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Recent psychological and neuropsychological research suggests that executive functions—the cognitive
control processes that regulate thought and action—are multifaceted and that different types of executive
functions are correlated but separable. The present multivariate twin study of 3 executive functions
(inhibiting dominant responses, updating working memory representations, and shifting between task
sets), measured as latent variables, examined why people vary in these executive control abilities and
why these abilities are correlated but separable from a behavioral genetic perspective. Results indicated
that executive functions are correlated because they are influenced by a highly heritable (99%) common
factor that goes beyond general intelligence or perceptual speed, and they are separable because of
additional genetic influences unique to particular executive functions. This combination of general and
specific genetic influences places executive functions among the most heritable psychological traits.
These results highlight the potential of genetic approaches for uncovering the biological underpinnings
of executive functions and suggest a need for examining multiple types of executive functions to
distinguish different levels of genetic influences.
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Individuals vary widely in their abilities to control their own
thoughts and actions. Some people seem ruled by impulses,
whereas others manage successfully to regulate their behaviors.
From the perspective of cognitive psychology, such variation
reflects individual differences in executive functions, a collection
of correlated but separable control processes that regulate lower
level cognitive processes to shape complex performance. Although
there is no clear consensus yet on how best to define or concep-
tualize executive functions, they are considered key mechanisms in
many models of normal and abnormal cognition, such as cognitive
development (e.g., Lyon & Krasnegor, 1996; Zelazo, Carter,
Reznick, & Frye, 1997), age-related decline in cognitive abilities
(e.g., Hasher, Zacks, & May, 1999; Lowe & Rabbitt, 1997), and
disorders such as attention-deficit/hyperactivity disorder (ADHD;
Barkley, 1997; Nigg, 2006), autism (Russell, 1997), schizophrenia
(Frith, 1992), and substance use problems (Garavan & Stout,
2005).

Despite the centrality of executive functions in current psycho-
logical research, little is known about the sources of normal

individual differences in executive functions. Why do people vary
in their executive control abilities? We approached this question
from a behavioral genetic perspective, which elucidates the etiol-
ogy of individual differences by providing estimates of the extent
to which they are due to genetic and environmental influences.

The Unity and Diversity of Executive Functions

Executive control has long been considered a unitary, general
purpose ability that can be measured with a single complex “fron-
tal lobe” task such as the Wisconsin Card Sorting Test (Heaton,
Chelune, Talley, Kay, & Curtis, 1993). Recent behavioral and
neuropsychological evidence indicates, however, that executive
control may be more accurately characterized as a collection of
related but separable abilities (Baddeley, 1996; Collette et al.,
2005; Friedman et al., 2006), a pattern referred to as the “unity and
diversity” of executive functions (Duncan, Johnson, Swales, &
Freer, 1997; Miyake et al., 2000; Teuber, 1972). Researchers often
disagree on what the underlying components of executive func-
tions might be, but arguably the three most frequently studied
executive functions are response inhibition (the ability to inhibit
dominant, automatic, or prepotent responses), updating working
memory representations (the ability to monitor incoming informa-
tion for relevance to the task at hand and then appropriately update
by replacing old, no longer relevant information with newer, more
relevant information), and set shifting (the ability to flexibly
switch back and forth between tasks or mental sets). Other exec-
utive functions have been examined, such as dual tasking (e.g.,
Logie, Cocchini, Della Sala, & Baddeley, 2004; Salthouse, Atkin-
son, & Berish, 2003) and resisting proactive interference (Fried-
man & Miyake, 2004), but the three executive functions mentioned
above have dominated recent executive function research.

Naomi P. Friedman, Susan E. Young, John C. DeFries, Robin P. Corley,
and John K. Hewitt, Institute for Behavioral Genetics, University of Col-
orado at Boulder; Akira Miyake, Department of Psychology, University of
Colorado at Boulder.

Data collection was supported by National Institutes of Health (NIH)
Grants MH63207 and HD010333. Naomi P. Friedman was supported by
NIH Grant MH075814, and Susan E. Young by NIH Grant MH01865. We
thank Sally Ann Rhea and Scott Sabella for project coordination and data
collection and Randy O’Reilly, Yuko Munakata, John Towse, and Eric
Claus for comments on an earlier version of this article.

Correspondence concerning this article should be addressed to Naomi P.
Friedman, Institute for Behavioral Genetics, 447 UCB, University of
Colorado, Boulder, CO 80309. E-mail: naomi.friedman@colorado.edu

Journal of Experimental Psychology: General Copyright 2008 by the American Psychological Association
2008, Vol. 137, No. 2, 201–225 0096-3445/08/$12.00 DOI: 10.1037/0096-3445.137.2.201

201



Understanding the structure of executive functions is compli-
cated by the so-called task impurity problem (Burgess, 1997;
Phillips, 1997): Because executive functions by definition operate
on other cognitive processes, a large portion of the variance in any
one executive function task is not necessarily measuring the pu-
tative executive process. Consider, for example, the Wisconsin
Card Sorting Test, perhaps the most frequently used executive test
in neuropsychological and molecular genetic studies. This task
requires sorting cards along a particular dimension (e.g., the color,
shape, or number of items on the cards), then switching to a
different sorting dimension when the experimenter changes the
correct sorting category (unbeknownst to the subject). In this case,
performance reflects not only the ability to switch mental set
(Miyake et al., 2000) but also perceptual, motor, and other cogni-
tive abilities needed to sort the cards and monitor verbal feedback
from the experimenter. This task impurity problem complicates the
interpretation of studies based on a single complex executive
function task, because it is unclear to what extent both null and
positive results reflect such nonexecutive variance.

One method for alleviating the task impurity problem is the use
of latent variables as dependent measures. Conceptually, a latent
variable is an underlying ability that influences performance on a
set of observed tasks, which are impure measures of this construct.
It is estimated through a statistical extraction of the variance
shared by multiple exemplar tasks selected to have different non-
executive requirements but to tap the same underlying executive
control ability. The resulting latent variable is a purer measure of
this target ability and is virtually free from measurement error
(Bollen, 1989).

Using this approach, Miyake et al. (2000) demonstrated that the
three executive functions they examined—prepotent response in-
hibition (Inhibiting), updating working memory (Updating), and
set shifting (Shifting)—were moderately correlated (i.e., showed
unity) but were separable (i.e., showed diversity) at the level of
latent variables. This general pattern of unity and diversity has
since been replicated in other samples including young adults
(Friedman et al., 2006), older adults (Fisk & Sharp, 2004; Hedden
& Yoon, 2006), children (Huizinga, Dolan, & van der Molen,
2006; Lehto, Juujärvi, Kooistra, & Pulkkinen, 2003; van der Sluis,
de Jong, & van der Leij, 2007), and clinical populations selected
for problems such as ADHD (Willcutt et al., 2001). Recent neu-
roimaging studies also indicate unity and diversity of executive
functions in terms of brain localization (Collette et al., 2005;
Sylvester et al., 2003). For example, Collette et al. used positron
emission tomography to examine the brain areas that are common
to as well as unique to inhibiting, updating, and shifting. These
researchers used multiple tasks for each of the three executive
functions, hence implementing the equivalent of latent variable
analysis in a brain mapping context. They found common frontal
and parietal areas activated by all three executive functions as well
as frontal and/or posterior areas unique to updating and shifting.

The finding that executive functions show both unity and diver-
sity has had important methodological and theoretical implications
for many domains of psychological research. In particular, treating
executive control as a multicomponent construct has enabled in-
creased specificity about the nature of executive involvement in
various cognitive, neuropsychological, and clinical constructs. In
the cognitive domain, for example, Miyake et al. (2000) found that
three complex neuropsychological and cognitive measures com-

monly used to assess general executive control ability were in fact
differentially related to the three executive functions among young
adults: the Wisconsin Card Sorting Test (most closely related to
Shifting), random number generation (related to Inhibiting and
Updating), and the Tower of Hanoi (related to Inhibiting). More
recently, in an earlier subset of the sample used in the current
study, Friedman et al. (2006) found that these three executive
functions were differentially related to intelligence, with Updating,
but not Inhibiting or Shifting, closely related to both fluid and
crystallized intelligence.

In the clinical domain, considering the multiple components of
executive functions has led to a better specification of the nature of
executive deficits associated with various clinical disorders. For
example, Willcutt et al. (2001) found that children with ADHD,
reading disorders, and both disorders combined showed different
profiles of executive dysfunction, with the ADHD children show-
ing inhibiting deficits but the reading disorder children showing
verbal working memory deficits (closely related to updating) and
the ADHD with reading disorder group showing deficits on inhib-
iting, working memory, and shifting. Geurts, Verté, Oosterlaan,
Roeyers, and Sergeant (2004) also found that children with ADHD
were impaired on inhibiting and verbal fluency, whereas children
with high functioning autism had more general executive function
impairments. Moreover, data from the sample examined in the
current study (unselected for cognitive or behavioral problems)
suggest that Inhibiting is more closely related than Updating or
Shifting to depressive symptoms (Sabella, Miyake, Friedman,
Young, & Hewitt, 2007), externalizing behavior such as drug use
and conduct disorder (Young et al., 2007), and classroom attention
problems throughout childhood and adolescence (Friedman et al.,
2007).

Thus, a wealth of studies illustrate the predictive validity of the
inhibiting, updating, and shifting constructs for various cognitive
abilities and real-world problems and the power afforded by mea-
suring these constructs with latent variables. They also highlight
the importance of considering executive control as a multidimen-
sional construct when examining how it may be related to the
abilities or problems of interest.

Specifying the Etiology of Cognitive Abilities With the
Twin Design

Although these recent advances have increased our knowledge
of the structure of executive functions, the etiology of this structure
remains unspecified. Why do people vary in executive control
abilities, and what makes these three executive functions related
but separable? Twin designs using data from monozygotic (MZ;
identical) and dizygotic (DZ; fraternal) twins can be used to
estimate the extent to which interindividual variation in executive
functions is influenced by additive genetic (A; heritability), com-
mon or shared environmental (C), and nonshared environmental
(E) influences. Additive genetic influences for a complex trait are
assumed to include the effects of a large number of specific genes
that together operate in an additive manner. Shared environmental
influences are those that contribute to similarity of twins (e.g.,
family environment, shared peer groups, mother’s nutrition and
hormone levels during gestation). In contrast, nonshared environ-
mental influences are those that make twins’ performances uncor-
related (e.g., different scholastic experiences, or even the same
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scholastic environment if the twins respond differently to it for
nongenetic reasons).

The basic logic for twin analyses is based on the fact that MZ
twins share all of their genes whereas DZ twins share on average
half of their genes by descent, and that both types of twins are
reared together (i.e., have shared familial environment). Hence,
MZ correlations within twin pairs that are higher than DZ corre-
lations for a behavioral measure suggest a genetic influence on that
measure. Specifically, given an additive genetic effect, one would
expect an MZ correlation roughly twice the DZ correlation. When
the DZ correlation is more than half the MZ correlation (i.e., when
DZs show a higher correlation than would be expected given their
genetic relatedness alone), shared environment is implicated.
When MZ correlations are less than 1.0 (i.e., MZs show lower
correlations than would be expected if the trait were due entirely to
genetic and shared environmental influences), nonshared environ-
ment is implicated. Note that at the level of individual tasks,
nonshared environment can also include measurement error, be-
cause such error will tend to make twins’ performances uncorre-
lated.

To decompose the variance in a dependent measure due to these
genetic and environmental (shared and nonshared) influences,
behavior geneticists typically use an ACE structural equation
model (Neale & Cardon, 1992). Figure 1 illustrates the general
form of the ACE model for a single observed measure (known as
a phenotype), measured in MZ and DZ twins. The rectangles
denote the phenotype (such as IQ) measured in both twins in a pair.
The three circles (A, C, and E) represent the latent (unobserved)
variance components that are estimated from the MZ and DZ data.
The model is set up as a two-group analysis (one for MZ twins, the
other for DZ twins), with the estimated A, C, and E variances
constrained to be equal across groups. Several constraints are

implemented to estimate these A, C, and E variances: The corre-
lation between the genetic effects (A) in the MZ twins is set to 1.0,
because they share all of their genes. This correlation in the DZ
twins is set to 0.5, as they share on average half of their genes by
descent. Because both types of twins are reared together, the
correlation between shared environmental influences (C) is set to
1.0 in both groups. All correlations with nonshared environmental
influences (E) are set to zero, because they are unique by defini-
tion. Fitting this model to the covariance matrices of task perfor-
mance for the MZ and DZ twins (i.e., the covariance matrices
relating Twin 1’s performance to Twin 2’s performance in each
zygosity group) provides estimates of these three effects.

In the domain of cognitive abilities, such models have been used
to decompose the variances in general cognitive ability (g) and
specific cognitive abilities (e.g., verbal and spatial abilities, mem-
ory, and speed) into their respective genetic and environmental
components. By and large, twin studies (along with family and
adoption studies) indicate that g, whether measured as the variance
common to numerous tasks or with an assessment of general IQ, is
moderately heritable: generally about 50%, with the remaining
environmental variance split fairly evenly between shared and
nonshared (e.g., Chipuer, Rovine, & Plomin, 1990; Neisser et al.,
1996). These estimates, however, change across development,
with the role of shared environment in IQ decreasing to almost
zero and the heritability increasing to 70% or greater by late
adolescence (McGue, Bouchard, Iacono, & Lykken, 1993; Neisser
et al., 1996). Studies of specific cognitive abilities suggest that
they are also moderately heritable (about 30% to 60%) by late
adolescence and into adulthood (Alarcón, Plomin, Fulker, Corley,
& DeFries, 1999; Pedersen, Plomin, Nesselroade, & McClearn,
1992), with the remaining variance largely due to nonshared en-
vironment.

The basic ACE model can be extended to multivariate analyses
to address questions beyond the etiology of individual differences
in a single ability. In particular, multivariate analyses can be used
to examine the nature of the relationships among different con-
structs by specifying the extent to which they share genetic and
environmental influences and which types of influences (genetic
and/or environmental) differentiate them. For example, such mul-
tivariate models have been useful for specifying the structure of
specific cognitive abilities and their relation to g. The picture that
has emerged (Alarcón et al., 1999; Petrill, 1997) is that the mod-
erate genetic effects observed for different specific cognitive abil-
ities (e.g., verbal, spatial) are largely general (i.e., influence mul-
tiple cognitive abilities), with only small genetic influences unique
to each type of specific cognitive ability. It is primarily environ-
mental influences that differentiate one specific cognitive ability
from another.

The Current Study

In the current study, we used such ACE models to answer two
questions regarding the etiology of executive functions: (a) How
much of the individual differences in these executive functions are
due to genetic and environmental influences? and (b) Do genetic
influences on these three executive functions operate at only the
general level (i.e., common to all three executive functions) or at
both general and specific levels?

Twin 1 
Performance

EA C A C E

rMZ  =  1.0 
rDZ  =  0.5 

rMZ  =  1.0
rDZ  =  1.0

Twin 2 
Performance

Figure 1. General ACE structural equation twin model of a single be-
havioral measure. Individual differences in performance on a measure
(depicted with rectangles to denote an observed variable) are modeled as
due to three types of influences: additive genetic (A), shared environmental
(C), and nonshared environmental (E). The Twin 1 with Twin 2 A corre-
lation is set to 1.0 for monozygotic (MZ) twins because they share all of
their genes and 0.5 for dizygotic (DZ) twins because they share on average
half of their genes by descent. The C correlation is set to 1.0 for both types
of twins because both are raised together. The E correlations are set to zero
because nonshared environment is uncorrelated by definition.
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A few previous twin studies have examined the first question at
the level of individual tasks in adolescents or adults. These studies
generally suggest moderate genetic influence (around 40% to 60%
on average), virtually no significant shared environmental influ-
ence, and moderate nonshared environmental influence on indi-
vidual tasks thought to tap inhibiting, updating, and shifting abil-
ities, such as the antisaccade task, working memory span tasks, and
the Wisconsin Card Sorting Test (e.g., Ando, Ono, & Wright,
2001; Anokhin, Heath, & Myers, 2004; Anokhin, Heath, &
Ralano, 2003; Fan, Wu, Fossella, & Posner, 2001; Luciano et al.,
2001; Malone & Iacono, 2002; Posthuma, Mulder, Boomsma, &
de Geus, 2002; Wright et al., 2001).

Although these studies provide preliminary evidence that exec-
utive functions may be somewhat genetically influenced, the task
impurity problem complicates the interpretation of heritability
estimates based on single complex executive function tasks, be-
cause it is unclear to what extent those results reflect nonexecutive
variance. As discussed earlier, one fruitful method for circumvent-
ing this problem in behavioral and neuropsychological studies is to
adopt a latent variable approach, but this method has not been
applied to multivariate genetic studies targeting specific executive
function constructs. The use of latent variables in a genetic context
is highly informative, because it enables separation of the genetic
and environmental influences on each task into those influencing
the target executive function and those influencing the nonexecu-
tive components of the tasks. For example, if the heritability
estimates for the individual tasks for a particular executive func-
tion reflect only the variance associated with nonexecutive require-
ments of those tasks, then the variance shared among these tasks
should not be heritable at all. Perhaps a more likely possibility is
that the genetic influences on multiple executive function tasks
overlap somewhat, which would result in some heritability of the
latent variable, though there could also still be some genetic
influences on the nonexecutive components of each task. As these
examples illustrate, by conducting behavioral genetic analyses at
the level of latent variables, with the current study we seek to
provide more precise estimates of the genetic and environmental
influences on individual differences in executive functions than
have to date been provided.

An examination of multiple executive functions at the level
of latent variables also enables us to address the second re-
search goal above, namely to specify the level (or levels) at
which genetic influences on executive functions operate and
thereby shed new light on the etiology of the unity and diversity
of executive functions. For example, one plausible scenario is
that executive functions are related because they share common
genetic and environmental influences but are separable purely
because of environmental influences unique to individual ex-
ecutive functions. In this case, there would be only one level of
genetic influences (the general level that is common to all three
executive functions). Those influences could overlap consider-
ably with those that affect g, which is known to have moderate
to large genetic (50% to 75%) as well as some environmental
(mostly nonshared) influences by late adolescence (McGue et
al., 1993; Neisser et al., 1996).

Another possible configuration that could explain the unity and
diversity of executive functions is that the unity is due to shared
genetic and environmental influences, as in the previous scenario,

but the diversity is also due to genetic and environmental influ-
ences unique to the individual executive functions (rather than just
environmental influences). In this case, there are two levels of
genetic influences: one that operates at the general level, producing
unity, and another that operates on specific executive functions,
producing diversity. This configuration would be similar to that
found for specific cognitive abilities, which seem to be related
through genetic and environmental influences on g and separable
because of large environmental and, in some cases, small genetic
influences unique to particular cognitive abilities (Alarcón et al.,
1999; Petrill, 1997).

Of course, many other combinations of genetic and environmen-
tal influences could logically explain the unity and diversity of
executive functions. Hence, the “problem space” for understanding
individual differences in executive functions is large. Reducing
this space is important, because it will likely constrain what lines
of research will be most productive for further understanding the
nature of executive functions.

For example, a good deal of research on executive control has
begun to incorporate genetic information with the aim of under-
standing the neurobiology of executive functions and, by exten-
sion, disorders often associated with impairments in executive
control. This line of research has focused on finding specific
genetic variants associated with executive control abilities and/or
related disorders such as ADHD (e.g., Faraone et al., 2005) and
schizophrenia (e.g., Egan et al., 2001). Although such genetic
association studies have great potential for elucidating the genetic
and biological bases of executive functions, the lack of a clear
picture of the underlying genetic and environmental structure of
executive functions limits their impact. In particular, most molec-
ular genetic studies have focused on gross executive control ability
as measured by individual neuropsychological tests such as the
Wisconsin Card Sorting Test. However, the emerging evidence
that there are separable executive functions and that those execu-
tive functions differentially relate to disorders of interest begs the
question of whether such research should incorporate multiple
executive functions and multiple tasks for each function. The
answer to this question depends on whether there are genetic
influences on executive functions at the level of latent variables
and, if so, whether those influences operate at only the general
level (i.e., common to all executive functions) or at both the
general and specific levels.

In the current study, we took a latent variable approach to
answer the two primary questions. To specify the etiology of
executive functions, we estimated the ACE components of each
executive function, measured as a latent variable. To specify the
etiology of the unity and diversity of executive functions, we then
used a multivariate ACE model of all three executive functions,
estimating ACE components for both what is common to the three
executive functions and what is unique to each executive function.
Once we specified the genetic and environmental structure of these
three executive functions, we tested two key alternative hypotheses
regarding the unity of executive functions: that it primarily reflects
the same genetic and/or environmental influences as speed or IQ.
More specifically, in these secondary analyses, we examined to
what extent executive function variance overlaps with variance in
IQ and speed, respectively.
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Method

Participants

Participants were 582 individuals from 293 same-sex twin pairs,
recruited from the Colorado Longitudinal Twin Study. The sample
consisted of 316 MZ (177 female, 139 male) twins and 266 DZ
(137 female, 129 male) twins (4 co-twins did not participate in
either the year 16 or year 17 testing). The current Longitudinal
Twin Study sample consists of approximately 420 families that
met certain criteria (twins with normal birth weights, gestation
periods, and a residence located within 2 hr of Boulder, Colorado)
who agreed to participate after being located through birth records
provided by the Division of Vital Statistics of the Colorado De-
partment of Health from 1986 through 1990 (for more detailed
information about this longitudinal sample, see Rhea, Gross,
Haberstick, & Corley, 2006). The analyses for this study were
conducted on a subset of families in this sample that had com-
pleted the executive function battery. These twins are representa-
tive of the general population in terms of IQ, as indicated by a
normal IQ distribution (M � 102, SD � 11). Twins in each pair
were randomly assigned to Twin 1 and Twin 2 for the analyses.
Participants received $50 compensation for the approximately 3-hr
session. The protocol and informed consent procedures were ap-
proved by the University of Colorado Human Research Committee
(Protocol 0600.01).

Zygosity was determined through repeated tester ratings com-
bined with DNA genotyping. First, testers’ ratings of each twin
pair on a nine-item physical characteristic assessment (Nichols &
Bilbro, 1966) were used to judge zygosity (the mean number of
judgments for the 293 pairs was 18.9 for this longitudinally fol-
lowed sample; the range was 2 to 30). Second, using DNA from
cheek swabs, twins were genotyped at a minimum of 11 informa-
tive short tandem repeat polymorphisms (STRPs) using standard
polymerase chain reaction methods and ABI 377 genotyping tech-
nology. Concordance for all STRPs between twins indicated MZ
status. DNA was available for 291 twin pairs; of these, genotyping
resulted in unambiguous zygosity calls for 280 of the twin pairs.
For these 280 pairs, any pairs with discrepancies between the
ratings and DNA calls were evaluated by senior staff, and if
necessary, DNA was resampled and regenotyped.

Materials, Design, and Procedure

The nine executive function tasks were based primarily on those
we have used successfully before (Miyake et al., 2000). All nine
executive function tasks were computerized (Macintosh iBook
computers) in PsyScope 1.2.5 (Cohen, MacWhinney, Flatt, &
Provost, 1993). A button box with millisecond accuracy was used
to measure reaction times (RTs), and a headset was attached to the
button box to record RTs for verbal responses. Stimuli within tasks
were appropriately counterbalanced and randomized, and the order
of stimuli within each task was the same for all participants. All
tasks included additional practice trials to ensure that the partici-
pants fully understood the instructions and that they had firmly
mastered the button–response mappings.

Inhibiting Tasks

Antisaccade. During each trial of the antisaccade task (adapted
from Roberts, Hager, & Heron, 1994), a fixation point appeared in

the center of the computer screen for a variable amount of time
(one of nine times between 1,500 and 3,500 ms in 250-ms inter-
vals). A visual cue (a 1/8-in. [0.32-cm] black square) then ap-
peared on one side of the screen for 150 ms, followed by the target
stimulus (a 5/16-in. [0.79-cm] arrow inside of an open 7/16-in.
[1.11-cm] square) on the opposite side for 175 ms. The target was
then masked with gray cross-hatching, and the mask remained on
the screen until the participant indicated the direction of the arrow
(left, up, or right) with a button press response. The inner edges of
the cues and targets were 3 in. (7.62 cm) and 3.625 in. (9.21 cm),
respectively, away from the fixation point (on opposite sides). The
participants were seated 18 in. (45.72 cm) from the computer
monitor. The participants practiced on 22 trials and then received
90 target trials. The dependent measure was the proportion of
correct responses.

Stop signal. The stop-signal task (Logan, 1994) consisted of
five blocks of trials. On each trial in the first block of 48 trials,
used to build up a prepotent categorization response and calculate
each participant’s average RT, participants saw one of 24 words
(e.g., duck, gun) and categorized it as either an animal or a
nonanimal as quickly as possible without making mistakes. Then,
in the four subsequent blocks of 96 trials each, participants tried
not to respond (i.e., to inhibit the categorization response) when
they heard a computer-emitted signal (a tone approximately 100
ms long) on a randomly selected 25% of the trials, but otherwise
kept performing the same categorization task. In all trials (includ-
ing 34 practice trials, 24 before the first no-signal block and 10 at
the beginning of the first signal block), the participants viewed a
fixation point for 500 ms and were then allowed up to 1,500 ms to
categorize the target word. Each participant experienced signals
that occurred 50 ms before his or her average RT (long stop-signal
delay), 225 ms before his or her average RT (medium stop-signal
delay), or 50 ms after the onset of the trial (short stop-signal
delay). Each of these delays occurred equally often in each block.
As recommended by Logan (1994), the instructions emphasized
that the participants should not slow down to wait for possible
signals. The dependent measure was the stop-signal RT, the esti-
mated time at which the stopping process finishes. We used the
most common estimation method, which assumes that the stop-
signal RT is a constant (Logan, 1994). Specifically, the stop-signal
RT for each delay was calculated as follows: The RTs for the
no-signal go trials were rank ordered, and the stop-signal delay
was subtracted from the nth RT, where n is the number of all of the
no-signal RTs multiplied by the probability of responding at that
delay. Then the stop-signal RTs for all delays were averaged.

Stroop. On each trial of the Stroop task (Stroop, 1935),
adapted for computer administration, participants saw a white
fixation point on a black screen for 500 ms, followed by the
stimulus, which remained on the screen until the participant re-
sponded, after which the screen remained black for 1,000 ms.
Participants verbally named the color of each stimulus as quickly
and as accurately as possible, with RTs measured by voice key.
There were three types of trials: (a) 60 trials with a string of
asterisks (of variable lengths matching the lengths of the color
words) printed in one of six colors (red, green, blue, orange,
yellow, or purple); (b) 60 trials with a color word printed in a
different color (e.g., BLUE printed in red); and (c) 60 filler trials
(not used in the current study) with a neutral word printed in one
of the six colors. The different trial types were not blocked. The
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order of the trials was randomized with the constraints that no
word or color on one trial was related to the word or color on the
immediately preceding trial and that no condition appeared more
than three trials in a row. The trials were broken down into four
subblocks. The participants also received voice-key calibration and
18 practice trials. The dependent measure was the RT difference
between the trials in which the word and the color were incongru-
ent and the trials that consisted of asterisks.

Updating Tasks

Keep track. In each trial of the keep track task (adapted from
Yntema, 1963), participants were first shown several target cate-
gories at the bottom of the computer screen. Fifteen words, in-
cluding two or three exemplars from each of six possible catego-
ries (animals, colors, countries, distances, metals, and relatives),
were then presented serially and in random order in the center of
the screen for 1,500 ms each, with the target categories remaining
at the bottom of the screen. The task was to remember the last
word presented in each of the target categories and then report
these words at the end of the trial. For example, if the target
categories were metals, relatives, and countries, then at the end of
the trial, participants recalled the last metal, the last relative, and
the last country presented in the list. During the instruction period,
participants saw all six categories and the exemplars in each to
ensure that they knew to which category each word belonged.
They practiced on 3 trials (progressing in difficulty from two to
four target categories), then performed 12 trials (four of each
difficulty, presented in random order), recalling a total of 36
words. The proportion of words recalled correctly was the depen-
dent measure.

Letter memory. In the letter memory task (adapted from Mor-
ris & Jones, 1990), several letters from a list were presented in the
center of the screen serially for 2,500 ms per letter. The task was
to recall the last three letters. To ensure that the task required
continuous updating, the instructions required the participants to
rehearse out loud the last three letters by mentally adding the most
recent letter and dropping the fourth letter back, and then saying
the new string of three letters out loud. For example, if the letters
presented were T, H, G, B, S, K, R, the participants should have
said, “T . . . T-H . . . T-H-G . . . H-G-B . . . G-B-S . . . B-S-K . . .
S-K-R” and then recalled “S-K-R” at the end of the trial. The
number of letters presented (five, seven, or nine) was varied
randomly across trials, with the constraint that each list length was
used once in every three trials. Each list began with a 1-s fixation
point, which was followed by the letters and then a string of three
pink question marks that remained on the screen until the partic-
ipant finished recalling the target letters. Participants were in-
structed to recall the letters in order and to say “blank” if they did
not remember a particular letter. However, answers were scored as
correct even if the letters were not recalled in the correct order.
After practicing on 3 trials (one of each length), the participants
completed 12 trials (four of each length). Because of a program-
ming error, however, the last two lists (five and seven letters long)
were unusable. Hence, only the first 10 trials were used (30 letters
recalled). The dependent measure was the proportion of letters
correctly recalled across all lists.

Spatial 2-back. In each block of the spatial 2-back task, there
were 10 open 5/8-in. (1.59-cm) squares scattered across the screen.

After a beep, one box at a time became solid black for 500 ms,
giving the appearance that it flashed. There were 1,500 ms be-
tween each flash (24 flashes per block). For each flash, participants
pressed a button indicating whether that box was the same one that
had flashed two trials earlier (there were six “yes” flashes in each
block). There were no instances in which the current flash was the
same as the one that was one or three trials back. Participants
completed one practice block and then four actual blocks, with
breaks between each block (participants pressed a button to begin
each new block). The dependent measure was the proportion of
correct responses (yes and no) across all four blocks. Omissions
were counted as errors.

Shifting Tasks

Three tasks were used to assess Shifting ability. In each of the
three tasks, there were four blocks of 48 trials, each of which
contained 24 no-switch and 24 switch trials. Each trial was pre-
ceded by a cue indicating which subtask should be performed on
that trial, and the cue remained on the screen throughout the trial.
In the first and third blocks, the cue was presented 150 ms before
the onset of the stimulus, and both the cue and the stimulus
remained on the screen until the participant responded, at which
point the next cue appeared after a 350-ms response-to-cue inter-
val. In the second and fourth blocks (not analyzed in the current
study), everything was the same except that the cue appeared 1,500
ms before the onset of the stimulus. Throughout each task, partic-
ipants were asked to use whatever time they had between the cue
and the stimulus to prepare for the forthcoming subtask. They were
also asked to respond as quickly as possible without making
mistakes. To firmly master the cue–subtask associations and the
key mappings, participants completed two practice blocks of 24
trials each before the task began. In addition, there were 6
warm-up trials at the beginning of each block that were not
analyzed. For all tasks, the order of the trials was randomized with
the constraint that no more than 4 switch trials could occur in a
row. Further, there were no item-specific negative priming trials in
which the stimulus on a switch trial was the same as that on the
previous trial (except for the color–shape task, for which such
trials were unavoidable due to the small number of potential
stimuli). The dependent measure in each task was the regular
switch cost, calculated as the difference between the average RTs
of the trials that required a switch and the average RTs of the trials
in which no switch was necessary for the trials with the short
(150-ms) cue-to-stimulus interval.

Number–letter. In each trial of this task (adapted from Rogers
& Monsell, 1995), a number–letter or letter–number pair (e.g., 7G)
was presented in one of two squares above or below a line dividing
the computer screen in half. The participants were instructed to
indicate whether the number was odd or even (2, 4, 6, and 8 for
even; 3, 5, 7, and 9 for odd) when the pair was in the top square
and to indicate whether the letter was a consonant or a vowel (G,
K, M, and R for consonant; A, E, I, and U for vowel) when the pair
was in the bottom square. The cue in this task was the onset of the
square. The squares were 3/4 in. (1.91 cm) square, and their edges
appeared 3/16 in. (0.48 cm) above or below the median line.

Color–shape. In each trial of this task (Miyake, Emerson,
Padilla, & Ahn, 2004), a cue letter (C or S) appeared above a
colored rectangle with a shape in it (outline of a circle or triangle).
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The participants were instructed to indicate whether the color was
red or green when the cue was C and whether the shape was a
circle or triangle when the cue was S. The colored rectangles were
approximately 1.7 in. (4.32 cm) wide and 1.4 in. (3.56 cm) high,
the circles were approximately 1.1 in. (2.79 cm) in diameter, and
the triangles were 1.25 in. (3.18 cm) on each side. The color–shape
figure appeared in the center of the screen, and the cue letter was
centered 3/8 in. (0.95 cm) above its top edge.

Category switch. In each trial of this task (adapted from Mayr
& Kliegl, 2000), participants saw a word that could be categorized
in terms of (a) whether it described a living or nonliving thing or
(b) whether it described a thing that is smaller or larger than a
soccer ball. The 16 words were drawn from those used by Mayr
and Kliegl: table, bicycle, coat, cloud, pebble, knob, marble,
snowflake, shark, lion, oak, alligator, mushroom, sparrow, gold-
fish, and lizard. A symbol appearing above the word cued which
categorization to use (a heart indicated living vs. nonliving and an
arrow cross indicated large vs. small). The words were presented
in the center of the screen, and the 9/16 in. (1.43 cm) high by 11/16
in. (1.75 cm) wide symbols appeared 3/8 in. (0.95 cm) above them.

General Cognitive Ability

The Wechsler Adult Intelligence Scale—Third Edition (WAIS–
III; Wechsler, 1997), a test of general intelligence, consists of 11
subtests (Vocabulary, Similarities, Arithmetic, Digit Span, Infor-
mation, Comprehension, Picture Completion, Digit Symbol, Block
Design, Picture Arrangement, and Object Assembly). Scaled
scores from all subtests were used to compute a full-scale IQ score.

Perceptual Speed

Hidden patterns. In this test (Ekstrom, French, Harman, &
Derman, 1976), participants viewed a simple criterion or model
pattern. Then, for a series of slightly more complex test patterns,
they determined whether the criterion pattern was embedded in
each test pattern. There were 200 items in each of the two sub-
sections (the criterion pattern remained the same throughout the
entire test), and the time limit was 2 min for each subsection. The
dependent measure was the number correct minus the number
incorrect (correction for guessing).

Perceptual speed. Each of the two parts of the Colorado
Perceptual Speed Test (DeFries, Plomin, Vandenberg, & Kuse,
1981) contained 30 items consisting of a stimulus of letters or
numbers and a set of four alternative responses. Participants were
allowed 1 min in each part to find the responses that were identical
to the stimuli. The dependent measure was the number correct
minus 1/3 times the number incorrect (correction for guessing).

Identical pictures. This test (Ekstrom et al., 1976) required
participants to view a target figure and judge which one of five
alternative figures was identical to the target figure as quickly and
as accurately as possible. There were 48 items in each of the two
subsections, and the time limit was 1.5 min for each subsection.
The dependent measure was the number of items correct minus 1/4
times the number of items incorrect (correction for guessing).

General Procedure

Participants completed the measures of intelligence and percep-
tual speed in prior testing sessions at approximately age 16 (M �

16.6 years, SD � 0.8, range � 15.8 to 20.0). They completed the
executive function tasks at approximately age 17 (M � 17.3 years,
SD � 0.6, range � 16.1 to 20.1). The tasks administered at age 17
were grouped into three blocks lasting approximately 40–50 min
each, in which no two tasks intended to tap the same construct
were presented sequentially. The order of task administration was
fixed as follows for all participants to minimize any measurement
error due to participant by order interaction: antisaccade, letter
memory, color–shape, 5-min break, number–letter, Stroop, keep
track, lunch break, spatial 2-back, category switch, and stop signal.
Other measures included as parts of other studies (not analyzed in
the current study) were also administered, the majority of which
were completed after these three blocks of tasks.

Statistical Procedures

Data Trimming and Outlier Analyses

For the RT measures (except stop signal, which did not depend
on a mean RT), RTs from errors (voice key or others) and RTs
below 200 ms were eliminated (following our previous proce-
dures; Miyake et al., 2000). For the three shifting tasks, RTs for
trials immediately following errors were also excluded, because
the correct set might not have been achieved on the prior error
trials. Average accuracy was greater than 92% in all RT tasks. To
obtain the best measure of central tendency for each condition in
the tasks using RT difference scores, we applied a within-subject
trimming procedure that is robust to nonnormality (Wilcox &
Keselman, 2003): For each participant, observations that deviated
from the median by more than 3.32 times the median absolute
deviation in each condition were excluded.

All accuracy data were arcsine transformed to improve normal-
ity. To reduce the influence of extreme scores and improve nor-
mality, we replaced observations farther than three standard devi-
ations from the group mean with values three standard deviations
from the mean for each variable used in the models except WAIS–
III full-scale IQ (WAIS–IQ). This procedure affected no more than
2.1% of the observations for any measure. After these transforma-
tions and trimming, the variables showed acceptable skewness and
kurtosis (see Table 1). In all analyses, the directionality of the RT
measures was reversed so that for all measures, higher scores
indicated better performance.

Model Estimation

We used Mplus 4.0 (Muthén & Muthén, 2006) and Mx (Neale,
Boker, Xie, & Maes, 2003) to estimate the latent variable models
with maximum-likelihood estimation of the raw data, including
participants with missing data. This approach provides the opti-
mum use of all of the available twin data (Neale et al., 2003),
providing unbiased estimates of parameters for the population
where most other approaches (e.g., listwise deletion of individuals
with missing data) would not (Little & Rubin, 1987). Eighty-seven
participants were missing data for one or more executive function
tasks because of colorblindness, equipment malfunction, failure to
understand or follow task instructions, chance-level accuracy, or
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other reasons 1 (see Table 1 for ns). Where appropriate (i.e., for the
antisaccade, stop signal, number–letter, color–shape, and category
switch tasks), the criterion for chance performance for each task
was calculated as the binomial probability that the participant
would have obtained that score by chance, with p � .01.

Because the conventional measure of fit, the chi-square (�2)
statistic, is sensitive to sample size (Kline, 1998), we used �2/df �
2 (Byrne, 1989) as an indication of good fit. We supplemented it
with two other types of fit indices: the root-mean-square error of
approximation (RMSEA) statistic, an absolute fit index that quan-
tifies how closely the covariances predicted by the model match
the actual covariances, and the Tucker–Lewis index (TLI), a
nonnormed (i.e., can exceed 1.0) incremental fit index that quan-
tifies how well the model fits compared with a null model (in this
case, a model with only means and variances but no covariances
among the measures). We selected these particular fit indices
because they both compensate for the effect of model complexity
by taking into account the degrees of freedom of the models (Hu
& Bentler, 1998; Marsh, Balla, & Hau, 1996), an important con-
sideration given the complexity of the multivariate genetic models.
Following the recommendation of Hu and Bentler, we used RM-
SEA � .06 and TLI � .95 as indications of good fit, though TLI �
.90 is commonly used as an indication of adequate fit.

To correct for the nonindependence of the twin pairs in the
phenotypic (nongenetic) analyses, we used Mplus’s TYPE �
COMPLEX option to obtain corrected standard errors and a scaled
chi-square robust to nonindependence. We used chi-square differ-
ence tests for nested model comparisons, appropriately scaled
(Satorra & Bentler, 2001) for nonindependence in the phenotypic
models. All analyses used an alpha level of .05. For the genetic
models, we designated parameters as significant if their boot-
strapped 95% confidence intervals (estimated with Mx) did not
include zero, and in some key cases, we also checked significance
with chi-square difference tests.

For the genetic analyses, we used a general form of the ACE
model to estimate genetic and environmental effects (Neale &
Cardon, 1992). Means for each task were constrained to be equal
in all groups (i.e., there was one estimated mean for each task,
which was constrained to be the same for Twin 1 and Twin 2 and

across zygosity groups), because there was no reason to expect any
differences.

Results and Discussion

The primary goals of the current study were to (a) specify the
extent to which individual differences in the three target executive
functions (Inhibiting, Updating, and Shifting) are due to genetic
and environmental influences and (b) specify how these genetic
and environmental influences combine to form the unity and
diversity of executive functions. Toward these goals, we present
two main genetic analyses: ACE models of the individual execu-
tive functions separately and a multivariate ACE model of the
three functions together. We then present secondary genetic anal-
yses that address whether the genetic variance common to the three
executive functions goes beyond that for perceptual speed and g.
Before doing so, however, we briefly present the results of non-
genetic (phenotypic) confirmatory factor analyses to verify that the
three executive functions show the same factor structure as in our
previous investigation (Miyake et al., 2000).

1 Included in this count of 87 were 13 participants for whom all exec-
utive function data were unusable because there were problems in the
testing environment (n � 1), the participants were unable to understand
instructions (n � 2), or the participants’ data were suspect because of
repeated chance-level performance (on at least four individual tasks; n �
9) or clear fatigue (n � 1). There was also one co-twin who did not
participate in the executive function (age 17) testing session, but had
participated in the earlier (age 16) cognitive testing session. These partic-
ipants’ executive function data were excluded from the analyses. However,
their IQ and Perceptual Speed data from the earlier session were included
in the analyses. Hence, the total sample size for the executive function
models was 568 (from 158 MZ families and 134 DZ families), and the total
sample size for the additional models that included the perceptual speed or
IQ data was 582 (from 159 MZ families and 134 DZ families).

Table 1
Descriptive Statistics

Task N M SD Min Max Skewness Kurtosis Reliability

Antisaccadea 562 1.04 0.20 0.47 1.57 �0.14 �0.32 .89b

Stop signal 540 284 ms 65 151 500 1.18 1.67 .76b

Stroop 548 212 ms 89 0 483 0.51 0.06 .91b

Keep tracka 559 0.93 0.18 0.37 1.50 0.25 0.59 .66c

Letter memorya 568 1.09 0.24 0.38 1.57 0.29 �0.01 .61c

Spatial 2-backa 564 1.17 0.18 0.63 1.57 �0.96 1.57 .91c

Number–letter 562 336 ms 190 �14 953 1.12 1.28 .86b

Color-shape 551 333 ms 192 �196 930 0.83 0.97 .86b

Category switch 553 343 ms 193 �34 941 1.05 1.01 .85b

WAIS–IQ 582 102 11 70 142 0.16 0.37 .97d

Hidden patterns 572 90 23 20 161 �0.10 0.43 .91b

Perceptual speed 580 37 8 13 59 �0.03 0.09 .86b

Identical pictures 580 80 13 42 96 �0.58 0.49 .87b

Note. Min � minimum; Max � maximum; WAIS–IQ � Wechsler Adult Intelligence Scale full-scale IQ.
a Accuracy scores were arcsine transformed. b Internal reliability was calculated by adjusting split-half or Part 1–Part 2 correlations with the Spearman–
Brown prophecy formula. c Internal reliability was calculated using Cronbach’s alpha. d Internal reliability from Wechsler (1997).
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Phenotypic Analyses

Confirmatory Factor Analysis of the Three Executive
Functions: Do They Show Unity and Diversity?

Descriptive statistics for the nine executive function tasks,
WAIS–IQ, and the perceptual speed tasks are presented in Table
1,2 and maximum-likelihood estimates of the correlations among
all tasks are presented in Appendix A.3 As shown in Figure 2, the
three executive functions (depicted as ellipses to denote that they
are latent) correlated moderately with one another (Inhibiting with
Updating, r � .74; Inhibiting with Shifting, r � .73; Updating with
Shifting, r � .40). The fit of this full, three-factor model was good,
�2(24) � 44.51, p � .007, RMSEA � .039, TLI � .955, according
to our criteria of �2/df � 2, RMSEA � .06, and TLI � .95.
Comparisons of this model to restricted models in which each
correlation was set to zero or 1.0 indicated that these correlations
were significantly larger than zero, all �2

diff(1) � 24.88, p � .001,
but significantly smaller than 1.0, all �2

diff(1) � 11.30, p � .001.
Hence, each pair of latent variables was significantly correlated,
but no pair of was perfectly correlated. Moreover, as shown in
Table 2, the fit of the three-factor model was significantly better
than the fits of reduced two-factor models in which two of the
three latent variables were collapsed, all �2

diff(2) � 43.03, p �
.001. The three-factor model also fit much better than a one-factor
model with all three executive functions collapsed into a single
factor, �2

diff(3) � 220.36, p � .001. Hence, these results replicate
our previous finding of unity and diversity of these three executive
functions (Miyake et al., 2000).

Also shown in Figure 2, the nine tasks loaded significantly on
their respective factors, all �2

diff(1) � 51.42, p � .001, with the
factor loadings ranging from .42 to .74. Subtracting the square of
each factor loading from 1.0 gives the residual variance in each
task that is unrelated to the target executive function (i.e., task
impurity as well as measurement error). As shown on the far right

side of Figure 2, these residual variances ranged from .45 to .82.
Hence, each task had substantial variance that was unrelated to the
executive functions of interest, underscoring the importance of
using latent variables to separate out this task impurity.

Secondary Models: How Do the Executive Functions
Relate to Speed and IQ?

In an additional confirmatory factor analysis, we added the
Perceptual Speed latent variable (which had identical pictures,
Colorado Perceptual Speed Test, and hidden patterns as indicators)
and allowed it to correlate with the three executive functions. In
the resulting model, �2(48) � 119.85, p � .001, RMSEA � .051,
TLI � .923, Perceptual Speed correlated .69, .55, and .47 with
Inhibiting, Updating, and Shifting, respectively, again all signifi-
cantly greater than zero, all �2

diff(1) � 45.55, p � .001, but
significantly smaller than 1.0, all �2

diff(1) � 16.05, p � .001.
These three correlations could not be constrained to be equal,
�2

diff(2) � 7.51, p � .023. These results are consistent with recent
findings that executive functions are related to processing speed
(e.g., Hedden & Yoon, 2006; Salthouse et al., 2003), though the
magnitudes of the correlations were far smaller than unity in the
current study.

In a third confirmatory factor analysis, we added WAIS–IQ as
an observed variable to the model in Figure 2 and allowed it to
correlate with the three executive functions. In this model,
�2(30) � 63.01, p � .001, RMSEA � .043, TLI � .944,
WAIS–IQ correlated .53, .70, and .19 with Inhibiting, Updating,
and Shifting, respectively. All of these correlations were signifi-
cantly greater than zero, all �2

diff(1) � 10.90, p � .001, but
significantly smaller than 1.0, all �2

diff(1) � 37.90, p � .001.
These three correlations could not be constrained to be equal
without worsening the model fit, �2

diff(2) � 26.19, p � .001. This
differential relationship between WAIS–IQ and the three executive
functions—especially IQ’s strong association with Updating—
echoes the findings that we reported earlier based on a subset of
the current sample (Friedman et al., 2006). Moreover, the finding
that IQ is related relatively weakly to Shifting abilities is also
consistent with some other recent studies (Sü�, Oberauer, Witt-
mann, Wilhelm, & Schulze, 2002; Yehene & Meiran, 2007).

Genetic Analyses

Task ACE Models: Etiology of Individual Differences in
Individual Executive Tasks

As stated earlier, our primary interests in the genetic analyses
were the ACE estimates for the latent executive function variables

2 Sex differences in executive function task performance were not sig-
nificant, except for antisaccade (arcsined accuracy for males � 1.09 [SD �
0.18] and females � 1.00 [SD � 0.21], p � .001). Males and females did
not significantly differ in their executive function factor structures,
�2

diff(12) � 12.12, p � .436; executive function latent variable means, all
�2

diff(1) � 2.97, p � .085; or univariate task ACE estimates, all �2
diff(2) �

4.07, p � .131, except for stop signal, �2
diff(2) � 6.18, p � .046. Thus, sex

was not further considered.
3 Maximum-likelihood estimates of the correlations take into account

missing data and nonindependence of observations. Additional correlations
used in the genetic models can be obtained from Naomi P. Friedman.
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Figure 2. Phenotypic confirmatory factor analysis model of the three
executive functions. Numbers on arrows are standardized factor loadings,
those next to the smaller arrows on the right are residual variances, and
those on curved double-headed arrows are interfactor correlations. All
parameters were significant ( p � .05). Antisac � antisaccade; stop � stop
signal; keep � keep track; letter � letter memory; S2back � spatial
2-back; number � number–letter; color � color–shape; category � cate-
gory switch.
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as well as the etiology of their unity and diversity. However, for
thoroughness and to facilitate comparison to previous studies using
individual tasks, we also estimated ACEs for each task separately.
Table 3 presents these ACE estimates as well as the MZ and DZ
correlations. As discussed earlier, MZ correlations greater than DZ
correlations suggest a genetic effect, DZ correlations greater than
half the MZ correlations suggest shared environmental influences,
and MZ correlations less than 1.0 suggest some influence of
nonshared environment (which can include measurement error at
the level of individual tasks).

As shown in Table 3, the MZ correlations were uniformly higher
than the DZ correlations, and in most cases, the DZ correlations
were not more than half the MZ correlations, leading to estimates
of moderate genetic influence (29%–56%), little to no shared
environmental influence (0%–19%), and moderate nonshared en-
vironmental influence (44%–66%). These values are consistent
with previous estimates of ACEs based on individual executive
function measures (e.g., Ando et al., 2001; Malone & Iacono,
2002). Given the task impurity evident in the confirmatory factor

analysis (Figure 2), however, it is unclear to what extent these
estimates reflect genetic and environmental influences on the un-
derlying executive functions.

ACE Models of Individual Latent Variables: Etiology of
Individual Differences in Each Executive Function

To address the first major goal of the study (specifying the
etiology of the three executive functions), we applied the ACE
model to each latent variable (Appendix B discusses alternative
models we examined to verify the appropriateness of these latent
variable models, as well as the model fit statistics). Figure 3
depicts the three separate models for Inhibiting, Updating, and
Shifting. Each model includes the ACE estimates for the target
executive function (e.g., AI, CI, and EI for Inhibiting) as well as
independent ACEs for the individual tasks, which reflect genetic
and/or environmental variance that is specific to each task (i.e., not
captured by the relevant latent variable).

Table 2
Model Fit Statistics for Reduced Phenotypic Executive Function Confirmatory Factor Analysis Models

Model

Model fit Fit vs. full model

�2 df p RMSEA TLI �2
diff df p

Full three-factor model (Figure 2) 44.51 24 .007 .039 .955
Two-factor models

Inhibiting–Updating collapsed and Shifting 83.96 26 � .001 .063 .884 43.04 2 � .001
Inhibiting–Shifting collapsed and Updating 91.65 26 � .001 .067 .868 43.16 2 � .001
Updating–Shifting collapsed and Inhibiting 192.61 26 � .001 .106 .666 296.22 2 � .001

One-factor model 195.86 27 � .001 .105 .674 220.36 3 � .001

Note. Values of �2/df below 2, root-mean-square error of approximation (RMSEA) below .06, and Tucker–Lewis index (TLI) above .95 indicate good
fit.
a �2 and �2

diff are scaled for nonindependence (Satorra & Bentler, 2001), so �2
diff will not equal the simple difference between �2s for the full and reduced

models.

Table 3
Univariate Task Twin Correlations and ACE Estimates

Task

Twin
correlationsa Variance components Model fit

MZ DZ A C E �2(6) p RMSEA TLI

Antisaccade .56 .22 .56 .00 .44 3.06 .801 .000 1.02
Stop signal .57 .09 .48 .00 .52 13.86 .031 .095 .940
Stroop .52 .35 .38 .14 .48 8.83 .183 .057 .984
Keep track .51 .18 .50 .00 .50 2.43 .876 .000 1.03
Letter memory .57 .09 .52 .00 .48 14.98 .020 .101 .949
Spatial 2-back .31 .12 .29 .00 .71 2.67 .850 .000 1.07
Number–letter .49 .26 .50 .00 .50 4.60 .596 .000 1.01
Color–shape .34 .19 .29 .05 .66 4.07 .667 .000 1.03
Category switch .54 .38 .35 .19 .46 4.92 .554 .000 1.01
WAIS-IQ .84 .52 .69 .16 .15 2.46 .873 .000 1.01
Hidden patterns .74 .43 .69 .07 .25 2.69 .847 .000 1.01
Perceptual speed .73 .24 .70 .00 .30 5.51 .480 .000 1.00
Identical pictures .76 .37 .76 .00 .24 2.85 .827 .000 1.01

Note. Values of �2/df below 2, root-mean-square error of approximation (RMSEA) below .06, and Tucker–Lewis index (TLI) above .95 indicate good
fit. Boldface type indicates p � .05. MZ � monozygotic; DZ � dizygotic; A � additive genetic variance; C � shared environmental variance; E �
nonshared environmental variance.
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As shown in Figure 3, all three executive functions showed
extremely large genetic (AI � 99%, AU � 100%, and AS � 81%)
and little to no significant environmental influences (ES � 13%).
Hence, even though the individual tasks have only moderate ge-
netic influences, the variance common to multiple exemplar tasks
is highly heritable. These higher heritability estimates indicate that
task impurity and measurement error lead to underestimates of
genetic influences on executive functions that can be corrected
with latent variables.

To see how the high heritability of the latent variables can arise
from extracting what is common to multiple tasks with only
moderate heritability, it may be helpful to see how the total
variance in each task can be decomposed into the variance due to
the target executive function’s ACEs and the individual task’s
ACEs. For each model, the ACE estimates for the latent variable
(e.g., AU, CU, and EU for Updating) should sum to 100%, as
together they account for 100% of the executive function’s vari-
ance. This characteristic of ACEs summing to 100% will be the
case for the variables at the highest level of each model, because
nothing else predicts them. However, the ACEs for each task (e.g.,
the ACEs below the keep track rectangle in Figure 3) do not sum
to 100%, because a particular task’s total variance is a combination
of both these task-specific ACEs and the ACEs for the target
executive function. For the keep track task, for example, the
variance due to AU is the AU’s heritability estimate (100%) mul-
tiplied by the square of the factor loading of keep track on the
Updating latent variable (.672 � .45): 100 * .45 � 45%. Hence,
about 45% of the variance in the keep track task is due to genetic
influences on Updating ability. The remaining 55% is unrelated to
Updating and is shown in the ACEs specific to the keep track task
(i.e., 4% A � 0% C � 51% E).

As this explanation illustrates, the genetic and environmental
variance in each measure can be decomposed into that which is
shared with other measures and that which is unique to each
measure. This same decomposition can be applied in a model that
includes multiple executive functions, as described next.

ACE Model of the Three Executive Functions Together:
Etiology of the Unity and Diversity

The second major goal of the study was to specify the etiology
of the unity and diversity of executive functions. Toward this
goal, we estimated multivariate ACE models that included all
three executive functions at once. Such models can be param-
eterized in a number of ways, but for the purposes of this study,
two alternative parameterizations provide complementary infor-
mation: (a) a hierarchical model and (b) a nested factors model.
These two models are described in detail in the following
sections.

Hierarchical model. The first multivariate model we estimated
was the hierarchical ACE model in Figure 4, which includes all
three executive function latent variables loading on a Common
Executive Function (Common EF) factor. This model fit the data
well, �2(322) � 384.45, p � .010, RMSEA � .036, TLI � .949.
As shown in Figure 4, the model includes three levels of ACEs: (a)
general ACEs that influence all three executive functions through
a Common EF factor (AC, CC, and EC); (b) ACEs unique to each
executive function (e.g., AI, CI, and EI for Inhibiting); and (c) the
residual ACEs for the individual tasks (i.e., the nonexecutive
variance in each task).

The high heritability of the Common EF factor (AC � 99%)
indicates that genetic influences mediated almost all of the vari-
ance common to the three executive functions. Using the proce-
dures described earlier, one can decompose the proportions of
variance in each executive function due to the Common EF fac-
tor’s ACEs: Multiplying each executive function’s squared factor
loading by the AC variance (99%) reveals that AC explained 99%,
43%, and 44% of the variance in Inhibiting, Updating, and Shift-
ing, respectively. Of note, the ACEs unique to each executive
function indicated that Updating and Shifting also had their own
significant independent genetic influences (AU � 56% and AS �
42%) and Shifting also had small but significant nonshared envi-
ronmental variance (ES � 13%). These results indicate that the
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genetic structure of executive functions is fractionated. There were
significant genetic influences at multiple levels: those common to
all three executive functions and those specific to Updating and
Shifting. Moreover, there were also some genetic influences at the
third level, even though such task-specific, nonexecutive genetic
effects reached statistical significance only for the antisaccade task
in this model.

These findings rule out hypotheses that include environmental
influences as substantial contributors to the unity and diversity of
executive functions. Rather, they support the more surprising
conclusion that the unity and diversity of these three executive
functions are almost entirely of genetic origin: The executive
functions correlate because they share common genetic influences,
and they are separable mainly because of independent genetic
influences on Updating and Shifting.

Nested factors model. An alternative approach to these data is
the nested factors model depicted in Figure 5. The first factor in
this model is the Common EF factor, on which all nine executive
function tasks directly load. Though parameterized differently than
the Common EF factor in Figure 4, it is conceptually the same, and

its variance directly corresponds to the Common EF factor in the
hierarchical model. The nested factors are the Updating-specific
factor (on which the three updating tasks load) and the Shifting-
specific factor (on which the three shifting tasks load). Because the
variance that is common to all nine executive function tasks (i.e.,
the unity) is already accounted for by the Common EF factor, these
latter factors capture the remaining variance common to the up-
dating and shifting tasks, respectively. Thus, these factors do not
correspond to the Updating and Shifting factors discussed in
previous models but rather can be considered components of these
factors (i.e., the components that do not include what is common
to all three executive functions). The significant loadings on these
Updating-specific and Shifting-specific latent variables indicate
that there is something common among the Updating tasks and
among the Shifting tasks, over and above the Common EF factor,
thus again demonstrating unity and diversity of executive func-
tions.

In this model, there is no Inhibiting-specific factor because there
is no variance in Inhibiting that is unrelated to the Common EF
factor (as was the case in the hierarchical model in Figure 4, in
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which the Inhibiting latent variable had a loading of 1.0 on the
Common EF factor).4 It is important to note in this context that
these results do not mean that there is no Inhibiting ability. As
shown in the phenotypic (Figure 2) and hierarchical genetic (Fig-
ure 4) models, we were able to extract an Inhibiting latent variable
that was separable from the Updating and Shifting latent variables.
However, as indicated by Inhibiting’s loading of 1.0 on the Com-
mon EF factor in the hierarchical genetic model (Figure 4), the
variance in this latent variable was entirely explained by the
variance common to all three executive functions and hence com-
pletely subsumed in the Common EF factor.

The fit of this nested factors model was similar to that of the
hierarchical model, �2(321) � 378.53, p � .015, RMSEA � .035,
TLI � .952. As shown in Figure 5, the Updating-specific factor
was entirely genetic, and the Shifting-specific factor also had
significant genetic variance (as well as significant nonshared en-
vironmental variance). Hence, this model, which takes a different
approach to modeling the data, shows the same pattern as the
model in Figure 4.

We present both of these models because they provide comple-
mentary ways of looking at the data. The advantage of the hier-
archical model is that it enables a decomposition of each latent
variable (Inhibiting, Updating, and Shifting) into the variance due

to the Common EF factor’s ACEs, and the ACEs specific to that
executive function. The advantage of the nested factors model is
that it provides three latent variables that isolate this common and
specific variance at the same level (that is why the ACEs for each
of the three latent variables sum to 100%). This single-level feature
of the nested factors model makes it more amenable for examining
genetic correlations with other variables, making it ideal for the
secondary analyses presented next.

Secondary Genetic Analyses

In addition to the primary genetic analyses reported above, we
examined two additional models to rule out the hypotheses that the
Common EF factor simply reflects perceptual speed or g. The
results of these analyses indicate that the Common EF factor goes
beyond these two cognitive constructs.

4 Allowing an Inhibiting-specific factor that loaded on the three Inhib-
iting tasks in the phenotypic model resulted in near-zero loadings for two
of the tasks and a Heywood case (a standardized loading greater than 1.0)
for the third task, indicating model misspecification. Dropping this factor
did not harm model fit.
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ACE Model Including Speed: Is the Genetic Variance in
Executive Functions the Same as That for Speed?

We tested the hypothesis that the unity of executive functions
primarily reflects speed (e.g., Salthouse, 2005) by adding a Per-
ceptual Speed latent variable (derived from three perceptual speed
tasks) to the multivariate nested factors model and allowing its A
and E to correlate with the nonzero As and Es for the Common EF
and nested factors, as shown in Figure 6. A correlation between the
Perceptual Speed factor’s A variance and Common EF factor’s A
variance that is significantly smaller than 1.0 would indicate that
the Common EF factor’s genetic variance is not completely the
same as the Perceptual Speed factor’s genetic variance.

This model showed good fit, �2(570) � 727.53, p � .001,
RMSEA � .043, TLI � .931. As shown in Figure 6, Perceptual
Speed’s genetic A variance significantly correlated with the Com-
mon EF factor’s A variance (r � .67) and also with the Updating-
specific factor’s A variance (r � .19), though the latter correlation
was small. The correlations between the Perceptual Speed factor’s
and the Shifting-specific factor’s A and E variances were small
and not significant (rs � .08 and .09, respectively). Of note, the
genetic correlation between the Perceptual Speed factor and the
Common EF factor (r � .67) could not be set to 1.0 without
harming model fit, �2

diff(1) � 8.87, p � .003. Also, the small
correlation between the Perceptual Speed factor’s A and the

Updating-specific factor’s A (r � .19) could not be set to 1.0
without harming model fit, �2

diff(1) � 13.58, p � .001. These
findings falsify the hypothesis that the Common EF factor simply
reflects processing speed, although speed is substantially related to
the Common EF variance.

ACE Model With IQ: Is the Genetic Variance in the
Common EF Factor the Same as That for g?

WAIS–IQ as a manifest variable. Recent neuropsychological
and neuroimaging research suggests that g is related to lateral
frontal cortex (Duncan et al., 2000), a general area that is also
common to multiple executive functions (Collette et al., 2005;
Sylvester et al., 2003). Moreover, g and IQ are known to have
genetic influences (50% to 70%; Plomin & McClearn, 1993).
Given that the Common EF factor captures the variance general to
all three executive functions, a natural question is whether its
genetic variance simply reflects the substantial genetic influences
on g. To answer this question, we estimated the correlation be-
tween WAIS–IQ’s A and E variances and the nonzero A and E
variances for the three executive function latent variables in the
nested factors model (Figure 7).

This model fit the data well, �2(395) � 467.47, p � .007,
RMSEA � .035, TLI � .956. As shown in Figure 7, the genetic
variance in WAIS–IQ significantly correlated with the genetic
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variance for the Common EF factor (r � .57) and also for the
Updating-specific (r � .56) and Shifting-specific (r � –.20) fac-
tors. WAIS–IQ’s E variance did not significantly correlate with the
Shifting-specific factor’s E variance. Though the correlations with
the Common EF factor and the Updating-specific factor were
expected on the basis of our previous phenotypic finding that IQ
was more closely related to Updating than to Inhibiting and Shift-
ing (Friedman et al., 2006), the small negative genetic correlation
between IQ and the Shifting-specific factor was unexpected and
difficult to interpret. Of note, the correlation between WAIS–IQ’s
A variance and the Common EF factor’s A variance (r � .57)
could not be set to 1.0 without harming model fit, �2

diff(1) �
15.03, p � .001; nor could the correlations between WAIS–IQ’s A
and the As for the Updating-specific factor (r � .56), �2

diff(1) �
9.50, p � .002, and for the Shifting-specific factor (r � –.20),
�2

diff(1) � 5.90, p � .015. Hence, these results indicate that the
Common EF factor is not just g.

WAIS–IQ as a latent variable. In the analyses discussed in the
previous section, g was operationalized as WAIS–III full-scale IQ,
a manifest variable. One concern about this use of a single variable
is that it may not be on an even footing with the executive function
variables, as the latter are latent (as opposed to manifest) variables.
Although the IQ scores are composites of 11 separate subtests and
hence are not at the same level of impurity and measurement error

as individual tasks used to tap the three executive functions, we
conducted further analyses with g as a latent variable (on which the
11 WAIS–III subtests loaded). The complexity of these analyses
rendered their full presentation beyond the scope of the current
article, but the main results, described next, showed essentially
identical patterns as the analyses with WAIS–IQ as an observed
variable.

To achieve satisfactory model fit and avoid biases in the param-
eters due to model misspecification, it was necessary to model not
only a general g factor (our primary interest) but also four addi-
tional WAIS–III factors that have been established in previous
literature (e.g., Taub, McGrew, & Witta, 2004; Wechsler, 1997).
To account for these factors while still extracting a general com-
ponent, we used the nested factors model depicted in Appendix C,
with all 11 subtests loading on the g factor and each subtest also
loading on one of four additional independent factors (with the
loading pattern specified a priori on the basis of previous litera-
ture). This model provided a good fit to the data, �2(479) �
547.46, p � .016, RMSEA � .031, TLI � .977, with all of the
subtests loading significantly on the g latent variable. The g latent
variable was 76% heritable, with 21% C variance and 2% E
variance. Hence, even when the g variable is operationalized as a
latent variable loading on 11 individual measures, its heritability is
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quite similar to that of the WAIS–IQ scores, though in this case the
environmental variances did not reach significance.

To examine the relationship between the g latent variable’s
genetic variance and the executive functions’ genetic variances, we
combined this nested factors g model (Appendix C) with the
nested factors executive function model (Figure 5) and estimated
the genetic correlations between the g latent variable and the
executive function latent variables, just as we did in the models
with Perceptual Speed and WAIS–IQ (Figures 6 and 7) described
earlier. Note that in these models, it was necessary to include
correlations with the additional independent WAIS–III factors to
avoid model distortion, but we do not report these parameters here,
as they are not of primary interest for the current study. This
combined model provided an acceptable fit to the data, �2(1571) �
1,869.77, p � .001, RMSEA � .036, TLI � .934.

The genetic correlations between the g latent variable and the
Common EF, Updating-specific, and Shifting-specific variables
were .52, .49, and –.17, respectively. These correlations are similar
to those with the WAIS–IQ scores summarized in Figure 7 (.57,
.56, and –.20, respectively). The correlations with the Common EF
and Updating-specific (though not the Shifting-specific) latent
variables were significant. Just as in the model using WAIS–IQ,
however, the genetic correlations of the g factor with the Common
EF factor (r � .52) and with the Updating-specific factor (r � .49)
could not be constrained to 1.0 without harming model fit,
�2

diff(1) � 17.12, p � .001, and �2
diff(1) � 9.70, p � .002,

respectively. Hence, even when g is treated as a latent variable, its
genetic variance does not completely explain the genetic variance
common to the three executive functions.

General Discussion

Summary of the Main Results

Primary Analyses: Genetic and Environmental Influences
on Executive Functions

The two primary goals of this study were to specify (a) the
extent to which genetic and environmental influences lead to
individual differences in three executive functions (Inhibiting,
Updating, and Shifting) and (b) the extent to which the unity and
diversity of executive functions are due to common and specific
genetic and/or environmental influences. Our results provide clear
answers to these questions.

With respect to the first goal, our results indicate that individual
differences in executive functions are almost entirely genetic at the
level of latent variables, placing them among the most heritable
psychological traits, possibly even more heritable than IQ. The
finding of virtually no environmental influences at the general
(Common EF) level is particularly striking in light of the fact that
moderate environmental variance has consistently been found for
other cognitive functions, including specific cognitive abilities
(40% to 70% environmental; Alarcón et al., 1999; Pedersen et al.,
1992) and g (30% to 50% environmental; McGue et al., 1993;
Neisser et al., 1996); indeed, our own univariate estimate indicated
significant environmental (30%) influences for WAIS–IQ scores.

With respect to the second goal, the unity and diversity of
executive functions are due almost entirely to common and unique
genetic influences. Our estimates from the hierarchical model

indicated that their unity was due to the influence of a Common EF
factor that was 99% heritable. Their diversity was due primarily to
substantial genetic influences unique to Updating (56%) and Shift-
ing (42%); Shifting also had small but significant (13%) nonshared
environmental influences. The nested factors genetic model of the
executive functions showed the same pattern. This result—that
both the unity and the diversity of executive functions are primar-
ily genetic—provides a marked contrast to findings with specific
cognitive abilities (e.g., verbal and spatial abilities, memory, and
speed), suggesting that they are related because of shared genetic
and environmental influences and separable primarily because of
environmental influences unique to particular abilities, with only
small specific genetic influences (Alarcón et al., 1999; Petrill,
1997).

Secondary Analyses: Genetic Relations of Executive
Functions to Speed and IQ

In two secondary analyses, we found that the genetic influences
on executive functions went beyond Perceptual Speed or IQ.
Specifically, although these two constructs were genetically cor-
related with the executive function latent variables, these correla-
tions were far from 1.0. These results indicate that the three
executive functions examined here reflect genetic variance that,
though related, is not redundant with these other well-studied
cognitive constructs, thus ruling out the hypothesis that once such
factors are taken into account, there is not much unique variance
left for executive functions (Salthouse, 2005; Salthouse et al.,
2003).

The finding that Perceptual Speed was primarily related to the
Common EF factor (with a small additional correlation with the
Updating-specific factor) provides a new basis for interpreting
recent reports that executive functions, particularly inhibition-
related abilities, are related to processing speed (e.g., Hedden &
Yoon, 2006; Salthouse et al., 2003). That is, speed seems to be
related to all three of these executive functions because it is
genetically related to what they all share (the Common EF factor),
and it is slightly more related to Inhibiting because Inhibiting is
more related to the Common EF factor.

The finding that the genetic variance in WAIS–IQ was substan-
tially related to both the Common EF factor and the Updating-
specific factor complements and extends our earlier phenotypic
finding with these data (Friedman et al., 2006) that IQ (both its
fluid and its crystallized aspects) was primarily related to Updating
abilities. In particular, it seems that IQ (whether operationalized as
a single manifest variable or as a latent variable) shows a stronger
relationship with Updating than with the other two executive
functions because it is substantially related to the genetic variance
that is specific to Updating as well as the genetic variance that is
common to the three executive functions. These results provide
one illustration of how taking into account multiple levels of
genetic variance (i.e., the common and specific genetic variance)
in these three executive functions may elucidate their relations to
other variables of interest.

One possible concern with these secondary analyses is that the
speed and IQ measures were collected in a separate session ap-
proximately 1 year prior to the executive function session, and that
this gap might have lowered their correlations with the executive
function latent variables in the secondary analyses. It is important
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to note, however, that our analyses were concerned only with the
genetic variance in these measures. Previous research on the de-
velopmental stability and change of cognitive abilities in this age
range suggests that genetic effects contribute to stability of scores,
whereas instability is due primarily to nonshared environment. For
example, Petrill et al. (2004) found that the genetic correlation
between IQ scores at year 12 and year 16 was 1.0, strongly
suggesting that there are no new sources of genetic variation in this
age range (which is quite a bit larger than the range of 16 to 17 in
the current study). Hence, we think it unlikely that the 1-year gap
between the two sessions substantially lowered the genetic corre-
lations between the executive functions at age 17 and the other
cognitive abilities at age 16.

Provisos of Twin Studies

Twin models such as those used in this study have been criti-
cized on a number of grounds, although some do not apply to this
study (such as parents’ rater bias). Perhaps the most relevant issue
for our results is the possibility that the equal environments as-
sumption (the assumption that the shared environmental influences
causing similarity of twins are about the same for identical and
fraternal twins) was violated. If identical twins experience more
similar environments than fraternal twins, and those environments
actually do influence the traits of interest, the heritability estimates
may be biased upward. However, a number of studies that tested
the equal environments assumption through different methodolo-
gies have found little evidence for unequal environments influenc-
ing twin similarities or differences (e.g., Kendler, Neale, Kessler,
Heath, & Eaves, 1993; Loehlin & Nichols, 1976; Morris-Yates,
Andrews, Howie, & Henderson, 1990; Scarr & Carter-Saltzman,
1979). Moreover, the convergence of results from twin studies
with the results of other designs that do not assume equal envi-
ronments (such as adoption studies, twin adoption studies, and
family studies) further supports the validity of the twin design
(e.g., Bouchard, Lykken, Tellegen, & McGue, 1990).

Heritability estimates may also be biased upward if the studied
population is particularly homogeneous in terms of environmental
factors (e.g., socioeconomic status or educational opportunities)
that influence the phenotypes examined. In the extreme case, if
everyone studied were exposed to exactly the same environment,
there would be no environmental factors that varied, and hence,
individual differences should be entirely genetic. This fact raises
the question of whether the high heritability estimates in the
current study might be due to an unusually homogeneous sample
in terms of environmental factors. Although we cannot entirely
rule out this possibility without extensive environmental data, we
think that it is unlikely given the data that we do have. First, our
sample is a community-wide sample, rather than a sample of
individuals in a particular group (such as college students or
individuals in treatment for a disorder). Second, our most relevant
data (though admittedly not optimal) about the socioeconomic
status of the families, year 16 twin-reported family income brack-
ets, suggest that though the sample was somewhat skewed toward
higher incomes, it was certainly not restricted to high-income
families: Of the 241 families for whom these data were available,
10% fell into the �$15K bracket, 8.3% into the $15–$30K bracket,
16.2% into the $30–$45K bracket, 18.7% into the $45–$60K
bracket, 13.7% into the $60–$75K bracket, and 33.2% into the

�$75K bracket. Moreover, our most relevant data (i.e., years of
education) pertaining to the educational environment of the 293
families in this study at the time of their recruitment (1984 to
1989) suggest that they were reasonably representative of the
population of Colorado in terms of variability: for mothers in this
longitudinal sample (M � 14.5, SD � 2.1, range � 7 to 21) versus
all Colorado mothers (M � 13.0, SD � 2.4); for fathers in this
sample (M � 14.7, SD � 2.1, range � 7 to 21) versus all Colorado
fathers (M � 13.6, SD � 2.5) (see Rhea et al., 2006, for more
information about this longitudinal sample). Of course, these ed-
ucational data only speak to whether the sample was homogeneous
in comparison to the state. It is an open question whether these
results would generalize to populations in other regions of the
United States or in other countries where conditions differ.

Another consideration when interpreting the heritability esti-
mates for the current study is that the ACE genetic models we used
assume only additive genetic effects. Nonadditive effects, such as
genetic dominance and epistasis, would lower the DZ correlation
relative to the MZ correlation, and so our very high heritability
estimates could include nonadditive genetic variance. Given that
for some of the executive function tasks used in the study (e.g.,
keep track), DZ correlations were only about 1/4 of their MZ
counterparts (see Table 2), this possibility cannot be entirely ruled
out.5 However, when we did test for genetic dominance variation,
it was not significant. It is also important to emphasize that our
main goal in this study was to uncover the multivariate genetic and
environmental structure underlying executive functions, rather
than to partition the genetic effects into additive and dominance
deviations. Thus, even if some of the executive functions’ genetic
variation in fact turns out to be nonadditive, our conclusions about
the multilevel genetic structure of executive functions will still
hold.

A final concern with twin studies in general is that twins may
not be representative of the general population. Perhaps because
twins share a womb and are exactly the same age, they may
experience more shared environment than their nontwin siblings,
leading to higher estimates of shared environmental influences
compared with studies using nontwin designs, such as adoption
studies (Chipuer et al., 1990). Contrary to this prediction, there
was no evidence for shared environmental influences (except for
IQ) in the current study. Another reason that twins may not be
representative of the general population is that they are often born
premature and experience different prenatal and possibly postnatal
environments than singletons. However, studies comparing twins
with their nontwin relatives on a variety of measures have typically
found only very small differences in psychiatric measures (e.g.,
Kendler, Martin, Heath, & Eaves, 1995; Rhea, Corley, & Millikan,
2002) and no significant differences in IQ (Posthuma, de Geus,

5 DZ correlations of only about 1/4 MZ correlations can indicate genetic
dominance (D). With MZ and DZ twins reared together, it is not possible
to estimate the effects of both shared environment (C) and dominant
genetic (D) influences, although one or the other source can be assumed to
be absent depending on whether the DZ twin correlation is greater (D � 0)
or less (C � 0) than half the MZ correlation. Because in the current study
the MZ correlations appeared greater than twice the DZ correlations for
only some of the measures, we used the ACE models throughout. More-
over, when we estimated ADE models, the D parameters were nonsignif-
icant.
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Bleichrodt, & Boomsma, 2000). In fact, the mean IQ of the current
sample (102) was roughly equivalent to that of the general popu-
lation (mean of 100), and the factor structure of executive func-
tions replicated that found by Miyake et al. (2000) with college
students. These results make it likely that the current findings will
generalize to a general population, nontwin sample.

Interpretation of High Heritability for Executive
Functions

When confronted with an estimate of extremely high heritability
of executive functions, one’s first reaction may be despair that
executive control abilities are fixed and immutable (one might also
think that because Shifting was the only executive function to
show significant environmental influences, it is the only one ame-
nable to change). In other words, one might think that our results
necessitate the interpretation that executive control abilities are all
“nature” and no “nurture” and thereby fundamentally challenge
recent research on environmental manipulations to improve exec-
utive function performance. Such interpretations are incorrect,
however. Contrary to common misconceptions, high heritability
does not mean that environmental factors cannot and do not affect
executive functions.

In fact, our results do not negate the findings of recent studies
demonstrating that it is possible to improve executive control
abilities through targeted training. Although many training studies
have focused on rehabilitation of executive functions in clinical
populations (e.g., Klingberg et al., 2005; Sammer, Reuter, Hull-
mann, Kaps, & Vaitl, 2006; White & Shah, 2006) or in aging or
developmental populations (Dowsett & Livesey, 2000; Kramer,
Larish, & Strayer, 1995; Rueda, Rothbart, McCandliss, Saccom-
anno, & Posner, 2005), some research has also demonstrated
improvement in normal young adults (e.g., Erickson et al., 2007;
Kramer et al., 1995; White & Shah, 2006). Though the extent to
which such training effects transfer to other untrained tasks or
other executive functions is unclear at this point, the existing
evidence clearly suggests that it is possible to improve one’s
performance on specific executive tasks through targeted training.

How can these results be reconciled with our finding of high
heritability for executive functions? Generally speaking, heritabil-
ity is an estimate of the genetic influence on individual differences
around a population mean (i.e., the population variance), rather
than an estimate of the influences on the mean itself. Thus,
environmental factors can influence a population’s average at the
same time that genetic factors influence its variance (Scarr, 1992).
The effects of training on executive functions may be analogous.
Targeted training can certainly improve individuals’ performances
on executive function tasks (hence affecting the group mean), but
as long as training effects influence all individuals roughly equally
(reflecting an equal change from baseline across individuals),
individual differences in executive functions could still be due
almost entirely to genetic influences. Moreover, it is important to
note that differences in environments can themselves be geneti-
cally mediated (e.g., individuals predisposed to have good execu-
tive functions might select environments that nurture those exec-
utive functions), leading to gene–environment correlations (Neale
& Cardon, 1992). In such cases, environmental effects are included
in the estimate for heritability, because they are themselves genet-
ically influenced. These considerations clearly suggest that the

current findings should not be taken as evidence that executive
control abilities are immutable and cannot be influenced by envi-
ronmental manipulations.

Implications for Future Executive Function Research

The finding that executive functions have large genetic influences
at the level of latent variables is good news for researchers interested
in using genetic methods to uncover the biological mechanisms un-
derlying executive control. The genetic influences on executive func-
tions have been of increasing interest to psychologists in a wide
variety of domains (e.g., Diamond, Briand, Fossella, & Gehlbach,
2004; Goldberg et al., 2003; Nigg, Blaskey, Stawicki, & Sachek,
2004). In particular, the findings that weaknesses in executive func-
tions are associated with numerous psychological and behavioral
problems have led many researchers to suggest that executive control
may be an endophenotype—a putatively more elementary character-
istic closer to the underlying biology that bridges the gap between
genes and disease—for these disorders. The idea behind endopheno-
types is that they may provide cleaner, more reliable measures that
may consequently show larger genetic effect sizes than the associated
diseases (e.g., schizophrenia or ADHD). Hence, understanding the
genetics of endophenotypes may be more tractable than the genetics
of the diseases themselves.

Although executive functions satisfy many criteria for endopheno-
types (such as being heritable, related to problems of interest, and
lower in unaffected family members of individuals affected with a
disorder vs. the general population; e.g., Goldberg et al., 2003), the
issue of executive functions as endophenotypes has been a topic of
considerable debate (see Flint & Munafò, 2006, for a recent discus-
sion). In their meta-analyses, Flint and Munafò found little evidence
that effect sizes for particular genetic loci such as the COMT Val/Met
polymorphism were larger for executive function tasks (such as the
Wisconsin Card Sorting Test and n-back) than those for the diseases
of interest, and they cautioned that endophenotypes may not neces-
sarily demonstrate simpler genetic architecture. Whether or not exec-
utive functions can truly be considered endophenotypes of certain
psychiatric disorders, our findings suggest a way to increase the
power and impact of genetic studies of executive functions. In par-
ticular, our results suggest that genetic sources of individual differ-
ences in executive functions may be more powerfully and purely
assessed at the level of latent variables.

Another major finding of this study—that genetic influences on
executive functions operate at multiple levels—is in some ways
not-so-good news for researchers interested in the neurobiology of
executive functions. The refutation of the hypothesis that the genetic
influences on executive functions operate only at a general (Common
EF) level poses a problem for many computational modeling, herita-
bility, and molecular genetic studies that implicitly make this assump-
tion. For example, molecular genetic studies often focus on single
complex measures like the Wisconsin Card Sorting Test to examine
the influences of candidate genes on executive functions (see Gold-
berg & Weinberger, 2004). If it were indeed the case that the genetic
influences on one executive function task were general to all execu-
tive functions and that multiple executive functions were differenti-
ated only by environmental factors, the interpretation of results using
single tasks would be relatively unproblematic. However, the finding
that executive functions are influenced by both general and specific
genetic factors complicates the interpretation: At which level are
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observed effects operating? The interpretation is made even more
difficult by the fact that some of the individual tasks also showed
genetic influences on the nonexecutive variance (e.g., 36% for anti-
saccade in the multivariate model, as shown in Figure 4). These added
levels of complexity mean that progress in specifying the genetic
underpinnings of executive functions will require the consideration of
multiple executive functions, as well as multiple tasks per executive
function, to distinguish these general and specific influences. Al-
though doing so would no doubt be more challenging, the results of
the current study suggest that this approach will likely lead to a better
and more accurate understanding of the nature of genetic influences
on executive control abilities.

Implications of the Lack of Inhibiting-Specific Variance

As evidenced by its loading of 1.0 on the Common EF factor in
the hierarchical model (Figure 4), the variance for the Inhibiting
latent variable was estimated to be shared completely with the
common variance in the other two executive functions. Given that
this factor loading had a confidence interval of .92 to 1.0, it is
possible that Inhibiting does have some independent variance, but
such variance would have to be quite small. This result was
corroborated by our failure to find an Inhibiting-specific factor in
the nested factors genetic model (Figure 5). Of interest, our finding
that Inhibiting did not have genetic influences beyond those on the
Common EF factor is reminiscent of Collette et al.’s (2005)
neuroimaging finding that beyond the frontal regions activated by
all three executive functions, there were no other brain regions
uniquely activated by inhibiting tasks (unless statistical thresholds
were lowered), even though there were such unique regions for
updating and shifting tasks. That is not to say that there is no
inhibiting ability. In our analyses, we did find that the inhibiting
tasks clustered together to form a latent variable (replicating our
earlier finding in an independent data set; Miyake et al., 2000);
Collette et al. also found areas common to their inhibiting tasks. It
is just to say that individual differences in response inhibition
abilities appear to be very closely related to what is common
among executive functions.

What does this lack of unique variance for the Inhibiting latent
variable mean? One way to interpret this result may be in terms of
theories that postulate inhibition as a fundamental, unifying com-
ponent of executive control from which other executive deficits
stem (e.g., Zacks & Hasher, 1994). Although this interpretation is
consistent with the finding, one weakness of this view is that in
such contexts, inhibition is conceptualized more broadly, including
a number of possibly separable inhibition-related abilities (Fried-
man & Miyake, 2004; Harnishfeger, 1995; Nigg, 2000). More
specifically, for this interpretation to be correct, one would have to
assume that one’s ability to override prepotent responses (inhibit-
ing) is the same as the ability to remove no longer relevant
information from working memory (associated with updating) as
well as the ability to abandon or inhibit no longer relevant task sets
(associated with shifting). In light of recent evidence that some
inhibition-related control abilities (such as prepotent response in-
hibition and resisting proactive interference) are correlationally
dissociable (Friedman & Miyake, 2004; Hedden & Yoon, 2006),
such an assumption may not be tenable.

An alternative interpretation of Inhibiting’s high loading on the
Common EF factor (and the one we favor) is that the inhibition of

prepotent responses perhaps depends particularly heavily on other
processes that are fundamental to all three executive functions.
One such process may be the active maintenance and management
of task goals in the face of interference (Miyake et al., 2000;
O’Reilly, Braver, & Cohen, 1999). Indeed, the frontal–parietal
brain network activated by multiple executive functions is thought
to subserve goal maintenance and selective attention or interfer-
ence control (Collette et al., 2005; Sylvester et al., 2003). From this
perspective, the key ability underlying the Inhibiting factor is the
active maintenance and management of the current task goals, and
once this ability is taken into account, not much is left to explain
for the Inhibiting factor, whereas the Updating and Shifting factors
involve additional abilities that go beyond active goal maintenance
and management (e.g., the monitoring of the current contents of
working memory for Updating). Although this alternative expla-
nation is speculative and needs further systematic research, it has
the advantage of being consistent with recent goal-directed views
of inhibitory control (e.g., Kane & Engle, 2003; Morton & Mu-
nakata, 2002).

In our own research, including the current study, Inhibiting
measures have consistently shown the lowest within-construct
correlations (Friedman & Miyake, 2004; Miyake et al., 2000).
Such low correlations have led some researchers to be unable to
construct an inhibiting latent variable (e.g., Huizinga et al., 2006;
van der Sluis et al., 2007), though those studies were developmen-
tal rather than focused on adult-level executive functions. Yet in
the current study we found Inhibiting to be the construct most
closely related to the Common EF factor. In other research using
these data, we have consistently found the Inhibiting construct to
be more closely related than Updating or Shifting to various
real-world problems, such as attention problems (Friedman et al.,
2007), depressive symptoms (Sabella et al., 2007), and external-
izing behavior (Young et al., 2007). Others have also found pre-
potent response inhibition (usually measured with the stop-signal
task) to be more related than other executive functions to some
forms of psychopathology, such as ADHD and substance use
disorders (e.g., Nigg et al., 2006; Willcutt et al., 2001). Hence,
although the inhibition of dominant responses is a difficult con-
struct to measure (see Friedman & Miyake, 2004, for discussion),
it seems to be a crucially important one when it comes to under-
standing executive control and its relation to real-world behavior.

Conclusions and Future Directions

The results of the current study suggest that individual differ-
ences in normal young adults’ Inhibiting, Updating, and Shifting
abilities are almost entirely genetic in origin and that the unity and
diversity of these executive functions are due primarily to genetic
influences that operate at both the general level (on all three
executive functions) and specific levels (on Updating and Shift-
ing). Our finding that executive functions have both common and
specific genetic influences suggests that an important goal for
future genetic research will be to begin the search for specific
genetic polymorphisms associated with each level. Doing so will
provide information instrumental to testing and extending current
theories, yielding new insights into the nature of executive control
and various disorders linked with executive deficits.

In this regard, one important direction for such research may be
to integrate brain localization data with emerging information
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about the neuropsychological consequences of various key genetic
polymorphisms. As noted earlier, the multilevel genetic structure
of executive functions is consistent with recent findings of unity
and diversity of executive function localization (Collette et al.,
2005; Sylvester et al., 2003). This correspondence between behav-
ioral genetic and brain localization results suggests that genetic
regulation of brain structure differences (Thompson et al., 2001)
and differential gene expression in these common and unique brain
areas may explain some of the genetic unity and diversity of
executive functions, thus making the exploration of this potential
relationship a highly promising research strategy in this field.

Another promising direction for future genetic research, which
has already received a good deal of attention, is to specify the role
of genes that regulate neurotransmitter systems in modulating
executive functions. In particular, although dopamine has long
been thought to enhance flexible information updating and reduce
distraction by optimizing signal-to-noise ratio in the frontal cortex,
the specific mechanisms of dopamine neuromodulation are not yet
fully understood (Cohen, Braver, & Brown, 2002). Recent molec-
ular genetic studies of normal adults have found some evidence
that genes influencing dopamine production and regulation, such
as the COMT Val/Met polymorphism, are related to executive
control ability (Goldberg & Weinberger, 2004). However, these
studies have predominantly limited their focus to only a single or
a small subset of dopamine-related genes and examined their
relations to executive control with a single complex executive
function task such as the Wisconsin Card Sorting Test, thus mak-
ing it impossible to distinguish multiple levels of genetic influ-
ences on executive functions. Thus, more complex designs (e.g.,
examining multiple executive functions using multiple exemplar
tasks for each executive function) will be needed for gene identi-
fication to be truly effective.

In conclusion, the current research has demonstrated that the unity
and diversity of executive functions—a pattern that has been shown
repeatedly in prior phenotypic studies of executive functions (e.g.,
Duncan et al., 1997; Friedman et al., 2006; Hedden & Yoon, 2006;
Miyake et al., 2000; van der Sluis et al., 2007)—are almost entirely
genetic in origin, at least among young adults. This is a striking and
surprising finding that no existing theories of executive control would
have predicted a priori. By uncovering the multilevel genetic structure
of executive functions for the first time, the current study thus lays the
necessary groundwork for improving the precision and impact of
future genetic and neuroscience research into the mechanisms under-
lying executive control.
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Appendix B

Common Pathway Versus Independent Pathways Model Comparisons

The structures of the genetic models we present were motivated
by our latent variable approach. They include assumptions about
the multivariate genetic structure: in particular, that the executive
functions’ ACE variables influence the individual executive func-
tion tasks through their respective latent variables (i.e., Inhibiting,
Updating, and Shifting). This type of model is known as a common
pathway model (Neale & Cardon, 1992). However, there is an-
other, less restrictive independent pathways model in which the
common ACEs influence each task separately, not through a latent
variable. These two models are depicted conceptually in Figure B1
(Panel A for the common pathway model and Panel B for the
independent pathways model). The primary difference is that in the
independent pathways model, there are more free parameters
(three paths from each common A, C, and E), and the variance in

each task due to the common ACEs is not necessarily proportional
to its relation to a latent variable. In the common pathway model,
there is only one path from each executive function A, C, and E,
and the variance in each task explained by these executive function
ACEs is proportional to the task’s loading on the latent variable.

Table B1 presents the model fits for the independent pathways
and common pathway models applied to the three executive func-
tions individually (top three rows of Table B1) as well as to the
hierarchical model with all three executive functions (bottom row
of Table B1; in that case the common pathway was through the
Common EF factor). In all cases, the common pathway models did
not fit significantly worse than the independent pathways models,
confirming our hypothesis that the higher level ACEs influenced
the measures through the theoretically defined latent variables.

(Appendixes continue)

Appendix A

Phenotypic Correlations Among the Individual Tasks

Task 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Antisaccade —
2. Stop signal .31 —
3. Stroop .16 .18 —
4. Keep track .17 .27 .22 —
5. Letter memory .25 .19 .25 .45 —
6. Spatial 2-back .22 .28 .12 .29 .28 —
7. Number–letter .16 .28 .23 .15 .23 .15 —
8. Color–shape .21 .25 .27 .17 .18 .14 .40 —
9. Category switch .19 .30 .24 .17 .17 .17 .50 .48 —

10. WAIS–IQ .25 .25 .27 .52 .40 .31 .07 .14 .19 —
11. Hidden patterns .23 .23 .31 .27 .22 .18 .26 .24 .28 .47 —
12. Perceptual speed .17 .27 .34 .36 .35 .24 .19 .20 .16 .44 .46 —
13. Identical pictures .22 .23 .21 .27 .23 .18 .27 .27 .26 .42 .59 .57 —

Note. Correlations are maximum-likelihood estimates (from Mplus) based on all data, adjusted for missingness and nonindependence. Total N � 582.
Directionality of the reaction time measures was reversed so that for all tasks, higher scores indicate better performance. WAIS–IQ � Wechsler Adult
Intelligence Scale full-scale IQ.
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Table B1
Fit Statistics for the Common Pathway Versus Independent Pathways Models

Common
factor

Common pathway Independent pathways �2 difference

�2 df p RMSEA TLI �2 df p RMSEA TLI �2
diff df p

Inhibiting 50.90 37 .064 .051 .951 47.47 33 .049 .055 .943 3.43 4 .489
Updating 34.56 37 .584 .000 1.01 33.38 33 .449 .009 .999 1.18 4 .881
Shifting 45.86 37 .151 .040 .983 40.31 33 .178 .039 .985 5.55 4 .235
All three EFs 384.45 322 .010 .036 .949 380.94 318 .009 .037 .947 3.51 4 .476

Note. Values of �2/df below 2, root-mean-square error of approximation (RMSEA) below .06, and Tucker–Lewis index (TLI) above .95 indicate good
fit. Nonsignificant chi-square differences indicate that the reduced common pathway models did not provide a significantly worse fit than the independent
pathways models. EF � executive function.
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A. EEF

ECA

CEFAEF

EF

ECA

Task 3 

ECA

Task 2 Task 1 

EEFCEFAEF

ECA ECA

Task 3 

ECA

Task 2 Task 1 

Figure B1. Two multivariate ACE models for three tasks. In a common pathway model (Panel A), the
executive functions’ ACE variables influence the individual tasks through the executive function (EF) latent
variable. In the less restrictive independent pathways model (Panel B), the executive functions’ ACEs influence
the tasks directly through separate paths (i.e., there is no underlying latent variable postulated for the correlations
among the measure).
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Appendix C

g as a Latent Variable Model

Received May 17, 2007
Revision received October 4, 2007

Accepted October 9, 2007 �

.93

VC
specific

61% 21%

A C E

18%

.38

Dsym

ECA

Vocab

ECA

PS
specific

Sim

A C E

0 5 47

Info

A C E

0 14 15

Comp

A C E

0 2 32

Block

A C E

0 2 28

PicA

A C E

21 0 66

Obj

ECA

5

.52.23.40.38

g

ECA ECA

PO
specific

.40.79

26%

ECA

34%40%

WM
specific

.55.15.63.22.62.21

.29.32.70 .30.55.63.81.56

ECA

PicCArith

E

29 37014

ECA

Dspan

CA

39%15%46%

%469

10%0%90%

69180018

2%21%

11

76%

57

Figure C1. Nested factors model of the subtests of the Wechsler Adult Intelligence Scale—Third Edition. The
model depicts a g factor, on which all 11 subtests (names abbreviated) load, and four nested factors: Verbal
Comprehension (VC) specific, on which Vocabulary, Similarities, Information, and Comprehension load;
Working Memory (WM) specific, on which Arithmetic and Digit Span load; Perceptual Organization (PO)
specific, on which Picture Completion, Block Design, Picture Arrangement, and Object Assembly load; and
Perceptual Speed (PS) specific, which has Digit Symbol Substitution as a single indicator. Because a two-
indicator latent variable is not statistically identified when it does not correlate with any other variables in the
model (Bollen, 1989), the loadings for the WM-specific variable were fixed at the values estimated in the full
model that incorporated correlations with the executive function latent variables. Numbers above the ACEs for
the latent variables are the percentages of those variables’ variances accounted for by genetic and environmental
influences. Numbers occluding arrows are standardized factor loadings. Numbers under the lower ACEs are
estimates for task-specific variances. Boldface type and solid lines indicate p � .05. Italic type indicates that the
.23 loading of the information subtest on the VC-specific variable approached significance ( p � .066), as did
the 18% specific C variance for the picture completion subtest ( p � .055) and the 21% specific A variance for
the picture arrangement subtest ( p � .061).
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