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Abstract

Advances in silicon probe technology mean that in vivo electrophysiological recordings from hun-
dreds of channels will soon become commonplace. To interpret these recordings we need fast,
scalable and accurate methods for spike sorting, whose output requires minimal time for manual
curation. Here we introduce Kilosort, a spike sorting framework that meets these criteria, and show
that it allows rapid and accurate sorting of large-scale in vivo data. Kilosort models the recorded
voltage as a sum of template waveforms triggered on the spike times, allowing overlapping spikes
to be identified and resolved. Rapid processing is achieved thanks to a novel low-dimensional ap-
proximation for the spatiotemporal distribution of each template, and to batch-based optimization
on GPUs. A novel post-clustering merging step based on the continuity of the templates substan-
tially reduces the requirement for subsequent manual curation operations. We compare Kilosort to
an established algorithm on data obtained from 384-channel electrodes, and show superior perfor-
mance, at much reduced processing times. Data from 384-channel electrode arrays can be pro-
cessed in approximately realtime. Kilosort is an important step towards fully automated spike sort-
ing of multichannel electrode recordings, and is freely available (github.com/cortex-lab/Kilosort).

1 Introduction

The oldest and most reliable method for recording neural activity involves lowering an electrode
into the brain and recording the local electrical activity around the electrode tip. Action potentials
of single neurons generate a stereotypical temporal deflection of the voltage, known as a spike
waveform. When multiple neurons close to the electrode fire action potentials, their spikes must
be identified and assigned to the correct neuron based on the features of the recorded waveforms,
a process known as spike sorting1–15.

Measuring voltage at multiple closely-space sites in the extracellular medium can substantially
improve spike sorting accuracy. In this case, the recorded waveforms also have characteristic
spatial shapes, determined by each neuron’s location and physiological characteristics. Together,
the spatial and temporal shape of the waveform provide all the information that can be used to
assign a given spike to a neuron16.

Current methods for spike sorting, however, will struggle to meet the requirements raised by a
new generation of high-count, high-density electrodes that are soon to become commonplace.
These electrodes have several hundred closely-spaced recording sites17, and initial tests suggest
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Figure 1. Data from high-channel count recordings. a, High-pass filtered and channel-whitened data. Negative
peaks are action potentials. b, Example mean waveforms, centered on their peaks. c, Example cross-correlation
matrix across channels (before whitening, no spikes included).

that they can reveal the activity of 100 to 1,000 neurons firing tens of millions of spikes. When
applied to such data, algorithms designed for tens of recording sites18,19 suffer from substantial
limitations. The automatic sorting software can take days to weeks to run, and require hours
to days of manual curation. Furthermore, with more channels and higher density, resolution of
spatiotemporally overlapping spikes becomes both more tractable and more important.

Here we overcome these limitations and present Kilosort, a new algorithm which takes advan-
tage of a novel mathematical approach that greatly reduces the amount of calculation required,
together with the computing capabilities of low-cost commercially available graphics processing
units (GPUs). To illustrate its abilities we show that it accurately spike sorts the output of 384-
channel dense probes in approximately real time.

1.1 High-density electrophysiology and structured sources of noise

With high-density neural probes (i.e. site spacing in the range ∼20 µm), the waveforms of each
neuron can be typically detected on 5 to 50 channels simultaneously (Fig. 1a,b; example data
available at http://data.cortexlab.net/dualPhase3). This provides a substantial amount of informa-
tion per spike, but because other neurons also fire on the same channels, a clustering algorithm
is required to unmix the signals and assign spikes to the correct neuron. Furthermore, structured
sources of noise can make this assignment more difficult. For example, neurons that are too dis-
tant from the electrode to be sortable provide myriad superimposed spike waveforms, a continuous
random background against which the features of sortable spikes must be distinguished16.

2

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/061481doi: bioRxiv preprint first posted online Jun. 30, 2016; 

http://dx.doi.org/10.1101/061481
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.2 Previous work

A traditional approach to spike sorting divides the problem into several stages2. First, spike times
are detected, for example as times when the negative voltage crosses a pre-defined threshold.
Second, these spike waveforms are extracted and projected into a common low-dimensional
space, typically obtained by principal component analysis (PCA20. Third, the spikes are clustered
in this low-dimensional space using a variety of approaches, such as mixtures of Gaussians18

or peak-density detection21. Some algorithms also include a fourth stage of template matching
that scans the raw data for overlapping spikes, which may have been missed in the first detection
phase11,12,14. Finally, a manual curation stage is required, in which a human operator corrects the
imperfect automated results using a graphical user interface (GUI). This last step is particularly
necessary for recordings subject to electrode drift, where the waveforms of a given neuron vary
over time and may be assigned to multiple clusters.

Here we describe a system that omits spike detection and PCA and instead combines the identi-
fication of template waveforms and associated spike times in a single unified model. This model
seeks to reconstruct the entire raw voltage dataset with the templates of candidate neurons. We
define a cost function for this reconstruction, and derive approximate inference and learning algo-
rithms that can be successfully applied to very large channel count data. This approach is related
to a previous method6, but that method requires a generic convex optimization that is slow for
recordings with large numbers of channels.

As we demonstrate with constructed ground-truth datasets, our system is more accurate than
a current widely-used method18. Furthermore, we demonstrate that on real datasets with 384
channels, this implementation is fast enough to run in nearly real time.

2 Model formulation

We start with a generative model of the raw electrical voltage. Unlike the traditional pipeline, this
algorithm does not start with a spike detection step, nor project the spike waveforms to a lower-
dimensional PCA space. As we show below, both of these steps would discard potentially useful
information.

2.1 Pre-processing: common average referencing, temporal filtering and spatial whitening

To remove low-frequency fluctuations, such as the local field potential, we high-pass filter each
channel of the raw data at 300 Hz. To diminish the effect of artifacts shared across all channels,
we subtract at each timepoint the median of the signal across all recording sites, an operation
known as common average referencing22. This step is best performed after high-pass filtering,
because the LFP magnitude is variable across channels and can be comparable in size to the
artifacts.

Next, we whiten the data across channels to remove correlated noise. In the frequency range
typical of spikes, spatially correlated noise arises primarily from neurons far from the probe, whose
spikes are too small to sort directly16,23 and have a large spatial spread over the surface of the
probe. Since there are many such neurons, their noise averages out to have a stereotypical cross-
correlation pattern across channels (Fig. 1c). To estimate this noise covariance, we first remove
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Figure 2. Spike reconstruction from three private PCs. a, Four example average waveforms (black) with their
respective reconstruction from three common temporal PCs/channel (blue), and with reconstruction from three spa-
tiotemporal PCs private to each spike (red). The red traces mostly overlap the black traces. b, Summary of residual
waveform variance for all neurons in one dataset.

the times of putative spikes (detected with a threshold criterion). We then estimate the covariance
matrix Σ, and use its singular vectors and singular values E,D to obtain a symmetrical whitening
matrix that maintains the spatial structure of the data, known as zero-phase component analysis
(ZCA): WZCA = Σ−1/2 = ED−1/2ET . To regularize D, we add a small value to its diagonal. For
very large channel counts, estimation of the full covariance matrix Σ is noisy, and we therefore
compute the columns of the whitening matrix WZCA independently for each channel, based on
its nearest 32 neighbors. We then multiply the raw data matrix containing all channels with this
whitening matrix.

2.2 Modelling mean spike waveforms with SVD

When single spike waveforms are recorded across a large number of channels, most channels
will have no signal and only noise. To prevent the large total energy on these many noise chan-
nels from swamping the signal present on a the smaller number of signal channels, previous
approaches have estimated a “mask” to exclude channels with insufficient SNR to identify any
given spike18,19; to further reduce noise and lower dimensionality, the spikes are usually projected
into a small number of temporal principal components per channel20, typically three.

Here we introduce a different method for simultaneous spatial denoising/masking and for lower-
ing the dimensionality of spikes. This method is based on the observation that any mean spike
waveforms can be well explained by a singular value decomposition (SVD) decomposition of its
spatiotemporal waveform, with as few as three components, but that the spatial and temporal
components required can vary substantially between neurons (Fig. 2a). This approach of tailoring
“private PCs” to each spike allows us to fit the spikes with ∼5 times less residual variance than
the standard approach of applying a single PCA approximation per channel, to all neurons on that
channel (Fig. 2b). This decomposition results in an automated masking strategy, which allows the
waveforms to be denoised and irrelevant channels ignored, and also speeds up the algorithm, by
allowing the use of standard low-rank filtering techniques (see below).
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2.3 Integrated template matching framework

To define a generative model of the electrical recorded voltage, we take advantage of the approxi-
mately linear summation of electrical potentials from different sources in the extracellular medium.
We combine the spike times of all neurons into a Nspikes-dimensional vector s, such that the wave-
forms start at time samples s + 1. We define the cluster identity of spike k as σ(k), taking values
into the set {1, 2, 3, ..., N}, where N is the total number of neurons. We represent the normal-
ized waveform of neuron n as the matrix Kn of size number of channels by number of sample
timepoints ts (typically 61). The matrix Kn is approximated by a three-dimensional singular value
decomposition, Kn = UnWn, whereby Kn is deconstructed into three pairs of spatial and temporal
basis functions, Un and Wn, such that the norm of UnWn is 1. The value of the electrical voltage
at time t on channel i is modeled by

V (i, t) = V0(i, t) +N (0, ε)

where the noise is modelled as independent Gaussian of variance ε .V0(I, t) is defined as

V0(i, t) =

s(k)≥t−ts∑
k,s(k)<t

xkKσ(k) (i, t− s(k)) (1)

where the index k picks out those spikes that overlap with the timepoint t, because they happen
at nearby times s(k), and xk > 0 is the amplitude of spike k, further constrained by

xk ∼ N
(
µσ(k), λµ

2
σ(k)

)
.

This last equation models variations in spike amplitudes for spikes from the same neuron, due
to factors like burst adaptation and drift. We modelled this variability with a Gaussian distribution
whose variance scales with the square of its mean, to capture the fact that the spikes of neurons
closer to the probe vary in relative, not absolute amplitude. λ and ε are hyperparameters that
control the relative scaling with respect to each other of the reconstruction error and the prior on
the amplitude.

This model formulation leads to the following cost function, which we minimize with respect to
spike times s, spike amplitudes x, templates K, and cluster assignments σ:

L(s,x,K, σ) = ‖V − V0‖2 +
ε

λ

∑
k

(
xk
µσk
− 1

)2

(2)

The second term in this expression has the purpose of limiting the number of spikes that are
assigned amplitudes that deviate strongly from the mean of the relevant cluster. It is scaled by the
ratio ε

λ , which we usually set to a constant between 1 and 10.

3 Learning and inference in the model

To optimize the cost function, we first initialize the templates and then alternate between two steps:
finding the best spike times s, cluster assignments σ, and amplitudes x (template matching); and
optimizing the template waveformsK for a given s, σ,x (template optimization). After the final spike
times and amplitudes have been extracted, we run a final post-optimization merging algorithm
which finds pairs of clusters whose spikes form a single continuous density. These steps are
described in detail below.

5

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/061481doi: bioRxiv preprint first posted online Jun. 30, 2016; 

http://dx.doi.org/10.1101/061481
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1 Stacked initializations with prototypical spikes and scaled K-means

The density of spikes can vary substantially across the probe, depending on the location of each
recording site in the brain. It is thus helpful to initialize the algorithm in a way that matches the
number of clusters to local spike density. This approach reduces the need for moving templates
from one part of the probe to another during the optimization process, which would be prone
to local minima. To initialize the templates, we thus start by detecting spikes using a threshold
rule, and progress through the recording keeping a running subset of prototypical spikes that are
sufficiently different from each other by an L2 norm criterion. During this initialization phase, we
excluded overlapping spikes by enforcing a minimum spatiotemporal peak isolation criterion. Out
of the prototypical spikes thus detected, we select the top N (number of desired clusters) which
had most matches to other spikes in the recording.

These N prototypes are then used to initialize a scaled K-means algorithm. This algorithm uses
the same cost function described in equation 2, with spike times s fixed to those found by a
threshold criterion. Note that unlike standard K-means, each spike is allowed to have variable
amplitude24, which allows initialization to proceed robustly even though amplitudes are variable.

3.2 Inferring spike times and amplitudes via template matching

The inference step attempts to find the best spike times, cluster assignments and amplitudes,
given a set of templates {Kn} with low rank-decompositionsKn = UnWn and mean amplitudes µn.
After processing every hundred batches (or more, depending on their time length), the templates
are obtained from the running average waveform An, using an SVD decomposition to give An ∼
µnKn = µnUnWn, with ‖UnWn‖ = 1, where Un is orthonormal and Wn is orthogonal but not
normalized. The primary roles of the low-rank representation are to guarantee fast inferences and
to regularize and mask the waveform model.

Spike time inference during the iterative optimization stage is achieved with a standard template
matching algorithm. The algorithm finds times t at which the dot product of a predefined template
waveform n with the raw data is large, while the amplitude of the spike is close to the mean
amplitude of template n. We thus find local maxima of these dot products over all waveforms and
times, and impose a window of ±ts samples around each of these peaks during which another
(smaller) peak cannot be detected, unless the pair of templates corresponding to the peaks have
only a negligible overlap (absolute value of dot-product < 0.05). On the final iteration of the spike
time inference step, we also perform the template matching step repeatedly, after subtracting off
the detected spikes, to find spatiotemporally overlapping spikes (matching pursuit algorithm, see
below). To accelerate the learning of the templates, we skip the subtraction on all but the last
iteration, and rely on the fact that a majority of spikes from each neuron are identified without
resolving spatiotemopral overlaps. Results were very similar when the matching pursuit algorithm
was used during the entire optimization procedure.

Finding the spike times, templates and amplitudes is equivalent to minimizing a quadratic func-
tion of the form anx

2
n,t − 2bn,txn,t over the scalar variable xn,t, with an and −2bn,t derived as the
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coefficients of x2n,t and xn,t from equation 2:

an = 1 +
ε

λµ2n

bn,t = (Kn ? V )(t) +
ε

λµn
, (3)

where ? represents the operation of temporal filtering (convolution with the time-reversed filter).
Here the filtering is understood as channel-wise filtering followed by a summation of all filtered
traces, which computes the dot product between the template and the voltage snippet starting at
each timepoint t. The optimal amplitude xn,t, and the corresponding decrease in cost dC(n, t) that
would occur if a spike of neuron n were added at time t are given by:

xbest
n,t =

bn,t
an

dC(n, t) =
b2n,t
an

(4)

Computing the value of bn,t for all possible values of n and t requires filtering the data V with all
the templates Kn. In principle, this would require a very large number of operations, particularly
when the data has many channels. However, the low-rank decomposition of templates allows us to
reduce the number of operations by a factor of Nchan/Nrank, where Nchan is the number of channels
(typically > 100) and Nrank is the rank of the decomposed template (typically 3). This follows from
the observation that

V ? Kn = V ? (UnWn)

=
∑
j

(Un(:, j)T · V ) ? Wn(j, :), (5)

where Un(:, j) is understood as the j-th column of matrix Un and similarly Wn(j, :) is the j-th row
of Wn. We have thus replaced the matrix convolution V ?Kn with a matrix product UTn V and Nrank
one-dimensional convolutions. These matrix products and filtering operations were implemented
efficiently using commodity GPU hardware. Iterative updates of dC after template subtraction can
be obtained quickly using pre-computed cross-template products, as typically done in matching
pursuit25. The iterative optimization stops when a pre-defined threshold criterion on dC is larger
than all elements of dC.

3.3 Learning the templates via stochastic batch optimization

The main optimization loop re-estimates the spike times s and template waveforms K at each it-
eration, using a batch-based algorithm to accelerate the optimization and avoid local minima. The
data are divided into batches small enough to fit into GPU RAM, and batches are loaded sequen-
tially, in a random order. For each batch, spike times k are inferred with the above algorithm, using
the current waveform estimates Kn. Then, a running average update rule is run:

Anew
n (i, t0)← e−jn/ηAold

n (i, t0) + (1− e−jn/η)
σ(k)=n∑
k∈batch

V (i, s(k) + t0), (6)
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Here, An is the running average waveform for cluster n, and jn represents the number of spikes
in the current batch identified as belonging to cluster n and the running average weighs past
samples exponentially with a memory constant η (typically ranging from a few dozen to several
hundred spikes). Thus, An approximately represents the average of the past η samples assigned
to cluster n. Note that different clusters will update their mean waveforms at different rates, de-
pending on the number of spikes per batch assigned to each cluster. Since firing rates vary over
two orders of magnitude in typical recordings (from < 0.5 to 50 spikes/s), this adaptive running
average procedure allows clusters with low firing rates to nonetheless average enough of their
spikes to generate a smooth running-average template. Periodically during the optimization, we
re-estimate the low-dimensional reconstruction of each template from the running average, via an
SVD factorization (see section 2.2). The re-estimation is performed every few hundred batches,
depending on how large the batches are. In turn, the batch size is limited by the GPU memory
and the number of channels sorted together.

Like most clustering algorithms, this model is prone to non-optimal local minima. We used several
techniques to ameliorate this problem. First, we annealed several parameters during learning, to
encourage exploration of the parameter space, taking advantage of the randomness induced by
the stochastic batches. We annealed the forgetting constant p from a small value (typically 20
spikes) at the beginning of the optimization to a large value at the end (typically several hundred
spikes). We also anneal from small to large the ratio ε/λ, which controls the relative impact of
the reconstruction term and amplitude bias term in equation 2; therefore, at the beginning of the
optimization, spikes assigned to the same cluster are allowed to have more variable amplitudes.
Finally, we anneal the threshold for spike detection (see below), to allow a greater mismatch be-
tween spikes and the available templates at the beginning of the optimization. As optimization
progresses, the templates become more precise, and spikes increase their projections onto their
preferred template, thus allowing higher thresholds to separate them from the noise.

3.4 Determining overlapping spikes in the final inference step

The main loop alternating template matching and inference is run until the cost function ap-
proaches convergence (typically less than six full passes through the data). After convergence,
a final inference step is run to detect spatiotemporally overlapping spikes. To find overlapping
spikes, we iteratively estimate the best fitting templates (as done in the inference section above),
and subtract them off from the raw data. This algorithm is a variant of matching pursuit, which
we have parallelized to efficiently implement it on consumer GPU hardware. To see why this
parallelization obtains good results, consider the cost improvement matrix dC(n, t). In standard
matching pursuit, when the largest element of this matrix is found and the template subtracted,
no values of dC need to change except those very close in time to the fitted template (ts samples
away). Thus, instead of finding the global maximum of dC like in sequential matching pursuit, we
can find local maxima above the threshold criterion, and impose a minimal distance (ts) between
such local maxima. The identified spikes can then be processed in parallel without affecting each
other’s representations.
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Figure 3. Hybrid ground truth performance of proposed (Kilosort) versus established (KlustaKwik) algorithm.
abc, Schematic of dataset generation. d, False positive rates. e, Misses. f, Total score. ghi, Same as (def) after greedy
best possible merges. j, Number of merges required to reach best score.
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4 Benchmarks

To evaluate the algorithm’s performance, we first timed it on several large-scale datasets. The
average run times for 32, 128 and 384 channel recordings were 10, 29 and 140 minutes, on
a single GPU-equipped workstation (GTX 980Ti). These were significant improvements over an
established framework (masked KlustaKwik,18), which needed 480 minutes to sort the 32 channel
recording, and 15,000 minutes (10 days) to sort the 128 channel recording, while running on a
CPU cluster (we did not attempt to run KlustaKwik on 384 channel recordings).

We next asked whether these significant improvements in speed had come at the expense of
accuracy. We compared Kilosort and Klustakwik on 32 and 128 channel recordings, using a
technique known as “hybrid ground truth”18 (Fig. 3a-c). We detail here only the 32 channel
benchmarks, which we created by cropping the full 128 channel hybrid benchmark (Fig. 3a-c),
which we were able to run with many ground truth neurons. For results on the 128 channel
recordings, comparing Kilosort, KlustaKwik and other methods, see
http://phy.cortexlab.net/data/sortingComparison/.

To create a hybrid ground truth data set, we first selected all the clusters from a recording that
had been previously analyzed with KlustaKwik, and curated by a human expert. For each spike,
we extracted its raw waveform and denoised it with an SVD decomposition (keeping the top 7
dimensions, so that waveform variability due to bursting and drift could be modeled accurately).
We then added the de-noised waveforms at a different but nearby spatial location on the probe
with a constant channel shift, chosen randomly for each neuron. To avoid increasing the spike
density at any location on the probe, we also subtracted off the denoised waveform from its original
location. This technique therefore produces a dataset with very similar spike waveforms, waveform
variability, noise, and synchrony to those found in the original data, but where a large set of spike
times are known with 100% accuracy.

Kilosort performed better than KlustaKwik on these hybrids ground truth data, finding more spikes
for each of the ground truth cluster (Fig. 3d). We ran both Kilosort and KlustaKwik on 16 instan-
tiations of hybrid ground truth data. To evaluate performance, we matched ground truth neurons
with clusters identified by the algorithms to find the maximizer of the score

score = 1−miss rate− false positive rate,

where the false positive rate was normalized by the number of spikes in the test cluster, and the
miss rate was normalized by the number of spikes in the ground truth cluster; values close to 1
therefore indicate well-sorted units. Both Kilosort and KlustaKwik performed well (Fig. 3d), with
Kilosort producing significantly more neurons with well-isolated clusters (53% vs 35% units with
scores above 0.9).

Kilosort also outperformed Klustakwik in terms of best achievable score following manual sorting
of the automated results (Fig. 3g-j). Because manually merging an over-split cluster is easier,
less time-consuming, and less error-prone than splitting an over-merged cluster, algorithms are
typically biased towards producing more clusters than neurons. Both Kilosort and KlustaKwik had
such a bias, producing between two and four times more clusters than the expected number of
neurons. To estimate the best achievable score after operator merges, we took advantage of
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Figure 4. PC and feature-space projections of two pairs of clusters that should be merged. a,e, Mean waveforms
of merge candidates. b,f, Spike projections into the top PCs of each candidate cluster. c,g, Template feature projections
for the templates corresponding to the candidate clusters. d,h, Discriminant of the feature projections from (cg) (see
main text for exact formula).

the ground truth data, and automatically merged together candidate clusters so as to greedily
maximize their score. Final best results as well as the required number of matches are shown
in Figure 3g-j (Kilosort vs KlustaKwik 69% vs 60% units with scores above 0.9). The relative
performance improvement of Kilosort is clearly driven by fewer misses (Fig 3h), which are likely
due to its ability to detect overlapping spikes.

5 Extension: post-hoc template merging

We could further reduce human operator work by performing most of the merges in an automated
way. The most common oversplit clusters show remarkable continuity of their spike densities (Fig.
4): for such cluster pairs, no discrimination boundary can be identified orthogonal to which the
oversplit cluster appears bimodal. Instead, these clusters arise as a consequence of the algorithm
partitioning clusters with large variance into multiple templates, so as to better explain their total
variance. In Kilosort, we can exploit the fact that the decision boundaries between any two clusters
are planes∗ to derive an automatic merging heuristic. Indeed, if two clusters belong to the same

∗To see why the decision boundaries in Kilosort are linear, consider two templates Ki and Kj and consider that we
have arrived at the instance of template matching where a spike k needs to be assigned to one of these two templates.

Their respective cost function improvements are dC(i, t) =
a2
i

bi
, and dC(j, t) =

a2
j

bj
, using the convention from equations

3. The decision of assigning spike k to one or the other of these templates is then equivalent to determining the sign of
dC(i, t)− dC(j, t), which is a linear discriminant of the feature projections

sign(dC(i, t)− dC(j, t)) = sign(ai/b
1
2
i − aj/b

1
2
j ) (7)
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neuron, their one-dimensional projections in the space orthogonal to the decision boundary will
show a continuous distribution (Fig. 4cd and 4gh), and the clusters should be merged. We use
this idea to sequentially merge any two clusters with continuous distributions in their 2D feature
spaces. Note that projecting both clusters using a single set of principal components for each
cluster’s main channel (as would typically be done during manual curation) is much less indicative
of a potential merge (Fig 4b and 4f).

5.1 Complete spike-sorting pipeline

The code is available online at https://github.com/cortex-lab/Kilosort, and can be used together
with Phy, a graphical user interface for refining the results of spike sorting
(https://github.com/kwikteam/phy ; Ref.18). We also offer a CPU-based implementation of Kilosort,
i.e. one that not requires a GPU, but note that even low-cost commodity GPUs outperform this
implementation by at least an order of magnitude.

6 Discussion

We have described a new framework for spike sorting of high-channel count electrophysiology
data. This framework offers substantial accuracy and speed improvements, while also reducing
the amount of manual work required to isolate single units. Kilosort is currently enabling spike
sorting of up to 1,000 neurons recorded simultaneously in awake animals (see
http://data.cortexlab.net/dualPhase3) and will help to enable the next generation of large-scale
neuroscience.

The time taken to run Kilosort scales linearly with the number of recorded neurons, rather than the
number of channels, due to the low-dimensional parametrization of template waveforms. Impor-
tantly therefore, no performance penalty is incurred by using electrodes of arbitrarily high density.

Although we have defined a heuristic which eliminates the need for many manual merges, operator
curation is still required, primarily due to non-stationarities in the recordings such as electrode drift.
We anticipate that several strategies combined will reduce this problem. One strategy could involve
modeling more explicitly the variability of the templates as a function of time. A second strategy,
particularly appropriate for high-density probes, will be to detect the drifts and spatially shift the
raw recordings by the inverse of the drifts. Although the drifts cannot be detected from the uniform
background activity or the LFP, they can be detected when enough spikes appear to be shifted
in one direction more than expected by chance. With such an approach, the possibility of fully
automatic spike sorting might soon become reality.
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where bi and bj do not depend on the data and ai,j are linear functions of the raw voltage, hence the decision boundary
between any two templates is linear (Fig. 4).
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