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Abstract. The thalamus and cerebral cortex are linked and auditory sectors of TRN share many of the
same organizational features. Each of these sectorstogether to form a vast network of interconnections.

Different modes of interactions among the cells in this contains maps, which are related to its inputs and
outputs, and organizational components called ‘slabs.’network underlie different states of consciousness,

such as wakefulness and sleep. Interposed between the It is proposed that, during wakefulness, TRN is cru-
cially involved in resetting the activity levels in sen-dorsal thalamus and cortex are the GABAergic neu-

rons of the thalamic reticular nucleus (TRN), which sory nuclei of the dorsal thalamus, which allows the
cortex to actively and periodically compare its on-play a pivotal role not only in switching between the

awake and sleep states but also in sensory processing going sensory processing with the available sensory
during the awake state. The visual, somatosensory, information.
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Introduction

In mammals, neurons in the thalamus and cerebral
cortex form a vast network of interconnections [1–7].
Different modes of interactions within this network
underlie different states of consciousness, such as wake-
fulness and sleep [1, 4, 8–11]. The neural mechanisms
that give rise to changes from one conscious state to
another operate in the thalamus [1, 3, 4, 6, 8–17].
During wakefulness, sensory information gains access
to the cortex only after considerable processing in the
thalamus and, when falling asleep, the thalamus func-
tionally disengages the cortex from ascending sensory
inputs. A key player involved in these mechanisms is the
thalamic reticular nucleus (TRN), which in carnivores
includes the perigeniculate nucleus (PGN). The crucial
role that TRN plays in promoting sleep- and wake-

related thalamic activity is well established [1, 4, 8–11,
14, 18; see also 3, 6, 13, 15–17, 19, 20]. However, the
function of this nucleus in thalamic sensory processing
during wakefulness is still far from clear. Thus, the
purpose of this review is to inquire into the role(s) that
TRN might play in sensory processing in relation to our
current understanding of the anatomical connectivity of
this nucleus.

The thalamic reticular nucleus

A derivative of the ventral thalamus [21], TRN is a
sheet of cells that surrounds much of the dorsal thala-
mus and lies between the dorsal thalamus and the
cortex (fig. 1). The nucleus is bordered medially by the
external medullary lamina (EML) and laterally by the
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internal capsule (IC). Because of its anatomical posi-
tion, TRN is traversed across its thickness by virtually
all axons passing between the dorsal thalamus and
cortex, giving the nucleus its reticulated appearance and
name. As these thalamocortical and corticothalamic
axons pass through TRN, many of them give off collat-
erals [22–24], providing the nucleus with both dorsal
thalamic [24] and cortical [24, 25] sources of innervation
(fig. 1). These collaterals extend from their parent axons
at approximately right angles and thus are generally
oriented parallel to the reticular plane [26–32]. Further-
more, the cortical afferents to TRN are specifically from
layer VI [30, 31]. TRN also receives afferents from a
variety of nonthalamic subcortical structures, such as
the brainstem reticular formation [33–40] and the basal
forebrain [35, 36, 41–43].
The main targets of the efferents of TRN are dorsal
thalamic nuclei [22–24, 44]. Some of these nuclei can be
classified as ‘first order’ or ‘higher order’ [5, 6, 45] and
representations of each sensory modality are pre-
sumably contained in at least one first-order nucleus
and at least one higher-order nucleus. First-order thala-
mic nuclei receive their main driving inputs through
ascending sensory pathways and transmit information
about stimuli in the sensory periphery to the cortex.
Higher-order thalamic nuclei are thought to receive

Figure 2. A labelled thalamic reticular cell and labelled thalamo-
cortical and corticothalamic axons after a small crystal of DiI was
placed into the dorsal thalamus of a rabbit. Note the extensive
distribution of the reticular dendrites and their position relative to
the traversing axons.

their main driving inputs through descending pathways
from cortical layer V and transmit information about
sensory processing in one cortical area to another corti-
cal area.
The mammalian TRN appears to be made up entirely
of �-aminobutyric acid (GABA)ergic neurons [rodent:
46–49; primate: 50; carnivore: 47, 51–54; lagomorph
and marsupial: 55]. The reticular somata are usually
elongated parallel to the plane of TRN and the reticular
dendrites extend for relatively long distances, forming
disc-shaped fields that also lie parallel to the TRN plane
[23, 53, 56–62]. Figure 2 shows a reticular cell in the
rabbit’s TRN, labelled with the fluorescent tracer DiI,
and illustrates the orthogonal relationship between the
dendrites of a reticular cell and traversing thalamocorti-
cal and corticothalamic axons.

Thalamic reticular sectors

One striking organizational feature of TRN is its parti-
tion into several well-defined sectors that are distributed
along the plane of the nucleus like a patchwork quilt. A
TRN sector is defined as that region that (i) receives
projections from a particular dorsal thalamic nucleus
and the cortical area that is reciprocally connected to
that nucleus and (ii) sends projections back to the

Figure 1. Schematic representation in the coronal plane of the
position of the thalamic reticular nucleus (R) in relation to the
dorsal thalamus (DT) and the cerebral cortex (CTX). Axons from
the dorsal thalamus and cortex give off collaterals as they traverse
the reticular nucleus.
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dorsal thalamic nucleus from which it receives projec-
tions [24, 25, 63–65]. The topographic organization of
the reticular sectors was initially thought to reflect a
general cortical organization, whereby adjacent areas
along the cortical sheet would be represented by adja-
cent sectors along the reticular sheet. However, we now
know that several functionally related cortical areas can
send projections to the same reticular sector and that
one reticular sector can receive projections from and
send projections to several functionally related dorsal
thalamic nuclei. The projections of single cells from a
given reticular sector usually have restricted terminal
fields within a dorsal thalamic nucleus [62] and, together
with the thalamoreticular projections, these reticulotha-
lamic projections usually form open-loop rather than
closed-loop circuits [66]. In regard to the role of TRN in
sensory processing during wakefulness, I will focus on
what is known about the functional connectivity of the
visual, somatosensory, and auditory sectors of TRN.

The visual reticular sector

The visual sector of the mammalian TRN occupies a
discrete dorsocaudal region of the nucleus [rodent: 58,
67, 68; lagomorph: 69–71; carnivore: 72; primate: 73–
76], which specifically includes PGN in carnivores [72,
77, 78]. This region lies adjacent to the dorsal lateral
geniculate nucleus (dLGN), a first-order visual nucleus
of the dorsal thalamus. The visual sector receives excita-
tory afferents from the visual cortex [52, 57, 58, 79, 80],
which appear to provide predominantly ‘modulatory’
inputs [17, 81]. The visual sector also receives excitatory
afferents from dLGN [67, 68, 70, 78, 82–85] and from
higher-order visual nuclei of the dorsal thalamus, the
lateral posterior nucleus (LP) and pulvinar (Pul) [84–
87]. These thalamic afferents provide ‘driving’ inputs
[17, 52, 57, 58, 80]. In return, the visual sector sends
efferents to dLGN, which make F-type synapses [76,
88–90] and which have inhibitory effects on lateral
geniculate neurons [67, 91–99]. Thus, cells in dLGN
and the visual sector of TRN form intrathalamic excita-
tory-inhibitory networks [18, 100–104]. It would appear
that open-loop circuits are a more common feature of
these networks than closed-loop circuits [97, 104]. The
visual sector also sends efferents to LP and Pul [89,
105].

Organizational components

Each first-order sensory nucleus in the dorsal thalamus
is a three-dimensional structure that contains a map of
a peripheral receptor surface (e.g., retina, skin, or coch-
lea). The map of the retina and the map of the skin each
occupy two dimensions within a nucleus, whereas the

map of the cochlea occupies only one nuclear dimen-
sion. The other dimension(s) of a nucleus contains
organizational components, which are continuously dis-
tributed without borders and are regions of relative
isorepresentation of local areas of the receptor surface.
In dLGN these components are ‘columns’ [106, 107; see
also 108] that extend along one entire dimension of the
nucleus perpendicular to the dimensions that contain
the retinotopic map. The columns are formed either by
terminals in dLGN from focal areas of cortex or by
lateral geniculate neurons that project to focal areas of
cortex. Because the visual sector of TRN is also a
three-dimensional structure, it should also contain orga-
nizational components and these would indicate not
only the presence of a map but also its orientation. It
was initially thought that each sector of TRN would
reflect a cortical organization [25, 63, 64] whereby the
organizational components would extend across the
thickness of the nucleus. Contrary to this expectation,
in the visual sector of the rabbit [71; see also 69], the
bushbaby [75, 76; see also 73], and the rat [109], the
organizational components are ‘slabs’ that are oriented
parallel to the plane of TRN. As demonstrated in the
rabbit’s visual sector [71], figure 3 shows horizontal
sections through both a slab of terminal labelling (fig.
3A), which resulted from an injection of horseradish
peroxidase (HRP) into visual cortical area 1 (V1), and a
slab of labelled TRN cells (fig. 3B), which resulted from
an injection of HRP into dLGN. However, the organi-
zational components in the carnivore PGN presumably
extend across the thickness of this nucleus perpendicu-
lar to the retinotopic map (see below).

Topographic organization of inputs and outputs

The visual sector receives afferents from several, if not
all, visual areas of the cortex [72, 74]. The terminal
distributions of these afferents provide a major clue as
to the organization of the efferents of the visual sector
(cf. figs. 3A and B). In this sector, inputs from V1 (area
17) and from higher-order visual areas terminate, re-
spectively, in an outer zone (closest to IC) and an inner
zone (closest to EML) in the rabbit [69, 71], the bush-
baby [75, 76], and the rat [109, 110]. Furthermore, in
the outer V1/area 17-related zone, there is a well-orga-
nized retinotopic map of cortical inputs that is oriented
perpendicular to the plane of TRN and to the organiza-
tional components of the map (see fig. 3A) [69, 71, 75,
109]. However, in the cat, inputs from area 17 terminate
in the inner-lying PGN [32] and the map of cortical
inputs in this nucleus is presumably oriented parallel to
its plane [72].
The visual sector sends efferents to both first-order and
higher-order dorsal thalamic nuclei and the thalamic
projections of single neurons from this sector have
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restricted terminal fields [62, 90, 111, 112]. Figure 4
shows the axonal distribution of an HRP-labelled PGN
cell within dLGN of the cat [111]. The outputs from the
visual sector to dLGN and to LP and/or Pul arise from
outer and inner zones, respectively, in the rabbit [71],
the bushbaby [75, 76], and the rat [109, 110; see also 84,

Figure 4. Reconstruction of an HRP-labelled cell in the perigenic-
ulate nucleus (PGN) showing a dense axonal arbor that is re-
stricted to lamina A of the dorsal lateral geniculate nucleus.
Dorsal is at the top and medial is to the left (scale bar=100 �m).
Below is shown a lower-power outline of the dorsal lateral genic-
ulate nucleus and the location of the labelled perigeniculate soma
(asterisk) (scale bar=1.0 mm). Reprinted with permission from
Uhlrich et al. [111] T, © 1999 The American Physiological Soci-
ety, Bethseda, MD.

Figure 3. Horizontal sections through the thalamic reticular nu-
cleus of the rabbit. Rostral is at the top and medial is to the right.
Scale bar=200 �m. Reprinted with permission from Crabtree and
Killackey [71], © 1999 Blackwell Science Ltd, Oxford. (A) La-
belled terminals after an injection of horseradish peroxidase
(HRP) into visual cortical area 1. The borders of the nucleus are
indicated by the dashed line. (B) Labelled cells after an injection
of HRP into the dorsal lateral geniculate nucleus. The borders of
the reticular nucleus are indicated by the dashed line.

85]. Furthermore, the reticular cells projecting to dLGN
form a well-organized retinotopic map [71, 75]. This
map is oriented perpendicular to the plane of TRN and
to the organizational components of the map (see fig.
3B) and is in register with the map formed by V1/area
17 inputs. Presumably, the dLGN-related map in the
carnivore PGN is oriented parallel to the plane of this
nucleus. However, the reticular cells projecting to LP
and/or Pul do not appear to form a map [75, 86, 87].
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The visual sector also receives afferents from first-order
and higher-order nuclei of the dorsal thalamus [24, 26,
68, 86, 87]. In the rabbit [71] and the bushbaby [75],
there appears to be a well-organized retinotopic map of
lateral geniculate inputs in the visual sector, which is in
register with the maps formed by V1/area 17 inputs and
by reticular cells that project to dLGN. However, in the
cat, inputs in the visual sector from cells in the LP-Pul
complex do not appear to form a map [86].

Receptive fields

Compared to the receptive fields of neurons in dLGN,
the receptive fields of neurons in the visual sector of
TRN, including PGN in carnivores, differ substantially
[68, 77, 78, 81, 113]. They are noticeably larger, exhibit
both on- and off-center responses, and are binocular.
Nevertheless, there is evidence for a well-organized
retinotopic map in the rat’s TRN [68] and the cat’s
PGN [77]. The map in the cat’s PGN is unique in that
it reflects a direct spatial continuation of the organiza-
tional components in a first-order dorsal thalamic nu-
cleus (i.e., dLGN).

The somatosensory reticular sector

In the mammalian TRN, the somatosensory sector oc-
cupies a discrete centroventral region of the nucleus
[rodent: 58, 114–117; primate: 118; carnivore: 53, 118–
120; lagomorph: 121]. This region lies adjacent to the
first-order somatosensory nuclei of the dorsal thalamus,
the ventrobasal complex (VB). The somatosensory sec-
tor receives excitatory afferents from the somatosensory
cortex [122, 123], which presumably provide modula-
tory inputs. The somatosensory sector also receives
excitatory afferents from VB [53, 114, 118, 123–126]
and from the medial part of the posterior complex
(POm) [127], which is a higher-order somatosensory
nucleus of the dorsal thalamus. These thalamic afferents
provide driving inputs. In return, the somatosensory
sector sends efferents to VB, which make F-type
synapses [122, 128, 129] and which have inhibitory
effects on ventrobasal neurons [93, 125, 126, 130–136].
These intrathalamic connections allow cells in VB and
the somatosensory sector of TRN to form excitatory-in-
hibitory networks [137], which appear to be largely
made up of open-loop circuits [125; see also 131]. The
somatosensory sector also sends efferents to POm [53,
127, 138].

Organizational components

Organizational components in VB are composed of
elongated clusters of neurons that form ‘barreloids’ in

the rodent [139, 140] or ‘rods’ in the primate [141, 142].
These components in VB extend along one dimension
of the complex at right angles to the dimensions that
contain the somatotopic map. In the cat, the nuclei
themselves that make up VB provide a rather striking
example of large-scale organizational components. Fig-
ure 5A shows an oblique coronal section through the
cat’s VB following staining with monoclonal antibody
Cat-301 [143]. The staining pattern exactly corresponds
not only to the nuclei of VB, the ventroposterior medial

Figure 5. (A) Oblique coronal section through the ventrobasal
complex of a cat showing immunoreactivity to monoclonal anti-
body Cat-301. Dorsal is at the top and medial is to the right. The
Cat-301-stained tissue is divided into three compartments corre-
sponding medially to laterally with the ventroposterior medial, the
medial part of the ventroposterior lateral, and the lateral part of
the ventroposterior lateral nuclei. Scale bar=500 �m. Reprinted
with permission from Crabtree and Kind [143], © 1999 Kluwer
Academic Publishers, Dordrecht. (B) Schematic representation of
an oblique coronal section through the cat’s ventrobasal complex.
The somatotopic map as determined by evoked potentials to
peripheral stimulation is shown. Adapted from Mountcastle and
Henneman [144] and Rose and Mountcastle [145].
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Figure 6. Horizontal sections through the somatosensory thala-
mus of the cat. Rostral is at the top and medial is to the right.
Reprinted with permission from Crabtree [120], © 1999 John
Wiley & Sons, Inc., New York. (A) Labelled cells in the thalamic
reticular nucleus after the injection of wheatgerm agglutinin
(WGA)-HRP shown in B. The dashed lines indicate the rostrolat-
eral border of the ventrobasal complex (lower right dashed line)
and the inner and outer borders of the reticular nucleus (central
pair of dashed lines). Scale bar=200 �m. (B) Reaction product
after an injection of WGA-HRP in the medial part of the ventro-
posterior lateral nucleus. The dashed lines indicate the borders of
the nuclei of the ventrobasal complex (center) and the thalamic
reticular nucleus (upper left-hand corner). Scale bar=500 �m.

strated in the cat’s somatosensory sector [120], figure 6
shows a horizontal section through a slab of labelled
cells in TRN (fig. 6A) and a horizontal section through
an injection site in VB (fig. 6B). The labelled cells in
TRN (fig. 6A) resulted from a large injection of wheat-
germ agglutinin (WGA)-HRP in the forelimb represen-
tation of VB (fig. 6B).

Topographic organization of inputs and outputs

The somatosensory sector receives afferents from some,
if not all, somatosensory areas of the cortex. Again, the
terminal distributions of these afferents provide a major
clue to the organization of the efferents of the so-
matosensory sector. In this sector in the mouse [117],
the cat [119], and the rabbit [121], inputs from so-
matosensory area 1 (S1) terminate across the entire
thickness of TRN. In the cat [119], these S1-related
inputs are overlapped by those from somatosensory
area 2. Moreover, there is a well-organized somatotopic
map of S1 inputs that is oriented perpendicular to the
plane of TRN and to the organizational components of
the map [117, 119, 120].
The somatosensory sector sends efferents to both first-
order and higher-order dorsal thalamic nuclei. The
overall impression is that the thalamic projections of
single neurons from this sector have relatively restricted
terminal fields [53, 138, 146]. For the rat, figure 7 shows
the axonal distribution of a biocytin-labelled TRN cell
within VB [146] and figure 8 shows the axonal distribu-
tion of a biocytin-labelled TRN cell within POm [138].
Whereas in the rat the outputs from the somatosensory
sector to VB and to POm tend to arise mainly from
outer and inner zones, respectively [127, 138], in the cat
these outputs arise from overlapping zones across the
thickness of the sector [120]. Furthermore, well over
half of the cells in the cat’s somatosensory sector
projects to both VB and POm. In addition, the reticular
cells projecting to VB form a well-organized somato-
topic map [120, 138]. This map is oriented perpendicu-
lar to the plane of TRN and to the organizational
components of the map (see fig. 5A) and is in register
with the map formed by S1 inputs. However, the reticu-
lar cells projecting to POm do not appear to form a
map [120, 138].
The somatosensory sector also receives afferents from
first-order and higher-order nuclei of the dorsal thala-
mus [24, 27, 28]. In the cat [120], there appears to be a
well-organized somatotopic map of ventrobasal inputs
in the somatosensory sector, which is in register with
the maps formed by S1 inputs and by reticular cells that
project to VB. However, inputs in the somatosensory
sector from cells in POm do not appear to form a map
[120].

nucleus and the medial and lateral divisions of the
ventroposterior lateral nucleus, but also to the somato-
topic map in VB (fig. 5B) as determined electrophysio-
logically [144, 145]. The somatosensory sector of TRN
should also contain organizational components, indicat-
ing the presence and orientation of a map. Again, the
organizational components in this sector are ‘slabs,’
formed either by terminals from focal areas of cortex or
by reticular cells that project to the dorsal thalamus,
and these slabs lie parallel to the plane of TRN [cat:
119, 120; rabbit: 121; rat: 138; see also 117]. As demon-
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Receptive fields

Neurons in the somatosensory sector of TRN have
response properties that differ substantially from those
of VB neurons. In the cat [53, 118] and the macaque
monkey [118], neurons in the somatosensory sector
have quite large receptive fields. Although neurons in
the somatosensory sector of the rat have small receptive
fields [124, 126], such neurons lack direction selectivity,
which is a property of VB neurons. There is evidence
for a well-organized somatotopic map in the rat’s TRN
[115] and some evidence for such a map in TRN of the
cat and the macaque monkey [118].

Figure 8. Reconstruction of a biocytin-labelled cell in the thala-
mic reticular nucleus (R) showing a dense axonal arbor within the
medial part of the posterior complex (POm). The reticular axon
traverses the ventrobasal complex (VB) to reach the posterior
complex. Rostral is at the top and medial is to the left. The inset
shows a lower-power outline of the section, indicating the location
(stippling) of the labelled axonal arbor. Scale bar=200 �m.
Reprinted with permission from Pinault et al. [138], © 1999
Blackwell Science Ltd, Oxford.

Figure 7. Reconstruction of a biocytin-labelled cell in the thala-
mic reticular nucleus (R) showing a dense axonal arbor within the
ventrobasal complex (VB). Rostral is at the top and medial is to
the right. The inset shows a lower-power outline of the section,
indicating the location of the labelled thalamic reticular soma.
Scale bar=100 �m. Reprinted with permission from Cox et al.
[146], © 1999 John Wiley & Sons, Inc., New York.

The auditory reticular sector

The auditory sector of the mammalian TRN occupies a
discrete ventrocaudal region of the nucleus [rodent: 58,
147; carnivore: 148–151; primate: 152]. This region lies
adjacent to the medial geniculate complex (MG), which
contains first-order and higher-order nuclei of the dor-
sal thalamus. The auditory sector presumably receives
excitatory modulatory afferents from the auditory cor-
tex [29]. The auditory sector also receives excitatory
afferents from MG [147], which provide driving inputs.
In return, the auditory sector sends efferents to MG,
which make F-type synapses [153] and which have in-
hibitory effects on medial geniculate neurons [93, 147,
154]. Presumably, as in the visual and somatosensory
thalamus, cells in MG and the auditory sector of TRN
form intrathalamic excitatory-inhibitory networks.

Organizational components

In the ventral nucleus of MG (MGv), a first-order
dorsal thalamic nucleus, organizational components are
‘lamellae’ of somata, dendrites, and afferent fibers [155;
see also 156–158]. These components in MGv extend
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along two dimensions of the nucleus perpendicular to
the dimension that contains the one-dimensional coch-
leotopic map. The auditory sector of TRN should
also contain organizational components and these
would indicate not only the presence of a map but
also its orientation. Once again, the organizational
components in this sector are ‘slabs,’ formed by reticu-
lar cells that project to the dorsal thalamus, and these
slabs are also oriented parallel to the plane of TRN
[151; see also 152]. As demonstrated in the cat’s
auditory sector [151], figure 9 shows horizontal sec-
tions through slabs of labelled TRN cells following an
injection of WGA-HRP in the middle- to high-fre-
quency representation in MGv (fig. 9A) and in the
middle- to low-frequency representation in MGv (fig.
9B).

Topographic organization of inputs and outputs

The auditory sector receives afferents from some, if not
all, auditory areas of the cortex [152]. As in the visual
and somatosensory sectors of TRN, the terminal distri-
butions of these afferents may have an organization
similar to that of the efferents of the auditory sector. In
the auditory sector of the bushbaby, inputs from audi-
tory areas 1 and 2 terminate across most or all of the
entire thickness of TRN [152]. Whether there are coch-
leotopic maps of inputs from these cortical areas re-
mains to be determined.
The auditory sector sends efferents to both first-order
and higher-order dorsal thalamic nuclei. In the cat, the
outputs from the auditory sector to the medial part of
MGv (MGvm) and to the lateral part of MGv (MGvl)
arise from outer and inner zones, respectively [151; see
also 152]. Thus, the reticular neurons projecting to
MGv appear to form a well-organized cochleotopic
map. This map is oriented perpendicular to the plane of
TRN and to the organizational components of the map
(see fig. 9). Furthermore, the outputs from the auditory
sector to the medial nucleus of MG (MGm) and to the
dorsal nucleus of MG (MGd) also arise from outer and
inner zones, respectively [151; see also 152]. Thus, out-
puts to MGvm and MGm arise from overlapping zones,
as do outputs to MGvl and MGd. In addition, many
cells in the cat’s auditory sector project either to both
MGvm and MGm or to both MGvl and MGd [151].
MGm and MGd are presumably higher-order nuclei.
The auditory sector also receives afferents from first-or-
der and higher-order nuclei of the dorsal thalamus [24,
151]. There appears to be a well-organized map of
ventral medial geniculate inputs in the auditory sector
[151; see also 152], which is in register with the map
formed by reticular cells that project to MGv.

Receptive fields

Compared to receptive fields of neurons in MG, the
receptive fields of neurons in the auditory sector of
TRN differ substantially [149, 150]. They have much
more complex discharge properties and exhibit broader
frequency tuning. In the cat there is some evidence for a
cochleotopic map in the TRN [150].

Overview of sensory thalamic reticular sectors

The visual, somatosensory, and auditory sectors of
TRN have many similar organizational features. Each
of these sectors occupies a discrete region of TRN and
receives excitatory afferents from a particular set of
functionally related areas of the cerebral cortex and
nuclei of the dorsal thalamus. Afferents from the dorsal
thalamus provide driving inputs and afferents while

Figure 9. Horizontal sections through the thalamic reticular nu-
cleus (TRN) of a cat. Rostral is at the top and medial is to the
right. The lower left dashed line indicates the borders of the optic
tract and the ventral lateral geniculate nucleus, the lower right
dashed line indicates the inner border of the dorsal part of the
zona incerta, and the central pair of dashed lines indicates the
inner and outer borders of TRN. Reprinted with permission from
Crabtree [151], © 1999 John Wiley & Sons, Inc., New York. (A)
Labelled cells after an injection of WGA-HRP in the medial part
of the ventral nucleus of the medial geniculate complex. (B)
Labelled cells after an injection of WGA-HRP in the lateral part
of the ventral nucleus of the medial geniculate complex. Scale
bar=500 �m.
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those from the cortex appear to provide mainly modu-
latory inputs. Furthermore, each sector contains zones,
or compartments, that are related to different cortical
areas and to different dorsal thalamic nuclei. However,
differences can be seen among the sensory sectors in the
degree to which these compartments overlap or, con-
versely, in the degree to which they are segregated. In
addition, each sector receives convergent inputs from
both the cortex and dorsal thalamus, which is particu-
larly evident from the receptive field properties of sen-
sory TRN cells. Thus, the receptive fields of these cells
would have components that reflect the properties of
different sources of inputs. Moreover, each sensory
sector sends inhibitory efferents back to the functionally
related dorsal thalamic nuclei from which it receives
inputs. Overall, these outputs have relatively restricted
terminal fields and there is good evidence that sensory
TRN neurons can project to more than one dorsal
thalamic nucleus. The outputs from the sensory sectors
complete intrathalamic circuits, which appear to be
predominantly composed of open loops rather than
closed loops. Thus, sensory cells in the dorsal thalamus
and TRN form a network of excitatory-inhibitory
interconnections.
The sensory sectors of TRN each contain organiza-
tional components. These have been identified as either
slabs of cortical terminals or slabs of cells projecting to
the dorsal thalamus. Contrary to an early expectation,
in which the components were thought to reflect a
cortical organization and to extend across the thickness
of TRN (fig. 10 top), the slabs of cortical terminals, for
example, are oriented parallel to the plane of TRN (fig.
10 bottom). Consequently, these slabs are discretely
aligned with the dendrites of cells that occupy the same
zone within the thickness of TRN (fig. 10 bottom)
rather than with the dendrites of cells that occupy the
same region across the thickness of the nucleus (fig. 10
top). Terminals from the dorsal thalamus are also
aligned with the reticular dendrites. This remarkable
spatial alignment of cortical and dorsal thalamic termi-
nals and reticular dendrites accounts for the similar
orientation between slabs of terminals and slabs of cells
that project to the dorsal thalamus (cf. fig. 3A with figs
3B, 6A, 9). Furthermore, the sensory sectors contain
maps that are related to inputs from primary, or first-
order, cortical areas, reticular cells projecting to a first-
order dorsal thalamic nucleus, and inputs from a
first-order dorsal thalamic nucleus. These maps lie per-
pendicular to the plane of TRN and to the organiza-
tional components and, where information is available,
all of the input and output maps are in register. How-
ever, the orientation of the organizational components
and map in the carnivore PGN appears to be exactly
orthogonal to the orientation of those in the carnivore
TRN and in TRN of other mammalian species. In

Figure 10. Schematic representations of possible orientations of
organizational components in the sensory sectors of the thalamic
reticular nucleus. These components are shown as cylinders and
the inner and outer borders of the reticular nucleus are indicated
by the dashed lines. Note the very different relationship between
the components and the dendrites of the reticular neurons in each
scheme. The scheme at the top represents the traditional view of
the organization reticular nucleus [25, 63, 64]. That at the bottom
represents the current view of the organization in the sensory
reticular sectors. The exception to this current view is the organi-
zation in the perigeniculate nucleus (part of the visual reticular
sector in carnivores), which presumably reflects the organizational
scheme shown at the top. The reconstructed cells are reprinted
with permission from Lübke [60], © 1999 John Wiley & Sons,
Inc., New York.

addition, sensory TRN cells that project to a higher-or-
der dorsal thalamic nucleus or the thalamoreticular
inputs from such a nucleus appear not to be mapped.
Whether there are topographic projections from higher-
order cortical areas to the sensory TRN sectors remains
to be determined.
Each sensory sector of TRN has an organization that
mimics rather than mirrors the organization in the
functionally related first-order nucleus of the dorsal
thalamus. Such mimicry is seen not only in the orienta-
tion of the reticular organizational components but also
in the positioning of the axes (visual and somatosensory
sectors) or axis (auditory sector) of the reticular maps.
Because these maps, except the one in PGN, lie perpen-
dicular to the plane of TRN, continuous mapping of
cortical inputs, dorsal thalamic inputs, or outputs to the
dorsal thalamus is constrained by the inner and outer
borders of the nucleus. Such constraints create signifi-
cant discontinuities, or breaks, between sensory sectors
relative to their cortical or thalamic connections. For
example, when mapped inputs from one cortical area
(or dorsal thalamic nucleus) reach an inner or outer
border of TRN, then inputs from an adjacent cortical
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area (or dorsal thalamic nucleus) must project onto a
different sector or onto the same sector that receives
inputs from the first cortical area (or dorsal thalamic
nucleus). Similarly, when mapped outputs to one dorsal
thalamic nucleus reach an inner or outer border of
TRN, then outputs to an adjacent dorsal thalamic nu-
cleus must arise from a different sector or from the
same sector that sends outputs to the first dorsal thala-
mic nucleus. Developmentally, these discontinuities may
provide a mechanism whereby each sensory sector of
TRN can group together its connections with a particu-
lar set of functionally related cortical areas and dorsal
thalamic nuclei.

Thalamic reticular-mediated connections between dorsal

thalamic nuclei

Until recently, intrathalamic interactions were thought
of as mediated by reciprocal connections between a
given dorsal thalamic nucleus and its functionally re-
lated sector of TRN. However, in the cat’s somatosen-
sory [120] and auditory [151] sectors of TRN, cells
projecting to different modality-related nuclei of the
dorsal thalamus occupy overlapping territories. Fur-
thermore, many of these cells project to at least two
dorsal thalamic nuclei. These findings suggested that
reticular cells with outputs to one nucleus could receive
inputs from another nucleus and vice versa. These con-
nections would allow interactions between modality-re-
lated nuclei in the dorsal thalamus through a disynaptic
pathway mediated by TRN. To test this possibility, an
in vitro slice preparation was developed [127]. Horizon-
tally sectioned slices through the somatosensory thala-
mus were prepared from adolescent rats, allowing
whole-cell voltage-clamp recordings to be made from
neurons in POm (or VB) while stimulating neurons in
VB (or POm) with pressure pulses of glutamate. Figure
11 shows the slice preparation and the positioning of a
stimulating pipette in VB and a recording pipette in
POm.
Robust inhibitory postsynaptic currents (IPSCs) were
recorded in POm (or VB) cells in response to glutamate
stimulation in VB (or POm) [127]. The traces in figure
12 at the top show examples of such IPSCs, which
represent typical extremes in a wide range of responses.
In part, this variability in evoked IPSCs from one
recording to the next reflected differences in the final
concentration of glutamate that reached appropriately
connected cells and in the number of such cells that
were activated. The evoked IPSCs can be entirely ac-
counted for by the activation of a disynaptic pathway
mediated by the GABAergic neurons of TRN. Further-
more, the locations of a stimulation site in VB (or POm)
and a responsive neuron in POm (or VB) were in

somatotopic register, which could provide a major clue
as to the function of these novel circuits. A schematic
representation of the circuits that link together VB, a
first-order nucleus (FO), and POm, a higher-order nu-
cleus (HO), is shown in figure 12 at the bottom. Clearly,
these circuits point the way toward a greater complexity
in intrathalamic connectivity than previously thought.
Moreover, it is to be expected that reticular-mediated
disynaptic circuits that link together modality-related
first-order and higher-order nuclei are also present in
the visual and auditory parts of the thalamus.

Function of intrathalamic connections

From the outset of this review, the ultimate concern has
been the role(s) TRN might play in thalamic sensory
processing during wakefulness. A variety of functions
has been attributed to TRN, such as (i) modulator of
sensory transmission through the dorsal thalamus [3,
12, 159], (ii) enhancer of selected sensory transmission
through the dorsal thalamus [13, 135, 160–164], and
(iii) regulator of receptive field properties of dorsal
thalamic neurons [95, 132, 133, 150, 165]. These pro-
posed functions are not mutually exclusive and each of
them relies on the inhibitory, or hyperpolarizing, effects
exerted by reticular cells on thalamocortcial relay cells.
Clearly, such effects will affect on-going temporal and
spatial integration of diverse afferents by dorsal thala-

Figure 11. The thalamic slice preparation as it appears in the
recording chamber. Transilluminating the slice clearly reveals the
thalamic reticular nucleus (R), the ventrobasal complex (VB), the
medial part of the posterior complex (POm), and the internal
capsule (asterisk). A glutamate-filled stimulating pipette is posi-
tioned in VB and a recording electrode is positioned in POm. The
dashed lines indicate the borders of VB and POm. Scale bar=500
�m. Reprinted with permission from Crabtree et al. [127], © 1999
Nature America, Inc., New York.
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Figure 12. At the top, examples of inhibitory postsynaptic cur-
rents (IPSCs) recorded from a POm cell (top trace) and a VB cell
(bottom trace) in response to glutamate stimulation in VB or
POm, respectively. These IPSCs are not typical of the responses
recorded from VB or POm cells but represent the extremes in a
range of responses that is typical of both VB and POm cells. At
the bottom, a schematic representation of a coronal section
through the thalamus showing intrathalamic pathways linking
VB, a first-order nucleus (FO), and POm, a higher-order nucleus
(HO). These are disynaptic pathways mediated by the thalamic
reticular nucleus (R). The cells in the first-order and higher-order
nuclei project to the cortex (arrows).

order dorsal thalamic nuclei, in conjunction with topo-
graphically organized inputs from a first-order cortical
area and a first-order dorsal thalamic nucleus. Thus,
these reticular projections would exert local rather than
global effects on the cells in such nuclei. Before consid-
ering what these local effects might achieve, it would be
worthwhile to inquire as to whether dorsal thalamic
interneurons (i.e., local circuit neurons) could influence
these effects. Furthermore, the functional behavior of
thalamic neurons must also be taken into account.
In addition to thalamocortical relay cells, dorsal thala-
mic sensory nuclei also contain interneurons [2]. The
proportion of these interneurons varies widely across
different sensory nuclei and mammalian species [166].
For example, interneurons account for about 25% of
the neurons in the cat dLGN [51, 167, 168], whereas
interneurons are very scarce in the rat VB [48, 169].
Interneurons in thalamic sensory nuclei receive F-type
terminals [129, 170–173], but whether the source of
these terminals is TRN (or PGN), the interneurons
themselves [172, 174], or pretectal cells [175–177] is
unclear. What is known is that the projections of TRN/
PGN cells preferentially target thalamocortical cells in
the sensory nuclei [89, 129, 172, 175; see also 100].
Without a direct demonstration of a physiologically
active pathway from TRN/PGN to dorsal thalamic
interneurons, there is no compelling reason to believe
that these interneurons play a significant role in intra-
thalamic sensory processes mediated by TRN/PGN.
Neurons in both the dorsal thalamus and TRN/PGN
exhibit two main patterns of firing, tonic and burst
[178–188]. Each of these firing modes is triggered by
depolarizing input and the cells switch between the
modes in response to sustained changes in membrane
potential. Figure 13 shows the tonic (upper trace) and
the burst (lower trace) firing modes for a typical thala-
mic neuron that was recorded intracellularly and held at
different membrane potentials. With regard to TRN/
PGN cells, modulatory glutamatergic inputs from the
cortex are depolarizing [6, 9, 11] and promote the tonic
firing mode in these cells, whereas modulatory choliner-
gic inputs from the brainstem are hyperpolarizing [189–
196] and promote the burst firing mode in these cells.
Either mode can be triggered by the driving and depo-
larizing inputs from the dorsal thalamus [9, 11, 15].
Figure 14 shows the powerful influence that burst firing
in TRN/PGN (upper trace) has on a neuron in the
dorsal thalamus (lower trace). Following the burst, a
barrage of inhibitory, or hyperpolarizing, postsynaptic
potentials was recorded in the dorsal thalamic cell,
which would effectively silence the tonic firing of the
cell.
The organization and main functional connections of
TRN under consideration are summarized in figure 15,
according to what we currently know about the sensory

mic cells [3, 6, 9, 12, 14–17, 20, 132, 133, 135], which
will affect, in turn, the transmission of sensory informa-
tion by these cells to the cerebral cortex. However, a
rigorous assessment of any proposed function for TRN
also relies on detailed knowledge of the connectivity of
this nucleus.
One striking attribute now recognized to be shared by
the different sensory sectors of TRN is the topographic
organization of the projections of reticular cells to first-
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sectors of this nucleus. In a given sensory sector of
TRN (e.g., visual, somatosensory, or auditory), organi-
zational components A, B, and C are shown, which are
specifically connected to functionally related compo-
nents A, B, and C in the first-order cortical area (CTX)
and in the first-order dorsal thalamic nucleus (DT),
respectively. The representation, or map, of the periph-
eral receptor sheet (e.g., retina, skin, or cochlea) lies
orthogonal to components A, B, and C in each struc-
ture. It is assumed that the outputs of reticular neurons
in a given component (e.g., B) engage in within-compo-
nent circuits within TRN [53, 58, 62, 97, 125, 146,
197–201] and in predominantly open-loop circuits
within the related component (i.e., B) in the dorsal
thalamic nucleus [66, 97, 104, 125, 131]. Only inputs to
and outputs from component B in TRN are shown,
including inputs from the brainstem (BS). Although

Figure 14. Effect of burst firing recorded extracellularly in the
perigeniculate nucleus (part of the carnivore thalamic reticular
nucleus) on an intracellularly recorded neuron in the ferret’s
dorsal lateral geniculate nucleus. The burst firing is shown in the
top trace. The resultant barrage of inhibitory postsynaptic poten-
tials (arrow) in the dorsal lateral geniculate neuron is shown in the
bottom trace. Reprinted with permission from Bal et al. [100],
© 1999 The Journal of Physiology, Cambridge.

Figure 13. Different firing modes for an intracellularly recorded
neuron in the cat’s dorsal lateral geniculate nucleus. The tonic
mode is shown in the top trace and the burst mode is shown in the
bottom trace. When the cell was held at a relatively depolarized
membrane potential (−55 mV), a stream of conventional action
potentials was triggered by a depolarizing 0.3 nA current pulse
(bottom) injected into the cell. However, when the cell was held at
a relatively hyperpolarized membrane potential (−70 mV), the
same depolarizing current pulse triggered a low-threshold Ca2+

spike with a burst of conventional action potentials riding on the
crest of the spike. Reprinted with permission from Sherman and
Guillery [6], © 1999 The American Physiological Society,
Bethseda, MD.

equally applicable to components A and C, respectively,
in the cortex, dorsal thalamus, and TRN, we will now
consider the following possibilities related only to com-
ponent B in these structures.
During periods of activity of cortical and brainstem
inputs, the net effect of the tonic release of glutamate
and acetylcholine, respectively, on thalamic reticular
neurons would favor a cortical influence [178, 179,
182–184]. This would result in a depolarizing shift in
the reticular cells, priming them for the tonic firing
mode. Sensory transmission through a zone of dorsal
thalamic component B, en route to cortical component
B, would then trigger the tonic firing mode in a zone of
reticular cells in component B. The tonic firing of these
cells would inhibit both the activity in an adjacent zone
of dorsal thalamic component B (small peaks) and in an
adjacent zone of reticular cells in component B. This
latter inhibition would disinhibit the activity of the
dorsal thalamic zone in componet B (large peaks)
through which sensory information is being transmit-
ted. Thus, on-going sensory transmission through the
dorsal thalamic nucleus would be enhanced. This pro-
cess would be entirely consistent with models suggesting
that TRN enhances locally the transmission of salient
sensory information through the dorsal thalamus [13,
135, 160–164].
Alternatively, during periods of activity of brainstem
inputs and selective inactivity of cortical inputs from
component B (�100 ms) [180], there would be a suffi-
cient hyperpolarizing shift in component B reticular
cells to prime them for the burst firing mode. Sensory
transmission through a zone of dorsal thalamic compo-
nent B would then trigger the burst firing mode in a



CMLS, Cell. Mol. Life Sci. Vol. 56, 1999 695Review Article

zone of reticular cells in component B. The burst firing
of these cells would silence the activity in an adjacent
zone of dorsal thalamic component B (abolition of the
small peaks) and would prime and trigger the burst
firing mode [202] in an adjacent zone of reticular cells in
component B. Consequently, this latter burst firing
would inhibit and interrupt the activity of the dorsal
thalamic zone in component B through which sensory
information is being transmitted (abolition of the large
peaks). Thus, through TRN, the cortex could actively

and selectively reset the activity levels in a dorsal thala-
mic nucleus. This would enable shifts in the transmis-
sion of information over new channels through the
dorsal thalamic nucleus or the re-establishment of
transmission over the same channel, thereby allowing
periodic and frequent comparison of on-going cortical
sensory processing with available sensory information.
The above hypothetical processes will require revision
as new information concerning thalamic functional con-
nectivity becomes available. For example, glutamatergic
inputs can have inhibitory effects on TRN cells [203].
Whether these inputs arise from the cortex and/or the
dorsal thalamus is not yet known.
For a given sensory sector of TRN, the above processes
incorporate the well-organized topographic relationship
between inputs from first-order cortical areas and dor-
sal thalamic nuclei and outputs to first-order dorsal
thalamic nuclei. However, because of the apparent lack
of topography in the reciprocal projections between
TRN and higher-order dorsal thalamic nuclei, it is
difficult to envisage any reticular-mediated local en-
hancement of transmission [13, 162–164] through
higher-order nuclei of the thalamus. Nevertheless, it is
still possible for TRN to mediate in a global fashion the
resetting of the activity level in higher-order nuclei.
Furthermore, reticular-mediated thalamic processing is
not simply limited to the interactions between a given
sensory sector of TRN and a single nucleus of the
dorsal thalamus. Rather, in conjunction with the inter-
play of inputs from the cortex and brainstem, modality-
related first-order and higher-order dorsal thalamic
nuclei could influence each other’s sensory processing
through intrathalamic pathways mediated by TRN
[127]. The current evidence suggests that these pathways
would mediate local effects.
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37 Paré D., Smith Y., Parent A. and Steriade M. (1988) Projec-
tions of brainstem core cholinergic and non-cholinergic neu-
rons of cat to intralaminar and reticular thalamic nuclei.
Neuroscience 25: 69–86

38 Smith Y., Paré D., Deschênes M., Parent A. and Steriade M.
(1988) Cholinergic and non-cholinergic projections from the
upper brainstem core to the visual thalamus in the cat. Exp.
Brain Res. 70: 166–180

39 Uhlrich D. J., Cucchiaro J. B. and Sherman S. M. (1988)
The projection of individual axons from the parabrachial
region of the brain stem to the dorsal lateral geniculate
nucleus in the cat. J. Neurosci. 8: 4565–4575

40 Cornwall J., Cooper J. D. and Phillipson O. T. (1990)
Afferent and efferent connections of the laterodorsal teg-
mental nucleus in the rat. Brain Res. Bull. 25: 271–284

41 Steriade M., Parent A., Paré D. and Smith Y. (1987) Cholin-
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reticular input to the rat visual thalamus: a single fiber study
using biocytin as an anterograde tracer. Brain Res. 670:

147–152
113 So Y. T. and Shapley R. (1981) Spatial tuning of cells in and

around lateral geniculate nucleus of the cat: X and Y relay

cells and perigeniculate interneurons. J. Neurophysiol. 45:
107–120

114 Sugitani M. (1979) Electrophysiological and sensory proper-
ties of the thalamic reticular neurones related to somatic
sensation in rats. J. Physiol. 290: 79–95

115 Shosaku A., Kayama Y. and Sumitomo I. (1984) Somato-
topic organization in the rat thalamic reticular nucleus.
Brain Res. 311: 57–63

116 Bernardo K. L. and Woolsey T. A. (1987) Axonal trajecto-
ries between mouse somatosensory thalamus and cortex. J.
Comp. Neurol. 258: 542–564

117 Hoogland P. V., Welker E. and Van der Loos H. (1987)
Organization of the projections from barrel cortex to thala-
mus in mice studied with Phaseolus �ulgaris-leucoagglutinin
and HRP. Exp. Brain Res. 68: 73–87

118 Pollin B. and Rokyta R. (1982) Somatotopic organization of
nucleus reticularis thalami in chronic awake cats and mon-
keys. Brain Res. 250: 211–221

119 Crabtree J. W. (1992) The somatotopic organization within
the cat’s thalamic reticular nucleus. Eur. J. Neurosci. 4:
1352–1361

120 Crabtree J. W. (1996) Organization in the somatosensory
sector of the cat’s thalamic reticular nucleus. J. Comp.
Neurol. 366: 207–222

121 Crabtree J. W. (1992) The somatotopic organization within
the rabbit’s thalamic reticular nucleus. Eur. J. Neurosci. 4:
1343–1351

122 De Biasi S., Frassoni C. and Spreafico R. (1988) The intrin-
sic organization of the ventroposterolateral nucleus and re-
lated reticular thalamic nucleus of the rat: a double-labeling
ultrastructural investigation with �-aminobutyric acid im-
munogold staining and lectin-conjugated horseradish peroxi-
dase. Somatosens. Res. 5: 187–203

123 Curtis M. de, Spreafico R. and Avanzini G. (1989) Excita-
tory amino acids mediate responses elicited in vitro by
stimulation of cortical afferents to reticularis thalami neu-
rons of the rat. Neuroscience 33: 275–283

124 Shosaku A. (1985) A comparison of receptive field properties
of vibrissa neurons between the rat thalamic reticular and
ventro-basal nuclei. Brain Res. 347: 36–40

125 Shosaku A. (1986) Cross-correlation analysis of a recurrent
inhibitory circuit in the rat thalamus. J. Neurophysiol. 55:
1030–1043

126 Sumitomo I. and Iwama K. (1987) Neuronal organization of
rat thalamus for processing information of vibrissal move-
ments. Brain Res. 415: 389–392

127 Crabtree J. W., Collingridge G. L. and Isaac J. T. R. (1998)
A new intrathalamic pathway linking modality-related nuclei
in the dorsal thalamus. Nat. Neurosci. 1: 389–394

128 Peschanski M., Ralston H. J. and Roudier F. (1983) Reticu-
laris thalami afferents to the ventrobasal complex of the rat
thalamus: an electron microscope study. Brain Res. 270:
325–329

129 Liu X.-B., Warren R. A. and Jones E. G. (1995) Synaptic
distribution of afferents from reticular nucleus in ventropos-
terior nucleus of cat thalamus. J. Comp. Neurol. 352: 187–
202

130 Andersen P., Eccles J. C. and Sears T. A. (1964) The
ventro-basal complex of the thalamus: types of cells, their
responses and their functional organization. J. Physiol. 174:
370–399

131 Salt T. E. (1989) Gamma-aminobutyric acid and afferent
inhibition in the cat and rat ventrobasal thalamus. Neuro-
science 28: 17–26

132 Lee S. M., Friedberg M. H. and Ebner F. F. (1994) The role
of GABA-mediated inhibition in the rat ventral posterior
medial thalamus. I. Assessment of receptive field changes
following thalamic reticular nucleus lesions. J. Neurophysiol.
71: 1702–1715

133 Lee S. M., Friedberg M. H. and Ebner F. F. (1994) The role
of GABA-mediated inhibition in the rat ventral posterior
medial thalamus. II. Differential effects of GABAA and
GABAB receptor antagonists on responses of VPM neurons.
J. Neurophysiol. 71: 1716–1726



CMLS, Cell. Mol. Life Sci. Vol. 56, 1999 699Review Article

134 Huguenard J. R. and Prince D. A. (1994) Clonazepam
suppresses GABAB-mediated inhibition in thalamic relay
neurons through effects in nucleus reticularis. J. Neurophys-
iol. 71: 2576–2581

135 Warren R. A. and Jones E. G. (1994) Glutamate activation
of cat thalamic reticular nucleus: effects on response proper-
ties of ventroposterior neurons. Exp. Brain Res. 100: 215–
226

136 Cox C. L., Huguenard J. R. and Prince D. A. (1997)
Nucleus reticularis neurons mediate diverse inhibitory effects
in thalamus. Proc. Natl. Acad. Sci. USA 94: 8854–8859

137 Warren R. A., Agmon A. and Jones E. G. (1994) Oscillatory
synaptic interactions between ventroposterior and reticular
neurons in mouse thalamus in vitro. J. Neurophysiol. 72:

1993–2003
138 Pinault D., Bourassa J. and Deschênes M. (1995) The axonal
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