the monkey brain. Our aim is to highlight

humanesimian similarities and differences, in order to under-

stand the anatomical substrates underlying development of

higher cognitive functions.
2. Method

2.1. Magnetic resonance data acquisitions

A single 29-year-old, right-handed subject (the first author)

gave informed consent to participate to this study.

A total of 70 near-axial slices were acquired on a Siemens 3

Tesla TRIO TIM system equipped with a 32-channel head coil.

We used an acquisition sequence, fully optimised for advanced

tractography of diffusion-weighted imaging (DWI), which
provided isotropic (2� 2� 2mm) resolution and coverage of the

whole head. The acquisition was peripherally-gated to the

cardiac cycle with an echo time (TE) ¼ 85 msec and repetition

time (TR) equivalent to 24 RR intervals. At each slice location, 3

images were acquired with no diffusion gradient applied. Addi-

tionally, 64 diffusion-weighted images were acquired at each

slice location, in which gradient directions were uniformly

distributed in space. The diffusion weighting was equal to a b-

value of 2000 sec mm�2. To increase signal to noise ratio (SNR)

the whole acquisition was repeated 4 times. Raw diffusion-

weighteddatawereup-sampled to 1� 1� 1mmwitha3rdorder

b-spline interpolation. An axial three-dimensional MPRAGE

dataset covering the whole head was also acquired (176 slices,

voxel resolution ¼ 1 � 1 � 1 mm, TE ¼ 4.2 msec, TR ¼ 2.3 msec,

flip angle¼ 9�).
2.2. Correction of motion and eddy current distortion,
and estimation of the fibre orientation distribution

The 4 repeated DWI datasets were concatenated, simulta-

neously registered, and corrected for subject motion and

geometrical distortions using ExploreDTI (http://www.

exploredti.com; Leemans and Jones, 2009). A SD (Tournier

et al., 2004, 2007) approach was chosen to estimate multiple

orientations in voxels containing different populations of

crossingfibres (Alexander, 2006). SDwascalculatedapplying the

damped version of the RichardsoneLucy algorithm (Dell’Acqua

et al., 2010). The high SNR of the data allowed us to apply

a relatively low regularisation threshold equal to h¼ .01without

an excessive increase of spurious fiber orientation distribution

(FOD) components. We used a fibre response function equiva-

lent to a tensor of [1.5 .3 .3] � 10�3mm2 sec�1, 200 algorithm

iterations and n¼ 8 as previously optimised in (Dell’Acqua et al.,

2010). Fibre orientationestimateswereobtainedbyselecting the

orientation corresponding to the peaks (local maxima) of each

FOD profile. To exclude spurious local maxima, we applied an

absolute and a relative threshold. A first “absolute” threshold

wasusedtoexcludesmall localmaximadue tonoiseor isotropic

tissue. This threshold is three times theamplitudeof a spherical

FOD obtained from a grey matter isotropic voxel. A second

“relative” thresholdof5%of themaximumamplitudeof theFOD

was applied to remove the remaining localmaximawith values

greater than the absolute threshold (Dell’Acqua et al., 2009).
2.3. Tractography algorithm

Whole brain tractography was performed selecting every

brain voxel with at least one fibre orientation as a seed voxel.

From these voxels and for each fibre orientation streamlines

were propagated using an Euler integration with a step size

of .5 mm and an angular threshold of 45�. When entering

a region with crossing white matter bundles, the algorithm

followed the orientation vector of least curvature (as

described in Schmahmann et al., 2007). Streamlines were

halted when a voxel without fibre orientation was reached or

when the curvature between two steps exceeded a threshold

of 45�. SD, fibre orientation vector estimation and tractog-

raphy were performed using in house software developed

with Matlab 7.8 (http://www.matwork.com).

http://www.exploredti.com
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http://dx.doi.org/10.1016/j.cortex.2011.10.001
http://dx.doi.org/10.1016/j.cortex.2011.10.001


c o r t e x 4 8 ( 2 0 1 2 ) 8 2e9 684
2.4. MPRAGE dataset and tractography registration to
the MNI

The skull was extracted from the MPRAGE dataset using Brain

Extraction Tool (BET) provided in FMRIB Software Library (FSL,

http://www.fmrib.ox.ac.uk/fsl). The skull-stripped MPRAGE

dataset was then registered to the B0 volume of the diffusion-

weighted dataset using affine (FMRIB’s Linear Image Regis-

tration Tool, FLIRT) deformation provided in FSL. The regis-

tered MPRAGE dataset was then normalised to the stereotaxic

Montreal Neurological Institute space (MNI, http://www.bic.

mni.mcgill.ca/), using affine deformations to the MNI

template as provided in FSLview (MNI152_T1_1mm_brain). A

similar approach has been described in a previous study

(Thiebaut de Schotten et al., 2008).

The full brain tractography was normalised to the MNI

space using the transformation matrix derived from the

process of normalisation of the registered MPRAGE dataset

with the tool “Transform Track” provided in Diffusion Toolkit

(http://www.trackvis.org; Wedeen et al., 2008).

Binary visitation masks were created for each of the tracts.

Binary visitation maps were created from the tractography

results by assigning each voxel a value of 1 or 0 depending on

whether the voxel was intersected by the streamlines of the

tract (Ciccarelli et al., 2003; Catani et al., 2007; Laweset al., 2008;

Thiebaut de Schotten et al., 2011b).

A 3d rendering of the brain and high contrast coronal slices

were created in the MNI using the T1 pipeline in Brainvisa

(http://brainvisa.info).

2.5. Tractography dissections of the human brain

Tractography dissections were performed by two expert

neuroanatomists who combined the information provided

from a monkey brain atlas (Schmahmann and Pandya, 2006)

and a recent human brain atlas (Catani and Thiebaut de

Schotten, in press). A one-region of interest (ROI) approach

was used for the cingulum. A two-ROIs approach was used for

the uncinate and the inferior fronto-occipital fasciculus as

described in Catani and Thiebaut de Schotten (2008).

A multiple ROIs approach was used to isolate the three

components of the Superior Longitudinal Fasciculus as

described in Thiebaut de Schotten et al. (2011a).

A two-ROIs approachwas used to separate subcomponents

of the arcuate fasciculus (Catani et al., 2005, 2007; Glasser and

Rilling, 2008). A two-ROIs approach was also used to extract

the frontal aslant tract connections from the Broca territory to

the supplementary motor area (SMA) and PreSMA (Lawes

et al., 2008; Oishi et al., 2008). For the orbito-polar tract the

two ROIswere drawn in the frontal pole and in the post-orbital

gyrus.

2.6. Meta-analyses of the rhesus monkey atlas

The monkey maps of the cingulum (Fig. 1), superior longitu-

dinal fasciculus (Fig. 2), arcuate fasciculus (Fig. 3), inferior

fronto-occipital fasciculus (Fig. 4), uncinate fasciculus (Fig. 5),

frontal aslant tract (Fig. 6) and orbito-polar tract (Fig. 7), are

derived from an atlas of monkey brain. The atlas uses an

anterograde tract-tracer technique, using a radiolabeled
isotope (Schmahmann and Pandya, 2006). This tracer shows

connections emerging from the injected site an projection to

cortical areas. Projection, commissural and irrelevant associ-

ation fibres have been removed for visualisation purposes.

For the cingulum, coronal slices ofmonkeycase22 (Vogt and

Pandya, 1987; Schmahmann and Pandya, 2006) were used and

only association fibres coloured in red (see Fig. 1). Case 22 was

injected in the retrosplenial cortex (areas 23 and 30).

For the first branch of the superior longitudinal fasciculus

(SLF I), coronal slices of cases 1 and 2 were used and only

association fibres coloured in red (Seltzer and Pandya, 1980;

Pandya and Seltzer, 1982; Schmahmann and Pandya, 2006)

(see Fig. 2). Case 1 was injected in the medial convexity of the

superior parietal lobule (areas PGm and PEc) and case 2 in the

caudal superior parietal lobule (areas PEc and PE).

For the second branch of the superior longitudinal fascic-

ulus (SLF II), coronal slices of cases 3 and 4 were used and only

association fibres coloured in yellow (Seltzer and Pandya, 1980;

Pandya andSeltzer, 1982; Schmahmannand Pandya, 2006) (see

Fig. 2). Case 3was injected in the caudal superior parietal lobule

more laterally than case 2 (lateral portion of area PEc), and case

4was injected in the inferior parietal lobule (areas PG andOpt).

For the third branch of the superior longitudinal fasciculus

(SLF III), coronal slices of cases 5 and 6 were used and only

association fibres coloured in green (Seltzer and Pandya, 1980;

Pandya and Seltzer, 1982; Schmahmann and Pandya, 2006)

(see Fig. 2). Case 5 was injected in the rostral inferior parietal

lobule (area PF) and case 6 in the middle part of the parietal

operculum (ventral portion of area PF).

For the arcuate fasciculus, coronal slices of cases 7e9 were

used and only association fibres coloured in red (Seltzer and

Pandya, 1978, 1989; Galaburda and Pandya, 1983;

Schmahmann and Pandya, 2006) (see Fig. 3). Case 7 was

injected in the caudal part of the superior temporal gyrus (area

Tpt) and case 8 more ventrally, in the caudal part of the

superior temporal gyrus (areas Tpt and paAlt). Case 9 was

injected in the lateral part of the cortex of the upper bank of

the superior temporal sulcus (area TPO), the ventral part of the

superior temporal gyrus (area TAa) and the caudal part of the

primary auditory area in the supratemporal plane (area KA).

For the longitudinal fibres of the external/extreme capsule,

coronal slices of cases 31 and 32 were used and only associ-

ation fibres coloured in red (Petrides and Pandya, 1994;

Schmahmann and Pandya, 2006) (see Fig. 4). Case 31 was

injected in the prefrontal cortex above the midportion of the

principal sulcus (area 9/46d) and case 32 below the midcaudal

portion of the principal sulcus (area 9/46v).

For the uncinate, coronal slices of cases 13 and 14 were

used and only association fibres coloured in red (Seltzer and

Pandya, 1978; Schmahmann and Pandya, 2006) (see Fig. 5).

Case 13 was injected in the ventral temporal region (area TF)

and case 14 in the cortex of the lower bank of the superior

temporal sulcus (area IPa).

For the frontal aslant tract, coronal slices of case 25 were

used and only association fibres coloured in red (Petrides and

Pandya, 1994; Schmahmann and Pandya, 2006) (see Fig. 6).

Case 25 was injected in the ventral part of the precentral gyrus

(area 4) corresponding to the area of the face.

For the orbito-polar tract, coronal slices of case 33 were

used and only association fibres coloured in red (Petrides and

http://www.fmrib.ox.ac.uk/fsl
http://www.bic.mni.mcgill.ca/
http://www.bic.mni.mcgill.ca/
http://www.trackvis.org
http://brainvisa.info
http://dx.doi.org/10.1016/j.cortex.2011.10.001
http://dx.doi.org/10.1016/j.cortex.2011.10.001


Fig. 1 e Reconstruction of the cingulum: comparison between post-mortem axonal tracing in monkey (case 22 modified

from Schmahmann and Pandya, 2006) and human in vivo SD tractography shows simian-human similarities.
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Pandya, 1994; Schmahmann and Pandya, 2006) (see Fig. 7).

Case 33 was injected in the orbital frontal cortex, encroaching

posteriorly on the insular proisocortex (area 47/12).
3. Results

In the human brain, we were able to identify all major long-

range association pathways previously described in the

monkey brain. We were also able to visualize short-range

intralobar frontal connections. For the monkey brain, the

cortical projection are indicated using a contemporary inter-

national nomenclature (Von Bonin and Bailey, 1947; Paxinos

et al., 1999; Schmahmann and Pandya, 2006) while for the

human brain we used Brodmann areas (Brodmann, 1909).

Correspondence between the two nomenclatures applied to

the frontal lobe are discussed in detail in Petrides et al. (this

issue).
3.1. Long-range association pathways

Long-range association pathways are defined in this study as

inter-lobar connections (i.e. between frontal and other lobes).

Long-rangeassociationpathwaysof the frontal lobe include the

cingulum (Fig. 1), the superior longitudinal fasciculus (Fig. 2),

the arcuate fasciculus (Fig. 3), the inferior fronto-occipital

fasciculus (Fig. 4) and the uncinate fasciculus (Fig. 5).
3.1.1. Cinglum bundle
In humans, the cingulum is a sickle-shaped tract composed of

fibres of different lengths. The longest fibres run from the

amygdala,uncus (BA35) andparahippocampalgyrus (BA36and

30) to sub-genual areas of the orbito-frontal lobe (BA 25 and 11)

(Crosby et al., 1962; Nieuwenhuys et al., 2008). Shorter fibres,

that join and leave the cingulum along its length, connect to

adjacent areas of the cingulated cortex (BA 23 and 24), superior

medial frontal gyrus (BA32, 6, 8 and9), paracentral lobule (BA4),

precuneus (BA 7), cuneus (BA 19), lingual (BA 18 and 19), and

fusiformgyri (BA 19 and 37) (Dejerine, 1895; Nieuwenhuys et al.,

2008). The cingulum can be divided into an anterior-dorsal

component (the blade of the sickle), which forms most of the

white matter of the cingulate gyrus, posterior precuneus (BA 7

and 19), and a posterior-ventral component (the handle of the

sickle) running within the parahippocampal gyrus (BA 34 and

28), retrosplenial cingulate gyrus (BA 26, 19 and 30) (Fig. 1).

In themonkey brain, the cingulumhas a very similar shape

to humans, and its dorsal projections terminate in the rostral

cingulate cortex (area 24), orbital cortex (area 11) and medial

parietal cortex (area PG/Opt). The ventral component of the

cingulum projects posteriorly to the parietal occipital medial

sulcus (POMS) and ventrally to the presubiculum, para-

hippocampal gyrus, enthorinal cortex (area 28) and amygdala

(Mufson and Pandya, 1984; Vogt and Pandya, 1987;

Schmahmann and Pandya, 2006).

Overall the anatomy of the cingulum is highly conserved

between humans and monkeys.

http://dx.doi.org/10.1016/j.cortex.2011.10.001
http://dx.doi.org/10.1016/j.cortex.2011.10.001


Fig. 2 e Reconstructionsof the threebranchesof the superior longitudinal fasciculus (firstbranch in red, secondbranch inyellow

andthirdbranch ingreen): comparisonbetweenpost-mortemaxonal tracing inmonkey (cases1e6modified fromSchmahmann

and Pandya, 2006) and human in vivo SD tractography suggests simian-human similarities for the three SLF branches.
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3.1.2. Superior longitudinal fasciculus
The superior longitudinal fasciculus has three distinct

branches (Petrides and Pandya, 1984). In humans, the first

branch of the superior longitudinal fasciculus (SLF I) connects

to the superior parietal lobule and precuneus (BA 5 and 7), to

the superior frontal (BA 8, 9, 32) and perhaps to some anterior

cingulate areas (BA 24). The second branch (SLF II) originates

in the anterior intraparietal sulcus and the angular gyrus (BA

39 and 40) and terminates in the posterior regions of the

superior andmiddle frontal gyrus (BA 6, 8, 9). The third branch

(SLF III) connects the intraparietal sulcus and inferior parietal

lobule to the inferior frontal gyrus (BA 44, 45, 47) (Fig. 2).

In the monkey the three branches have a similar anatomy.

The SLF I connects the superior frontal gyrus (MII, area 6D

and 9) to the posterior medial (area PGm) and caudal superior

parietal lobule of the monkey brain (area PE and PEc). The SLF

II originates from the dorsolateral prefrontal cortex (areas 6D,

8Ad, 9/46, and 46) and ends in the occipito-parietal area (area

POa) and the caudal inferior parietal lobule (area PG/Opt,

equivalent to human angular gyrus). The SLF III links the

posterior part of the inferior frontal gyrus (area 6V and area 44)

to the rostral portion of the inferior parietal lobule (areas PF,

POa, PFG and PFop).

Overall, the anatomy of the SLF is highly conserved

between humans and monkeys.
3.1.3. Arcuate fasciculus
In humans, the longest fibres of the arcuate fasciculus connect

the posterior regions of the frontal lobe to the temporal lobe

(Catani et al., 2002, 2005; Parker et al., 2005). A subset of

connections links the most posterior part of the superior

temporal gyrus (BA 41 and 42) to the inferior frontal gyrus (BA

44 and 45). A larger subset of connections links themiddle and

inferior temporal gyri (BA 21, 22 and 37) to the inferior pre-

central (BA 6) and posterior regions of the middle and inferior

frontal gyrus (BA 8, 9, 44 and 45).

In themonkey brain, the arcuate connects the caudal part of

the superior temporal gyrus (Tpt) and the dorsal part of area 8

(area 8Ad), area 46, and 6. More recent investigation also

revealed arcuate connections to area 44 arising from the supe-

rior temporal sulcus next to Tpt (Petrides and Pandya, 2009).

Overall, the arcuate fasciculus shows significant differ-

ences between human and monkey brains, with the projec-

tion to middle and inferior temporal gyrus being absent in

monkey (Fig. 3).

3.1.4. Inferior fronto-occipital fasciculus
In humans, the fronto-occipital fasciculus is a long-ranged

bowtie-shaped tract that originates from the inferior and

medial surface of the occipital lobe (BA 19 and 18), with

a minor contribution probably from the medial parietal lobe

http://dx.doi.org/10.1016/j.cortex.2011.10.001
http://dx.doi.org/10.1016/j.cortex.2011.10.001


Fig. 3 e Reconstruction of the arcuate fasciculus: comparison between post-mortem axonal tracing in monkey (cases 7e9

modified from Schmahmann and Pandya, 2006) and human in vivo SD tractography. Common anatomical features between

human and monkey are reconstructed in red whereas anatomical differences have been coloured in blue.
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(Catani et al., 2002; Martino et al., 2010). As it leaves the

occipital lobe and enters the temporal stem, the inferior

fronto-occipital fasciculus narrows in section and its fibres

gather at the level of the external/extreme capsule just above

the uncinate fasciculus. Because the diffusion imaging lacks

resolution, it cannot discriminate extreme from external

capsule. As it enters the frontal lobe, its fibres spread to form

a thin sheet, curving dorsolaterally that terminates mainly in

the inferior frontal gyrus. The most ventral fibres continue

anteriorly and terminate in the medial fronto-orbital region

(BA 11) and the frontal pole (BA 10) (Catani et al., 2002). In the

tractography reconstruction presented in Fig. 4, the most

dorsal fibres terminate in the rostral portion of the superior

frontal gyrus (rostral portion of BA 9).

In the monkey brain, because the autoradiographic tech-

nique shows axons, it can discriminate extreme from external

capsule. The fibres passing through the extreme capsule

(EmC) connect themiddle superior temporal region (areas IPa,

TAa and TPO) and the caudal inferior temporal region (area 19)

with the caudal parts of the orbital cortex (area 47/12), the

ventro-lateral prefrontal cortex (area 9/46 and 45) and the

frontal pole (area 10) (Petrides and Pandya, 1988; Ungerleider

et al., 1989; Schmahmann and Pandya, 2006).

Hence, whilst the anterior projections of the extreme

capsule in the monkey overlap with those of the human
inferior fronto-occipital fasciculus, the posterior projections

do not reach the occipital lobe.

3.1.5. Uncinate fasciculus
In humans, the uncinate fasciculus is a hook-shaped tract that

connects the anterior part of the temporal lobe (BA 38) with

the orbital (BA 11 and 47) and polar (BA 10) frontal cortex. In

the tractography reconstruction presented in Fig. 5, the fibres

of the uncinate originate from the temporal pole (BA 38),

uncus (BA 35), parahippocampal gyrus (BA 36 and 30), and

amygdala. After a U-turn, the fibres of the uncinate enter the

anterior floor of the external capsule between the insula and

the putamen. Here, the uncinate runs inferiorly to the fronto-

occipital fasciculus before entering the orbital region of the

frontal lobe, where it splits into a ventro-lateral branch, which

terminates in the lateral orbito-frontal cortex (BA 11 and 47),

and an antero-medial branch that continues towards the

cingulate gyrus (BA 32) and the frontal pole (BA 10) (Dejerine,

1895; Klingler and Gloor, 1960; Crosby et al., 1962).

The monkey uncinate connects the ventro-lateral

prefrontal (area 47/12) and the orbital cortex (areas 11 and

13) to the temporal pole, amygdala, and the parahippocampal

gyrus (area 35 and 28).

Overall the anatomy of the uncinate is highly conserved

between humans and monkeys.

http://dx.doi.org/10.1016/j.cortex.2011.10.001
http://dx.doi.org/10.1016/j.cortex.2011.10.001


Fig. 4 e Comparison between post-mortem axonal tracing of the extreme capsule fibres in monkey (cases 31 and 32

modified from Schmahmann and Pandya, 2006) and human in vivo SD tractography of the inferior fronto-occipital

fasciculus. The two tracts pass through the external capsule and project to similar frontal regions. Their posterior

projections are however, different; the external capsule project to the temporal lobe while the inferior fronto-occipital

to the occipital lobe.
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3.2. Short-range association pathways

Anumber of intra-lobar connections link different areas of the

frontal lobe (Catani et al., 2012, issue 2). Many of these

connections are U-shaped fibres linking adjacent gyri. There

are also longer intra-lobar fibres connecting distant gyri

within the frontal lobe. Among these connections, the “frontal

aslant tract” (Fig. 6) and the “frontal orbito-polar tract” (Fig. 7)

are presented below in our study.

3.2.1. Frontal aslant tract
The frontal aslant tract resembles a baseball glove. It

connects the most posterior part of Broca’s territory (i.e.

precentral cortex, BA 6, pars opercularis, BA 44) in the inferior

frontal gyrus with the SMA and pre-SMA in the superior

frontal gyrus (BA 8 and 6) (Lawes et al., 2008; Oishi et al.,

2008).

In the monkey brain, a group of fibres originates in the

ventral part of the precentral gyrus (areas 6V and 44) and

projects to the SMA in the superior frontal gyrus (areas 6D and

8B) (Petrides and Pandya, 1994; Schmahmann and Pandya,

2006). These fibres are very similar to the human frontal

aslant tract (Fig. 6).
3.2.2. Frontal orbito-polar tract
In humans the frontal orbito-polar bundle is a ventral tract

connecting posterior (BA 25 and 11) and anterior orbitofrontal

gyri (BA 11) and the frontal pole (BA 10).

In monkey, the frontal orbito-polar tract connects the

posterior orbital frontal cortex (area 25) to the frontal pole

(area 10) (Petrides and Pandya, 1994; Schmahmann and

Pandya, 2006).

Overall the anatomy of the frontal orbito-polar tract is

highly similar between humans and monkeys (Fig. 7).
4. Discussion

In this study, a direct comparison of the major frontal lobe

connections between monkey and human suggests the

following: (i) the majority of the frontal lobe connections

described in the monkey brain using axonal tracing can be

visualised in the human brain using SD tractography; (ii)

overall a general correspondence between human and

monkey connectional anatomy is observed for the short and

long-range frontal connections; (iii) major differences were

http://dx.doi.org/10.1016/j.cortex.2011.10.001
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found for the arcuate fasciculus and the inferior fronto-

occipital fasciculus, which may underlie unique human

cognitive functions.

Humanesimian similarities were found for the anatomy of

the superior longitudinal fasciculus, the uncinate fasciculus

and the cingulum.

The superior longitudinal fasciculus connects frontal and

parietal regions that activate in tasks involving visuo-spatial

processing (Corbetta and Shulman, 2002; Shulman et al.,

2009, 2010), sensory-motor integration (Buccino et al., 2004;

Johnson-Frey et al., 2005; Bohlhalter et al., 2009), working

memory (Ungerleider et al., 1998; Marklund et al., 2007; Volle

et al., 2008), and eye movement (Corbetta, 1998; Berman

et al., 1999; Petit and Haxby, 1999). Lesions to the superior

longitudinal connections manifest with neglect (Gaffan and

Hornak, 1997; Thiebaut de Schotten et al., 2005; Doricchi

et al., 2008), apraxia (Goldenberg, 2003; Heilman and Watson,

2008; Goldenberg and Spatt, 2009), working memory impair-

ment (Levy and Goldman-Rakic, 1999; Curtis, 2006; Sepulcre

et al., 2009), optic ataxia and oculomotor dysfunction (Buneo

et al., 2002; Karnath and Perenin, 2005; Blangero et al., 2010).

These deficits can be frequently observed in humans and

produced experimentally in monkeys.

The uncinate fasciculus is involved in processing, encoding

and retrieving percepts and memories with strong emotional

valence (Gaffan and Wilson, 2008; Ross, 2008). Functional

studies in humans revealed activation of the fronto-temporal
network mediated by the uncinate in tasks involving inte-

gration of emotional material (Hung et al., 2010; Park et al.,

2010), recall of emotionally stimulating memories (Spoont

et al., 2010), estimation of risks (Vorhold et al., 2007) or

watching fearful faces (Grèzes et al., 2007; Pichon et al., 2009).

Lesions to the uncinate connections lead to episodic memory

disorders (Horel, 1978; Eacott and Gaffan, 1992; Levine et al.,

1998; Fink et al., 2010) and antisocial behaviour (Dicks et al.,

1969; Price et al., 2008; Craig et al., 2009; Sundram et al.,

2012, this issue; Zappalà et al., 2012, this issue) both in

humans and experimental conditions in monkeys.

Humanesimian similarities were also found for the

cingulum. The dorsal cingulum connects the anterior cingulate

and medial prefrontal cortex with the posterior cingulate and

precuneus cortex. These regions show decreased activation

during goal-directed tasks (i.e., default network) both in

humans (Raichle et al., 2001; Greicius et al., 2009) andmonkeys

(Vincent et al., 2007; Buckner et al., 2008). The cingulum also

contains longer fibres, which run from the anterior cingulate

and medial prefrontal cortex to the anterior temporal gyrus.

Lesion to these fibresmanifest with apathy and tameness both

in monkeys (Glees et al., 1950) and humans (Moniz, 1937).

Our dissection suggests that humanesimian similarities

extend also to the frontal short-range fibres of the frontal

orbito-polar (FOP) and frontal aslant tract (FAT). The functions

of these two tracts are not known. The frontal orbito-polar

connects the posterior orbital gyrus, including the olfactory
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cortex, with the anterior orbito-frontal gyrus and inferior

frontal pole. The frontal pole mainly shows an increase of

activation in tasks that require maintaining information in

mind while doing something else (Koechlin et al., 1999;

Burgess et al., 2007). Patients with a lesion in the frontal pole

manifest difficulties in multitasking (Burgess et al., 2000) and

prospective memory (Volle et al., 2011). The orbito-frontal

cortex is involved in reward behaviour associated with

sensory (e.g., taste), multimodal and abstract reinforcers (e.g.,

monetary gain and loss) (Kringelbach, 2005; Palminteri et al.,

2009). Lesions to the orbito-frontal cortex manifest with

insensitivity to future consequences both in humans (Bechara

et al., 2000; Zappalà et al., 2012, this issue) and monkeys

(Iversen and Mishkin, 1970).

The frontal aslant tract connects the frontal operculum with

the SMA. Cortical stimulation of the frontal operculum elicits

orofacialmovements in themonkeybrain (Huanget al., 1989) and

phonemic paraphasias in the human brain (Duffau, 2012, this

issue). Cortical recording in the SMA shows different classes of

neurons associated with batches of sequential movement

(Donchinet al., 1971; Rizzolatti et al., 1988;Tanji andShima, 1994).

Patients with lesions extending to the FAT manifest with

impaired fluency and mutism (Bates et al., 2003; du

Boisgueheneuc et al., 2006). These data suggest that the frontal

aslant tract is involved in motor planning (Eccles, 1982; Boecker

et al., 1998), including vocalisation and speech (Alario et al., 2006).

In summary our findings suggest that humans and

monkeys share a similar anatomy for tracts associated with

functions that the two species have in common.

For two other long-range tracts, such as the arcuate fascic-

ulus and the inferior fronto-occipital fasciculus, clear anatom-

ical differenceswere observed.Although these differencesmay
be due to the limitations of the methods (discussed in detail

further) and need to be confirmed in larger sample, we will

discuss here their potential functional interpretation on the

phylogeny scale. The arcuate fasciculus connects the posterior

temporal lobe to the latero-inferior frontal lobe. A subcompo-

nent of the arcuate fasciculus starting from the superior

temporal gyrus is observed in both monkey and human. The

dorsal part of this subcomponent of the arcuate fasciculus

mediate spatiotemporal processing and the ventral part is

involved in stimulus identification (Aboitiz and Garcı́a, 2009).

Themajority of thefibres of the arcuate fasciculusproject to the

middle and inferior temporal gyri in human but not inmonkey.

Degeneration of the fibres of the arcuate fasciculus manifests

with language disorders (Catani et al., 2003; Berthier et al.,

in press; Bizzi et al. 2012, in press). This finding support the

theory that changes in the strength of connections between

posterior temporal and inferior frontal regions have increased

in the phylogeny scale, allowing a direct link between posterior

regions specialised for auditory and visual word perception to

frontal regions controlling orofacial movements (Aboitiz and

Garcia, 1997; Aboitiz and Garcı́a, 1997; Cohen et al., 2000;

Epelbaum et al., 2008).

The inferior fronto-occipital fasciculus can be easily

dissected in humans using post-mortem blunt dissections

(Trolard, 1906; Curran, 1909; Lawes et al., 2008; Martino et al.,

2010) and in vivo tractography (Catani et al., 2002; Wakana

et al., 2004; Catani and Thiebaut de Schotten, 2008; Lawes

et al., 2008; Urbanski et al., 2008; Pugliese et al., 2009). The

absence of the inferior frontal-occipital fasciculus in the

monkey brain has led to the hypothesis that this tract may be

unique to thehumanbrain (Catani, 2007). Theprojectionsof the

inferior fronto-occipital fasciculus to the area 10 may also
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explain the larger relative size of area 10 in humans

(Semendeferi et al., 2001) and the in relative increase of frontal

white matter (Smaers et al., 2010, 2011). The functions of the

inferior fronto-occipital fasciculus remain largely unknown. It

has been suggested that the inferior fronto-occipital fasciculus

could play a role in the rapid topedown modulation of visual

processing in general (i.e., not restricted to processing

emotional value of visual percepts) (Pins and Ffytche, 2003; Bar

et al., 2006), including topedown amplification of visual

perceptscharacteristic of consciousvisualprocessing (Dehaene

et al., 2006) and executive control of voluntary visual recall

(Tomita et al., 1999). The inferior fronto-occipital fasciculus

couldalsomediate interactionbetween theoccipital and frontal

areas in states of reduced consciousness. For example, Braun

et al. (1998) demonstrated that rapid eye movement (REM)

sleep is associated with activation of the extrastriate visual

cortices, particularly within the ventral processing stream, and

concomitant reduction of activity in lateral orbital and

prefrontal cortex. The role of the inferior fronto-occipital

fasciculus in sleep is also suggested by patients with an

acquired inability to dream (anoneria) following lesions of the

lateral orbito-frontal cortex (Solms, 1997). Other roles of the

inferior fronto-occipital fasciculus remains to be clarified such

as its participation in mental rotation (Schendan and Stern,

2008), space-directed attention (Urbanski et al., 2008, 2011),

reading (Shaywitz et al., 2002; Mechelli et al., 2004), and

semantic processing (Duffau et al., 2005).
The extreme capsule is considered as a separate bundle

in the monkey literature. In humans the extreme capsule

containsmanyfibres, themajorityofwhichproject toposterior

temporal and occipital areas through the uncinate and the

inferior fronto-occipital fasciculus. It is possible, however, that

some projections of the inferior fronto-occipital fasciculus

branchesends in the superior temporal lobe, thus representing

the human equivalent of the extreme capsule fasciculus

described in themonkey. This tract has been recently linked to

language functions (Makris and Pandya, 2009) and could

correspond to the ventral semantic pathway described in the

human brain (Duffau, 2005; Saur et al., 2008).

In summary the differences we found in the anatomy of

the arcuate fasciculus and inferior fronto-occipital fasciculus

suggest that these tracts may underpin functions unique to

humans.

In this study, the humanesimian comparison we provide is

based on two distinct methods for reconstructing fibre path-

ways. Some of the findings may therefore be related to the

different methodological approaches, rather than reflecting

trueanatomicaldifferences. For example, axonal tracingallows

for the identification of single axon trajectories (Schmahmann

and Pandya, 2006) and detailed description of their cortical

terminations, whereas SD tractography is based on the diffu-

sion signal acquired from relatively large voxels containing

multiple axonal bundles, and is limited in reconstructing tracts

approaching cortical regions. This methodological difference
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may account for tracts that were identified in the monkey, but

not in thehumanbrain.Despite theabove limitations,we show

that the majority of frontal lobe connections described in the

monkey brain through axonal tracing, can be also visualised in

the human brain using SD tractography.

This study did not account for inter-individual variability

and gender differences as human inter-individual variability

data are drawn from one single subject. Inter-subject vari-

ability of white matter tracts in the human brain has been

previously studied with diffusion tensor tractography and

showed lower degree of variability in the central portion of the

tracts, and a higher degree of variability in the peripheral

regions (Thiebaut de Schotten et al., 2011b). The same study

reported gender differences for the long segment, which is

more left lateralized in males as compared to females. Future

studies will need to examine interindividual variability using

SD tractography.

Another limitation of this study is related to the visual-

isation of the trajectories of the individual tracts based on the

drawings derived fromhistological sections of amonkey brain

atlas. Single tracts on coronal slices can be difficult to identify

visually and may lead to errors in labelling. In the monkey

brain, the reconstruction of a single tract is based on patchy

injections in individual cortical areas that do not cover the

whole brain, especially in the most ventral areas. This meth-

odological difference may account for tracts identified in the

human brain, but not in monkeys, such as the inferior fronto-

occipital fasciculus and some components of the arcuate

fasciculus. Future ad-hoc studies using axonal tracing are

needed to confirm the presence of tracts that are found in the

human brain, whilst absent in the monkey brain.

We used SD tractography to overcome some of the limi-

tations of current tractography methods based on the diffu-

sion tensor model. In voxels with crossing, kissing or fanning

fibres, the tensormodel is unable to describe the complexity of

white matter organisation. Consequently, the resultant trac-

tography reconstructions are likely to contain erroneous

results (Basser et al., 2000; Catani, 2007; Jones, 2008). SD

models the diffusion signal as a distribution of multiple fibre

orientations, and is therefore able to resolve fibre crossing in

regionswith two ormore tracts. Tractography reconstructions

based on SD help to reduce false negatives (¼ineffective

tracking of pathways that do exist) but are likely to generate

false positives (¼tracking of pathways that do not exist). In our

study, the inferior fronto-occipital fasciculus and the arcuate

are unlikely to represent flawed reconstructions, as the exis-

tence of these tracts in the human brain is supported by post-

mortem dissections (Türe et al., 2000; Lawes et al., 2008) and

cortico-cortical recording in epileptic patients (Kawasaki et al.,

2001; Matsumoto et al., 2004). Finally, in this study we focused

on association pathways without analysing of the projection

and commissural (Berlucchi, 2012, this issue) tracts that are

also important for cognition and behaviour such as fronto-

striatal (Krause et al., 2012 this issue; Langen et al., in press;

Cubillo et al., in press) and thalamocortical pathways

(Muircheartaigh and Richardson, in press).

In conclusion, in this study we tried to bridge the gap

between human and monkey neuroanatomy of frontal lobe

association tracts. Our preliminary findings suggest that most

of the association tracts in the frontal lobe are similar between
the two species. These tracts may therefore underlie functions

that are conserved along the phylogeny scale. Conversely,

some segments of the arcuate fasciculus and the inferior

fronto-occipital fasciculus, which are not identified in the

monkeybrain,maybe related touniquehumanabilities. Future

studies with larger samples are necessary to understand the

variability of those tracts and their correlation with behaviour.
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Pichon S, De Gelder B, and Grèzes J. Two different faces of threat.
Comparing the neural systems for recognizing fear and anger
in dynamic body expressions. NeuroImage, 47(4): 1873e1883,
2009.

Pins D and Ffytche DH. The neural correlates of conscious vision.
Cerebral Cortex, 13(5): 461e474, 2003.
Price G, Cercignani M, Parker GJM, Altmann DR, Barnes TRE,
Barker GJ, et al. White matter tracts in first-episode psychosis:
A DTI tractography study of the uncinate fasciculus.
NeuroImage, 39(3): 949e955, 2008.

Pugliese L, Catani M, Ameis S, Dell’Acqua F, Thiebaut De
Schotten M, Murphy C, et al. The anatomy of extended limbic
pathways in Asperger syndrome: A preliminary diffusion
tensor imaging tractography study. NeuroImage, 47(2):
427e434, 2009.

Raichle ME, Macleod AM, Snyder AZ, Powers WJ, Gusnard DA, and
Shulman GL. A default mode of brain function. Proceedings of
the National Academy of Sciences of the United States of America,
98(2): 676e682, 2001.

Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, and
Matelli M. Functional organization of inferior area 6 in the
macaque monkey. II. Area F5 and the control of distal
movements. Experimental Brain Research, 71(3): 491e507, 1988.

Rockel AJ, Hiorns RW, and Powell TP. The basic uniformity in
structure of the neocortex. Brain, 103(2): 221e244, 1980.

Ross ED. Sensory-specific amnesia and hypoemotionality in
humans and monkeys: Gateway for developing a hodology of
memory. Cortex, 44(8): 1010e1022, 2008.

Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS,
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Türe U, Yas‚argil MG, Friedman AH, and Al-Mefty O. Fiber
dissection technique: Lateral aspect of the brain. Neurosurgery,
47(2): 417e426 [discussion 426e417], 2000.

Ungerleider LG, Gaffan D, and Pelak VS. Projections from inferior
temporal cortex to prefrontal cortex via the uncinate fascicle
in rhesus monkeys. Experimental Brain Research, 76(3): 473e484,
1989.

Ungerleider LG, Courtney SM, and Haxby JV. A neural system for
human visual working memory. Proceedings of the National
Academy of Sciences of the United States of America, 95(3):
883e890, 1998.

Urbanski M, Thiebaut De SchottenM, Rodrigo S, Catani M,
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