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In last decade, the possibility to optically interface with the mammalian brain in vivo

has allowed unprecedented investigation of functional connectivity of neural circuitry.

Together with new genetic and molecular techniques to optically trigger and monitor

neural activity, a new generation of optical neural interfaces is being developed, mainly

thanks to the exploitation of both bottom-up and top-down nanofabrication approaches.

This review highlights the role of nanotechnologies for optical neural interfaces, with

particular emphasis on new devices and methodologies for optogenetic control of neural

activity and unconventional methods for detection and triggering of action potentials

using optically-active colloidal nanoparticles.
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INTRODUCTION

The activity and interconnections of the billions of neurons in the human brain determine
the function of our senses, dictate our motor choices, form memories, and guide behavior.
Understanding, monitoring and manipulating neural activity with high spatial and temporal
resolution in vivo and on a large number of neurons is mandatory for a deeper knowledge of neural
circuitry, and to shine light on causal relations between neurons or between neurons and behavior.

New strategies and technologies to systematically monitor thousands of functional links that
each neuron forms with other neurons are being developed. Nanoscience and nanotechnology can
play a key role in developing new ideas and experimental approaches to create detailed maps of the
human and mammalian brain (Nanotechnology and Neuroscience, 2014). Among new approaches
for neuroscience, optical methods are very promising for both recording and manipulating neural
activity. A major breakthrough in this respect has been the advent of optogenetics (Boyden et al.,
2005), relying on the genetic expression of exogenous light-gated ion channels and ion pumps to
control neuronal activity, allowing unprecedented causal manipulation of specific neural circuits.

In optogenetic experiments light of visible wavelengths is shined onto single neurons or, feasibly,
large brain regions, to activate or inhibit specific classes of neurons, while simultaneously recording
electrophysiological data or monitoring behavior in freely moving animals. However, due to
induced tissue damage and light scattering and absorption, light delivery in vivo and in deep brain
regions of animal models is still very challenging, and far from being effective (Stujenske et al.,
2015). Both acute and chronic optical implants need to meet several requirements for different
experiments: site specific light delivery or uniform illumination of large brain volumes, low
physical, and thermal tissue damage, biocompatibility, high fidelity and minimized photoelectric
artifacts, high switching speed, and tunable wavelength (Pisanello M. et al., 2014; Warden et al.,
2014; Grosenick et al., 2015). Additionally, optical methods can be exploited for simultaneous
light collection for all-optical manipulation and monitoring of neural activity, by using light-based
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genetically encoded neural activity indicators (GEAIs), such as
fluorescent Ca2+ indicators or voltage sensitive dyes (VSD; Cui
et al., 2013, 2014; Gunaydin et al., 2014).

This review encompasses the latest developments and
technologies in the field of light delivery and possible approaches
for optical monitoring of neuronal activity in vivo. A variety
of different nanotechnologies and optical methods applied to
neuroscience are presented, including active implanted LEDs,
passive arrayed waveguides, nanomachined tapered fibers, and
self-organized colloidal nanostructures.

TOP-DOWN FABRICATION PROCESSES
FOR MULTIPOINT OPTOGENETIC
STIMULATION

Optogenetics—“the combination of optics and genetics to
achieve gain or loss of functions of well-defined cellular events
in specific cells of living tissue” (Deisseroth, 2011)– is widely
adopted in the central nervous system on animal models to
modulate neural activity and to regulate release of specific
neurotransmitters (Adamantidis et al., 2007; Aravanis et al.,
2007; Petreanu et al., 2009; Lin et al., 2013). This is achieved
through the use of specific transmembrane proteins, called
opsins, which respond to light by generating a flow of ions
across the cellular membrane, acting as light-gated ion channels.
An example of opsin used to trigger action potentials is
Channelrhodopsin 2 (ChR2), a non-specific cation channel used
to depolarize the neuron (Nagel et al., 2003). Inhibition of neural
activity can instead be achieved by using Halorhodopsin (Halo)
and Archaerhodopsins (Arch), light-driven ion-pumps used to
hyperpolarize the cell, therefore inhibiting the generation of
action potentials by reducing the probability of supra-threshold
events (Nagel et al., 2003; Fenno et al., 2011; Tye and Deisseroth,
2012). ChR2, Halo and Arch, as well as many other membrane
proteins, can be delivered into the brain by means of transfection
approaches such as in utero electroporation, viral transfection
or transgenic crossing, all allowing for gene delivery only
to molecularly-defined classes of neurons (Han, 2012). This
latter is the main advantage of optogenetics with respect to
electrical stimulation of neural activity: light can be used to
modulate electrical activity only of genetically-defined neural
sub-populations without affecting nearby neurons of a different
type, still allowing for post-synaptic effects to take place. After its
first use in mammalian neurons in 2005 (Boyden et al., 2005),
optogenetics is now adopted in several animal models from
Caenorhabditilis elegans to primates and, in particular, in mice
and rats to study functional connectivity of specific classes of
neurons and to identify their particular role in neural diseases
and disorders.

In this framework, a crucial aspect is represented by
technologies to deliver light into the brain. The neural tissue
is, indeed, a highly scattering medium and microscopy-based
techniques are still restricted to the shallower layers of the cortex
(Warden et al., 2014). Standard experimental protocols based on
the implantation of a fiber stub with a flat-cleaved end are limited
by the single illumination spot and the small volume excited at

the fiber tip, since the delivered light power is strongly attenuated
after a few hundreds of micrometers (Aravanis et al., 2007;
Yizhar et al., 2011). To interact with deeper brain structures,
new generations of implantable devices are being developed
(Pisanello M. et al., 2014; Warden et al., 2014; Grosenick et al.,
2015). In this context, top-down nanotechnology fabrication
processes are allowing for unprecedented functionalities and
integration processes, which resulted in a minimized damage to
the brain tissue during implantation and, simultaneously, to the
possibility of optically control a wider brain volume. As well,
micro, and nanotechnologies have been exploited for realizing
multifunctional devices, which recently overtook the classic
concept of “optrode” (e.g., a device for simultaneous optical
control and electrical monitoring of neural activity Grosenick
et al., 2015) and can now integrate microfluidic systems for in situ
drug delivery (Canales et al., 2015; Jeong et al., 2015a) or other
devices such as temperature sensors or photodetectors (Kim et al.,
2013).

Implanted µLED
A very promising strategy to bring light to deep brain regions
consists in using micro light emitting diodes (µLED) implanted
directly in the target area. A straightforward and multi-purpose
implementation of that was presented in 2013 in Kim et al.
(2013) McCall et al. (2013). Kim et al. developed a method to
realize releasable gallium nitride (GaN) µLEDs on a sapphire
substrate (only 6.5µm thick), which were then moved to thin
plastic strips hosting multiple and independently addressable
emitters. This was a constituent component of a layered implant
that can be customized depending on the experimental needs,
and can incorporate also other electrical elements such as
platinum electrodes for extracellular recording or for electric
stimulation, platinum temperature sensors, local heaters and
microscale photodetectors (Figures 1A,B). The so-obtained
stack is implanted via a releasable microneedle, extracted after
the surgery. Driving electronics stays instead outside the skull
and, interestingly, the system allows for straightforward wireless
operation (Figure 1C) and, as very recently shown in Jeong
et al. (2015a), for the integration of wireless-driven drug
delivery systems. Blue light emitted by the µLEDs was used to
stimulate dopaminergic neurons in the ventral tegmental area of
untethered mice behaving in a complex environment containing
sites for dopamine rewards, preferred by the ChR2-transfected
animals during the experiment. This manuscript of Kim and co-
workers represented a boost for related technologies, and in last
2 years other interesting approaches were suggested for µLED-
based stimulation in other regions of the mouse brain. This is
the case of the auditory pathway toward the brain (Hernandez
et al., 2014). Hernandez et al. implanted a µLED to stimulate
auditory brain stream responses via optogenetic excitation of
spiral ganglion neurons in the mouse cochlea, showing that
optical stimulation allows for a better frequency resolution with
respect to classical monopolar electrical approach. Although this
experiment was realized with a single µLED, the possibility
to integrate multiple emitters on flexible shafts for multipoint
stimulation has been recently demonstrated (Goßler et al., 2014).
This technology exploits laser-lift-off to transfer from the original
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FIGURE 1 | Top-down fabrication processes for implantable multi-point

stimulation devices. (A–C) A wireless system consisting of µLEDs on a

flexible shank. (D) A µLEDs device for site-selective stimulation of mouse

(Continued)

FIGURE 1 | Continued

neocortex. (E) Monte-Carlo simulations of the light radiation pattern from a

single µLEDs implanted in the scattering tissue. (F) A 3D set of silicon

oxynitride waveguides for custom optogenetic stimulations of defined points in

a 3D fashion. (G) Multipoint-emitting optical fibers for stimulation of multiple

brain regions with a single and tapered optical fiber. (H) Multifunctional

polymeric fibers. (I) ZnO-based multipoint optical arrays for simultaneous

optical control and electrical recording of neural activity. (J) Array of

implantable optical fibers coupled to µLEDs on a flexible polyamide cable.

(K,L) Array of tapered SU-8 waveguides coupled with µLEDs and electrodes

for extracellular readout of neural activity. (A–C) are reproduced with

permissions from Kim et al. (2013). Panels (D,E) are reproduced with

permissions from McAlinden et al. (2015). Panel (F) is reproduced with

permissions from Zorzos et al. (2012). Panels (G–G3) are modified from

Pisanello F. et al. (2014). Panel (H) is reproduced with permissions from

Canales et al. (2015). Panel (I) was reproduced with permissions from Lee

et al. (2015). Panel (J) is reproduced with permission from Schwaerzle et al.

(2015). Panels (K,L) are reproduced with permission from Kwon et al. (2015).

sapphire substrate the GaNµLEDs to polyamide films, having the
proper mechanical properties to follow the cochlear curvature.
Furthermore, multipoint stimulation with µLEDs on sapphire
shanks was also demonstrated for site-selective stimulation
of neocortical circuits, with Monte-Carlo simulations used to
evaluate the broadening of emitted light induced by tissue
scattering (McAlinden et al., 2015; Figures 1D,E).

Together with the advantages of a straightforward
implementation on flexible devices, suitability for wireless
operation and the possibility to integrate high-density emission
points on a single shaft with a plurality of electrodes for
extracellular recording, GaN-based µLED technology is still
facing important challenges. In particular, the heat at the
surface of the emitter poses an upper limit to the duration of
light delivery stimuli. In McAlinden et al. (2013) this aspect
was analyzed by a finite element model and Mc Allinden et
al predicted that a conservative limit of 0.5◦C increase of
tissue temperature would not be reached until a pulse duration
of ∼200ms (at 350mW/mm2; McAlinden et al., 2013). By virtue
of the multiple functionalities integrated in their flexible device,
Kim et al. instead directly measured the temperature rise with
a platimum sensor and measured temperature variations below
0.12◦C for 10ms-long pulses up to 20Hz and power density
up to ∼15mW/mm2 (Kim et al., 2013) The minimum distance
between multiple emitters, instead, depends strongly on the
presence of a dielectric material at the emitters/tissue interface
and it is limited by tissue scattering and the Lambertian emission
profile of the µLEDs (McAlinden et al., 2015).

Waveguides-Based Implants
Another promising strategy to deliver light into the brain is
represented by waveguides-based devices, which have recently
seen the definition of important routes toward viable multi-
point optogenetic stimulation. With respect to µLED-based
approaches, they have the main advantages of keeping the
light sources outside the tissue, thus avoiding direct heating
induced by implanted electronics and to be able to change
the delivered light wavelength based on experimental needs.
In 2010 Zorzos et al. proposed a multipoint-emission device
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obtained by top-down fabrication process (Zorzos et al., 2010),
with aluminum-coated multiple silicon oxynitride waveguides
ending with corner mirrors to direct light laterally with respect
to the implant direction. Each waveguide was coupled to
external sources with single mode fibers, for overall outcoupling
efficiency ranging from 23 to 33%. The same authors, in
2012, extended this technology to 3D arrays of independently
addressable light emission points with multiple shanks arranged
in three-dimensions using a micro-fabricated baseplate holder
(Figure 1F; Zorzos et al., 2012). Each shank contains several
light emission points in the same configuration of Zorzos et al.
(2010), each of which can be independently addressed by external
coupling systems such as digital micromirrors chips coupled to
a microlenses array or galvanometric mirrors and a f-theta lens.
In the same year, another approach was proposed by Abaya
et al. based on a 3D array of sharpened waveguides allowing for
stimulation at two different depths (Abaya et al., 2012). The SiO2
waveguides are realized through a dicing process, defining first
the pyramidal shape of the shanks with a bevel blade and then the
vertical pillars by deep kerfs. HF-based etching is then employed
to thin the shanks and, finally, an annealing step is used to relieve
internal stress and reduce the surface roughness.

Although these methods allow for a dynamic reconfiguration
of the stimulation geometry during the experiment, a sever
limit to viable in vivo implementation is represented by the
pronounced implant cross section. A solution for that was
proposed in 2014, exploiting the photonic properties of tapered
optical fibers (Pisanello F. et al., 2014). The device is composed
by a tapered optical fiber with a sub-micrometer tip diameter,
with the tapered region covered with a gold layer to keep light
confined into the waveguide. Light is allowed to outcouple into
the brain through optical windows realized in the gold coating
by Focused Ion Beam milling (Sileo et al., 2015), thus allowing
optogenetic control of neural activity only at specific sites along
the taper (Figure 1G). The active window can be selected by
modifying the light coupling angle at the other end of the
fiber, therefore injecting into the waveguide different subsets of
guided modes (Pisanello et al., 2015) and allowing up to three
independent stimulation points on a 1-mm-long segment of the
taper (Figure 1G). The in vivo application of this technology was
shown in bothmouse motor cortex for layer-selective stimulation
of GABAergic neurons and in the striatum of awake and head-
restrained mice, and optrodes were realized by placing the
nanostructured optical fiber beside a linear electrodes array for
extracellular recording (Pisanello F. et al., 2014). On the other
hand, with respect to standard optical fibers, multipoint emitting
optical fibers need a higher injection power to achieve effective
optogenetic control of neural activity and the total efficiency
depends on the distance between the active window and the taper
tip. The integration of a linear electrodes array beside the fiber,
moreover, increases the invasiveness of the device.

Very recently, a series of approaches have allowed for
integrated multipoint stimulation and multipoint electrical
readout of neural activity (Grosenick et al., 2015). Canales
et al. (2015) have developed a set of multifunctional devices
based on a polymeric technology for simultaneous drug
delivery, optogenetic control and extracellular recording (see

representative images in Figure 1H). Together with multiple
integrated functionalities, these fibers are able to better match
the brain mechanical properties by virtue of the combination
of different flexible materials, including poly(etherimide),
poly(phenylsulfone), polycarbonate, and cyclic olefin copolymer
and conductive poly-ethylene (Canales et al., 2015). Lee
et al. (2015), instead, have recently proposed a new system
based on optically transparent and electrically conductive ZnO
semiconductor. As schematically shown in Figure 1I, the device
is composed by a matrix of ZnO waveguides coated with
Parylene-C up to ITO-coated tips. This configuration allows
for a strong reduction of photoelectric artifacts induced by
direct electrode illumination, and thereof to spatially match light
delivery stimuli and electrical readout.

It is important to highlight that the main limitation of
waveguides-based multipoint stimulation devices relies on the
need to tether the animal to an optical bench, for coupling with
the proper light injection system. For some of these approaches,
animal movement and the resulting fiber bending and stretching
can potentially lead to crosstalk between the different channels,
and can generate inhomogeneous light delivery, in particular in
the case of multimodal waveguides (Cui et al., 2013, 2014).

Coupling of µLED with Implanted Optical
Waveguides
Hybrid approaches are instead represented by integrated
technologies to couple light emitted from µLEDs into implanted
waveguides. This was achieved on a flexible polyimide ribbon
cable by Schwaerzle et al. using a silicon housing to align
implantable optical fibers with the light sources and subsequent
fixation with UV-curable adhesive fixation (Schwaerzle et al.,
2015; Figure 1J). Very recently, Kwon et al. also developed a
technique to coupleµLEDswithmicrofabricatedmicroneedles in
a wireless-driven implant for multisite and bilateral stimulation
of the rat visual cortex (Kwon et al., 2015; Figure 1K). It is
composed by two arrays of SU8 tapered waveguides covered
by a stack of ITO/Parylene-C/Gold/Parylene-C to allow for
simultaneous electrical recording of neural activity in the
proximity of the light delivery site (Figure 1L). The waveguides
are realized on a Polydimethylsiloxane substrate and are then
aligned and coupled to the µLEDs arrays placed on a polyamide
cable. The result is an integrated device that, using a capacitor-
based stimulator system, can be controlled via an inductive link
with up to 32 bidirectional channels. If, on one hand, these
methods greatly combine the advantages of implanted µLEDs
and waveguide-based approaches, their main limitation is still
represented by the highly divergent radiation pattern of the light
sources, which do not allow for straightforward and repeatable
coupling efficiency (Schwaerzle et al., 2015).

Future Challenges: Integrated Light
Collection-Delivery Systems and Long
Term Experiments
Although, the technology development of last years mainly
focused on devices for stimulation or inhibition of neural
activity, a crucial aspect remains the possibility to simultaneously
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monitor neural activity. Most of the above-described devices
can integrate electrodes for extracellular recording, and some
of them allow for mapping of neural activity with single or
multiple light-delivery sites, whose state of the art has been
recently reviewed by Grosenick et al. (2015). However, in the
same way classical electrical neural stimulation excite all the
cells within the stimulated region, electrical readout cannot
select for specific classes of neurons. This is instead possible
with genetically encoded neural activity indicators (GEAIs),
such as fluorescent Ca2+ indicators or voltage sensitive dyes
(VSD). These probes respond to a variation of neural activity
by changing their fluorescence intensity and are widely adopted
in microscopy techniques in vivo to monitor electrical activity
of cortical neural circuits (Svoboda et al., 1997; Kuhn et al.,
2008; Warden et al., 2014). Deep brain regions, however, are
widely not accessible for microscopy and the most common
technique to collect light emitted from GEAIs remains the use
of large core optical fibers, and are limited to a single and
relatively small volume of the neural tissue (Cui et al., 2013, 2014;
Gunaydin et al., 2014). The development of new techniques to
efficiently collect light from sub-cortical regions is thus essential
to boost the development of viable and integrated all optical
bidirectional neural interfaces. Nevertheless, it is important to
highlight that electrical and optical monitoring of neural activity
are complementary strategies, since some electrical signals such
as local field potentials have not yet an optical counterpart.

Another important challenge is represented by the possibility
of using multipoint optical and optoelectronic neural interfaces
in long-term experiments in untethered animals. Concerning
electrical readout of neural activity, chronic implants suffer
from a high variability and limited longevity of their electrical
performances, as a result of failures related to a combination
of biological responses of the tissue, materials stability, and
mechanical properties of the device (James et al., 2013; Prasad
et al., 2014). The biological aspects include (but are not limited to)
damage to the blood brain barrier, inflammation responses and
increased astroglial activity (Kozai et al., 2010, 2012, 2014; Saxena
et al., 2013). Material failures are known to include corrosion,
cracking and degradation of the insulating layer (Abhishek et al.,
2012; Gilgunn et al., 2013; Prasad et al., 2014). From the point
of view of the mechanical properties of the implant, most of
the technologies targeting deep brain regions are based on hard
materials that do not match with the softness of the brain, and
therefore can hardly follow its natural movements (Hyunjung
et al., 2005; Jeyakumar et al., 2005). This has increased the
demand for new approaches based on flexible optoelectronic
and conductive polymers (Jeong et al., 2015b), able to bend
and flex to take into account pulsations and volume changes
of the tissue over time [an example are the low bending
stiffness multifunctional fibers described in Canales et al. (2015)].
Although very recent reports show that also the mechanical
mismatch within a device can cause failures (Kozai et al., 2015),
a straightforward integration between planar technologies for
optical neural interfaces and flexible electronics (Kim et al.,
2013; McCall et al., 2013; Goßler et al., 2014; Jeong et al.,
2015a), or conceptually new approaches as syringe-injectable
flexible devices (Liu et al., 2015) are therefore needed to create

multifunctional devices that can match with the mechanical
properties of the brain. Moreover, devices for untethered animals
experiments would greatly benefit of wireless communication
systems to trigger the spatiotemporal configuration of light
stimuli and to retransmit the recorded data. Some approaches
based on radiofrequency links (Kim et al., 2013) or optical
wireless communication (Jeong et al., 2015a) have already been
proposed, but next generation will have to focus on integrated
systems for duplex communication allowing also for wireless and
real-time optical and electrical readout of neural activity.

Nanoparticles for Optical Modulation
and/or Readout of Neural Activity
Together with the new technological frontiers opened by
nanotechnologies for multisite light delivery, there is a
widespread agreement that the quantum properties of nano-sized
materials, together with their small size and the high surface to
volume ratio, can be employed to investigate alternative strategies
for building next generation of optical neural interfaces. This is
the case of colloidal nanoparticles, extremely small structures
produced via wet-chemistry which exploit their ultra-small size
to enhance quantum effects (Pellegrino et al., 2005; Carbone
and Cozzoli, 2010). In particular, the reduced size often results
in an enhanced sensitivity on the electromagnetic properties
of the surrounding environment, and this specific feature has
been exploited in two very recent works to stimulate neural
activity by using plasmonic gold nanoparticles (João et al., 2015)
and to evaluate the possibility of optically monitoring neural
activity exploiting charge carriers dynamic in semiconductor
nanocrystals (Marshall and Schnitzer, 2013).

In the case of plasmonic gold nanoparticles (PGNPs), the
authors of João et al. (2015) suggested the use of a plasmon-
mediated high absorption at green wavelengths to generate
a localized heating and therefore to trigger action potentials,
as schematically represented in Figure 2A. Carvalho-de-Souza
et al. developed a technique to functionalize the surface of the
neurons with spherical gold nanoparticles of about 20 nm in
diameter, having a maximum plasmonic absorption band at
523 nm. When irradiated by green light, the particles convert
the absorbed energy in local heating, inducing a variation
in the membrane capacitance (Shapiro et al., 2012), rather
than acting on temperature-dependent ion channels (Stanley
et al., 2012), and a subsequent fast cell depolarization. If
threshold potential is reached, voltage-gated channels open
and the action potential is triggered (João et al., 2015). The
functionalization is obtained with primary antibodies targeting
different proteins on the cell membrane and secondary antibodies
conjugated on the particle surface, but also exploiting a synthetic
version of the Ts1 neurotoxin, which selectively binds to
voltage-gated sodium channels. This latter was tested in both
dorsal root ganglion neuronal cultures and hippocampal brain
slices, suggesting the generality of the approach. Although,
this technique does not need any genetic treatment of the
tissues of interest and represents an important complement to
existing technologies, it still has important challenges to face, in
particular if compared to optogenetics. Indeed, one of the main
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FIGURE 2 | Nanoparticles for optical modulation and/or readout of neural activity. (A) Gold nanoparticles functionalized on the cell membrane to generate

local heating (represented by the red shadow) upon green light absorption (represented by the green waves). (B) Semiconductor nanoscristals placed in the lipid

bilayer could be used to sense voltage by detecting fluorescence fluctuations (1F/F) generated by the time-dependent electric field. (B) is reproduced with permission

from Marshall and Schnitzer (2013).

peculiarities of optogenetics is the possibility to inhibit neural
activity, while PGNPs can be used only for stimulation and,
moreover, the particles are allowed to last into the organisms
for a fixed period of time, reasonably much shorter than
the almost permanent expressions of light-gated ion channels
(João et al., 2015).

Another promising, but still only theoretical, application of
colloidal nanoparticles is the readout of neural activity by using
semiconductor nanocrystals (NCs). NCs are nanometer-sized
semiconductors that present quantized levels in both valence
and conduction band, rather than the quasi-continuum of states
allowed in bulk semiconductors. A photon absorbed by a NC
generates a bound electron-hole (e-h) pair, which can recombine
following radiative (e.g., emitting a photon at lower energy) or
non-radiative channels. For NCs made of II-VI semiconductors,
emitted light is in the visible spectral range and, at physiological
conditions, it has a well-defined single-peak emission spectrum
with a ∼30 nm-large Gaussian distribution around the peak
wavelength. When specific types of nanoparticle are inserted
into an electric field, however, the e-h pairs polarize along the
direction of the applied field, and both the emission wavelength
and the lifetime of the excited state change accordingly (Galland
et al., 2011). Marshall et al. suggested to exploit this feature
to optically read out action potentials (Marshall and Schnitzer,
2013). The model system relies in a NC, either spherical or
elongated, placed into the lipid bilayer in order to have the

particle sensitive to the highest possible voltage variation across
the cell membrane (Figure 2B). When the membrane potential
changes, the radiative lifetime changes as well, and the fraction
of excitation events leading to non-radiative recombination is
modified accordingly. This directly leads also to a variation
of the fluorescence intensity and, overall, to the possibility to
sense action potential by monitoring the fluorescence intensity
of the NCs in a way very close to standard approaches used for
voltage sensitive dyes. This technique have, potentially, strong
advantages if compared to the use of other fluorescent indicators
of neural activity, which are still facing the challenge of a limited
signal to noise ratio and pronounced photobleaching. On the
contrary, NCs have a strong absorption cross-sections at both
one and two photons, high emission intensity, and can support
longer excitation times before bleaching, making them ideal
from the point of view of fluorescence stability (Spinicelli et al.,
2009; Galland et al., 2011; Pisanello et al., 2013). However this
remains a theoretical proposal and its implementation is mainly
limited by the absence of techniques to viably and stably localize
semiconductor NCs across the cell membrane of neurons.

CONCLUSIONS AND PERSPECTIVES

Nanotechnology, exploiting surface and bulk nano and
micromachining and self-organized nanochemistry, has
dramatically improved the capability to produce devices that
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deliver, shape, and collect light with high spatial and temporal
resolution. In the past decade all those technologies have been
applied to ICT applications and for biosensing assays, with
many materials and methods derived from the telecom and
nanoelectronic industry.

Since the advent of different in vivo biophotonic methods,
such as optogenetics, and new nanobiosensing approaches and
clinical applications, there has been an increasing need of optical
tools and convergence of integrated nanophotonic technologies
toward lifescience. However, biological tissue are dispersive
media and they do not allow a straightforward propagation
and control of light inside organs and, specifically, in the
brain.

In this paper we have shown how the scientific community is
facing this challenge. So far light delivery to deep brain regions
cannot be achieved without being extremely close or in contact
with the region of interest, and the proposed approaches always
rely on waveguides, optical fibers or wired LEDs mounted on
rigid or flexible supports. At the current stage, optogenetics
allow to target genetically defined classes of neurons, while
the recently developed multipoint devices add the feature of
controlling closely spaced neurons belonging to the same class
also in deep brain regions, complementing the high spatial
resolution obtained with microscopy in the firsts cortical layers.

Moreover, the integration of multipoint extracellular recording
of neural activity is allowing for unprecedented spatial resolved
stimulation/readout in free-moving animals (Grosenick et al.,
2015) and the integrated drug delivery systems improved spatial
matching of viral injection, light delivery and extracellular
readout (Canales et al., 2015; Jeong et al., 2015a). Although,
most of these technologies were not yet used for novel biological
insights, it is clear that a new generation of approaches better
able to interface with the extreme complexity and diversity
of brain topology and connectivity will shortly represent
a key for neuroscientists to answer long-standing questions
about brain functional connectivity. However, new approaches
exploiting a combination of top-down and bottom up fabrication
methods, nanophotonics (nanoplasmonics, quantum optical
nanoantennas, etc) and new biological and neurophysiological
methods are still needed. The final target is the control and
distribution of light over thousands of single neurons, or
even at sub-cellular level, and their wireless or waveguide-less
manipulation and monitoring.
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