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First introduced in 2005 (ref. 1), the term ‘connectome’ 
embodies the advances of over a century of neurosci-
entific innovation and reflects an agenda for a new era. 
Initially defined as a complete map of neural connec-
tions in the brain, the connectome is a multiscale con-
struct that can be examined at varying resolutions. At 
the extremes are the microscale, which encompasses 
individual neurons and their synaptic connections, and 
the macroscale, which encompasses cortical tissues 
(commonly a cubic centimeter or larger). The inter-
mediate resolution is the mesoscale, which, in humans, 
encompasses vertical columns of 80–120 neurons 
(commonly referred to as micro- or mini-columns)1,2. 
Although all scales of resolution are intimately associ-
ated, each provides unique perspectives on the connec-
tome. At the macroscale, and particularly in studies of 
the human brain, conceptualizations of the connectome 
have grown to also include information about func-
tion3. In this Review, we will use the term connectome 
to refer to brain areas, their anatomical connections 
and their functional interactions.

At present, methodologies for analysis at macro
scale resolution are best positioned for mapping and 
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At macroscopic scales, the human connectome comprises anatomically distinct brain 
areas, the structural pathways connecting them and their functional interactions. 
Annotation of phenotypic associations with variation in the connectome and 
cataloging of neurophenotypes promise to transform our understanding of the human 
brain. In this Review, we provide a survey of magnetic resonance imaging–based 
measurements of functional and structural connectivity. We highlight emerging areas 
of development and inquiry and emphasize the importance of integrating structural 
and functional perspectives on brain architecture.

annotating human connectomes with cognitive and 
behavioral associations. The higher-order, albeit lower-
resolution, representations captured at the macroscale 
most directly relate to regulatory, cognitive and affec-
tive processes. Interpretation of macroscale-resolution 
findings is most amenable to guidance from lesion and 
brain-imaging studies. Comprehensive mapping and 
annotation of the connectome is most feasible at the 
lower-resolution macroscale, owing to lower computa-
tional and analytical demands. Moreover, noninvasive 
tools for in vivo imaging the human connectome are 
only available for analyses at the macroscale; in vivo 
microscale-resolution studies are currently limited to 
model organisms and neurosurgical patients.

Among the modalities used for macroconnectomics,  
magnetic resonance imaging (MRI) is dominant, 
partly because of widespread availability, safety and 
spatial resolution. Diffusion-weighted MRI (dMRI) 
and functional MRI (fMRI) are widely used for infer-
ring structural and functional connectivity, respec-
tively4. dMRI provides cubic-millimeter-resolution 
portrayals of white-matter tracts and insights into 
organizing principles that guide their orientation and 
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trajectories; fMRI reveals a universal functional architecture, with 
variations among individuals meaningfully related to phenotypic 
variables5 (for example, behavioral and psychiatric).

In this Review, we focus on the mapping, characterization and 
analysis of macroscale connectomes. We structured our presenta-
tion in terms of a mathematical perspective that treats the con-
nectome as a graph of interactions among brain areas. Nodes in 
the graph are abstract representations of brain areas, and edges 
represent pairwise relationships between nodes. We first review 
approaches and challenges to subdividing the brain into discrete 
subunits represented by nodes (here referred to as ‘parcellation’ 
efforts) and then review the imaging and analytic methodologies 
used to map and quantify patterns of structural and functional 
connectivity that are represented by edges in the connectome.

Defining nodes
Defining the nodes of a macroscale connectome is a complex 
task as we lack agreement on how best to define the constituent 
brain units. Depending on the scope of the investigation, the 
specific brain subunits represented by nodes can range from 
the small patches of cortex contained in individual MRI vox-
els to larger brain areas (for example, dorsolateral prefrontal 
cortex). Early parcellation efforts used postmortem architec-
tonic measurements (for example, cell morphology) of single 
individuals. Although these resulting atlases are central to neu-
roscience, no functional or structural connectivity–based infor-
mation was used to construct them, thus limiting their capacity 
to accurately represent connectomes. For example, despite being 
represented as a single area in anatomical atlases6, the anterior 
cingulate region contains subregions that are each characterized 
by dramatically different functional7 and structural8 connec-
tivity patterns. Although the large-scale human brain patterns 
captured using different strategies of parceling data may bear 
a gross similarity to one another, the specific details conveyed 
vary substantially (Fig. 1).

Ideally, both brain-function and structural-connectivity  
information should be used to delineate brain areas. Meta- 
analytic approaches can be used to define nodes on the basis of 
task-based fMRI (T-fMRI) studies9. Alternatively, data-driven 
clustering techniques can be used to subdivide the brain into 
areas based on homogeneity of functional time series10,11, or 
functional or structural connectivity profiles8,11,12. Blinded 
source-separation techniques can also be used to define net-
work nodes using spatial independence13. These methods 
commonly involve pooling of information across individuals, 
and most enforce specific properties on resulting brain areas11. 
One drawback is the need to prespecify the number of areas 
to be generated, which can be estimated based on homogene-
ity, accuracy, reproducibility or stability of the brain areas10,11. 

Optimal comparison of connectomes is likely to require  
parcellation strategies that incorporate information across indi-
viduals and modalities, potentially at the cost of quality of fit for 
single subjects and modalities.

Estimating structural connectivity
Structural connectivity encompasses the collection of axonal 
and dendritic connections among neurons1. Despite defini-
tional simplicity, structural connectivity is difficult to measure 
with noninvasive, in vivo imaging approaches. Before dMRI, our 
knowledge was primarily derived from lesions and blunt dissec-
tion in humans or invasive tracing in nonhumans. These meth-
odologies remain the gold standard for establishing connectivity, 
but the noninvasive nature of dMRI makes it the de facto standard 
for studies of human structural connectivity.

Acquisition. The basic principle underlying the inference of 
structural connectivity from dMRI data is that water diffusion 
in white matter is hindered and occurs primarily along the path 
of axons. In contrast, water diffusion in gray matter and cerebral 
spinal fluid occurs (almost) equally in all directions. By following 
the motion of water, it is possible to map the orientation(s) of fib-
ers passing through each voxel of white matter. In dMRI, a series 
of images are acquired, each sensitive to diffusion along a specific 
direction. The number of images for unique directions acquired 
varies from six to hundreds. When combined, these images con-
tain the information necessary to estimate the orientation(s) of 
fibers passing through each voxel; this information is used to 
reconstruct large-scale tracts of white matter (tractography). We 
describe dMRI acquisition in more detail in Box 1 and Table 1.
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Figure 1 | Different parcellations of the human brain. Atlases of brain 
areas generated using anatomical (top four rows) and functional (bottom 
two rows) parcellation schemes show a lateral view (right) and top views 
of the human brain. AAL (automated anatomical labeling)109 and Harvard 
Oxford (HO)110 are derived from anatomical landmarks (sulci and gyral). 
The EZ (Eickhoff–Zilles)111 and TT (Talariach Daemon)112 atlases are 
derived from postmortem cyto- and myelo-architectonic segmentations. 
The CC200 and CC400 atlases are derived from 200- and 400-unit 
functional parcellations11.
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Echo-planar imaging (EPI) is the most common method for 
acquiring functional magnetic resonance imaging (fMRI) and 
diffusion MRI (dMRI) data. An EPI volume is a set of slices, 
each acquired after a single excitation. EPI volumes are  
collected in sequence, representing time points in fMRI data 
and diffusion directions in dMRI data. Gradient echo EPI in 
fMRI only involves excitation and readout. However, in dMRI  
an additional 180° rephasing (spin echo) radiofrequency pulse 
and bipolar diffusion–encoding gradients are applied.

SNR ∝ × × × × × × × ×I N N N N
Px y z acq x y z
f

0
1∆ ∆ ∆

Signal-to-noise ratio (SNR), spatial distortions and artifacts, and 
image contrast determine image quality. Image SNR can be repre-
sented in terms of parameters such as available signal (I0), voxel 
dimensions (∆x, ∆y, ∆z), number of image acquisitions (Nacq), 
number of samples in each dimension (Nx, Ny, Nz), time between 
samples (∆t) and parallel imaging factor (Pf) (equation (1))117.  
These parameters are described in Table 1. Equation (1) 
demonstrates how different parameter settings affect the SNR; 
for example, acquiring and averaging two volumes (Nacq = 2) 
improves SNR by 2. SNR for modern imaging technology is 
greater than required for most imaging applications and can be 
traded-off to optimize other imaging aspects (for example, to 
reduce spatial distortions). Beyond spatial image considerations, 
parameter optimizations must be evaluated in terms of impact 
on the temporal signal in fMRI or diffusion signal in dMRI.

General considerations for EPI
Spatial distortion. The EPI readout scheme leads to extended 
readout times and asymmetric bandwidth between directions 
that result in prolonged spin-spin (T2) relaxation, which  
increases in-plane smoothing. Bandwidth corresponds to  
the number of frequencies allocated to a voxel; any shift in 
frequency resulting from magnetic field imperfections  
spatially shifts the signal in proportion to the inverse of the 
bandwidth118. The bandwidth in the phase-encoding direction 
is a fraction of the bandwidth in the readout direction, making 
it particularly susceptible to spatial distortions. Increasing 
bandwidth can minimize spatial distortions, though costing 
SNR. Parallel imaging techniques increase effective bandwidth 
and image acquisition rate119. These techniques require  
calibration scans for proper reconstruction, and any  
misalignment (for example, head motion) between these scans 
and image data produce reconstruction errors119. Alternatively, 
spatial distortions can be mathematically corrected using  
maps of the spatial variation in the magnetic field15.

Image resolution. Image resolution can be increased by 
reducing the field of view (FOV) or increasing the number of 
samples along a dimension. Decreasing the FOV produces a 
proportional decrease in the SNR; the FOV must remain larger 
than the head to avoid excessive ghosting. Increasing the 
number of samples has less impact on SNR (reduced by square 
root of the increase117). However, increasing the number of  

samples in the phase encoding direction substantially increases  
readout time, which increases the amount of T2 decay expe-
rienced during slice acquisition and leads to greater in-plane 
smoothness118; parallel imaging mitigates these effects119.

Considerations for fMRI
BOLD contrast. Spin phase (T2*) contrast is the most  
sensitive to the BOLD effect and is optimized using an echo 
time equal to the T2* of gray matter (echo time of ~30 milli-
seconds at 3 tesla). BOLD can also be measured with spin-echo 
sequences, which are sensitive to T2 rather than T2* and 
hence have better spatial specificity, although less sensitivity 
than gradient echo techniques120.

Minimizing dropout. Tilting and positioning imaging slices to 
prevent slices from intersecting air-tissue interfaces can mini-
mize signal dropout resulting from differences in magnetic sus-
ceptibility121. Slice positioning should focus on areas most vital 
to the experiment. Reducing echo time, which decreases BOLD 
contrast, and increasing resolution, which decreases SNR, should 
be avoided. Specialty sequences (for example, spiral-in/out122 
and z-shim techniques123) result in the acquisition of multiple 
echoes with different dephasing characteristics to reduce suscep-
tibility effects. Alternatively, spin-echo EPI avoids susceptibility 
artifacts but is much less sensitive to BOLD contrast120.

Motion sensitivity. Beyond image misalignment, head motion 
induces fMRI signal fluctuations owing to partial voluming and 
spin-history effects39. Lower flip angles124, longer repetition 
time125 and interleaved slices minimize spin-history effects by 
allowing the signal in a slice to fully relax before acquisition 
of the neighboring slice. Spiral sequences are less sensitive to 
motion during slice acquisition126. The 3D imaging techniques 
minimize the impact of within-volume motion, but between-
volume motions remain problematic unless a long repetition 
time is used; long readouts increase the interaction between 
magnetic field inhomogeneity and motion127. Parallel imaging 
can improve acquisition time, resolution and bandwidth but 
requires calibration scans119. Misalignments between the  
acquired data and calibration scans induce reconstruction  
errors and motion-correlated imaging artifacts119.

Temporal resolution. Number of slices acquired determines 
temporal resolution. Echo time fundamentally limits slice- 
acquisition time. Increasing bandwidth, partial Fourier imag-
ing and parallel imaging can result in marginal speed gains118.

Considerations for dMRI
Diffusion contrast. Minimizing echo time, and therefore 
T2 decay, is essential to dMRI. T2 reduces overall magnetic 
resonance signal and image SNR, and increases in-plane image 
blurring. Increasing bandwidth, partial Fourier imaging, paral-
lel imaging and using stronger diffusion gradients (b values;  
high b values require longer diffusion gradient pulses) can 
minimize echo time118. Higher-strength gradient systems 
enable high b values (desirable for fiber tracking) in shorter 

(1)(1)

 Box 1 Opti mizing fMRI and dMRI image acquisition 

continued
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Preprocessing. After acquisition, dMRI data must be precondi-
tioned before directional information can be extracted and trac-
tography can be performed. Little debate exists regarding dMRI 
data preprocessing (see ref. 14 for an exception), though this may 
reflect the difficulties of preprocessing and its complex impact 
rather than consensus in the field.

Correcting image distortions. In vivo dMRI data are plagued by 
spatial distortions, which are a central focus of preprocessing. In 
particular, magnetic field inhomogeneities are a major contribu-
tor. Areas where materials that differ with respect to magnetic sus-
ceptibility (that is, extent of magnetization achieved in the MRI) 
interface with one another (for example, air-tissue interfaces) are 
particularly prone to such inhomogeneities. These local variations 
in the magnetic field generate spatial distortions, which can be 
reduced through parallel imaging techniques or mathematically 
corrected using estimates of the field variations15. Another cause 
of spatial distortion is the interaction between the static magnetic 
field and the currents induced by rapid switching of gradients with 
the magnetic field, known as eddy currents. These artifacts can be 

reduced using bipolar gradients16. Image coregistration, or spatial 
alignment of brain scans, is commonly used in preprocessing to 
correct for eddy-current distortions and subject head motion17. 
However, this method is ineffective for images acquired using 
very strong diffusion gradients. Model-based approaches that 
explicitly account for the effects of eddy currents during image 
acquisition are emerging as the preferred option18.

Overlooked issues. The above preprocessing steps, combined with 
visual inspection, constitute standard preprocessing. A few impor-
tant details are often overlooked (see ref. 14 for examples). First, 
modern scanners are often equipped with antennas that acquire 
data in parallel through multiple channels that are subsequently 
combined. Such parallel imaging techniques can increase noise 
levels if the data are submitted to standard reconstruction19. This 
can artifactually lower diffusivity estimates along the axons, which 
increases the tendency of tractography approaches to overfit the 
data and generate false positive connections. An alternative recon-
struction method has recently been proposed to address this impor-
tant issue19. Second, any correction of distortion must account 

time, though require a hardware upgrade for most systems. 
Echo shifting also reduces echo time, by relaxing the spin echo 
condition and shifting the echo train earlier in time118.

Scan time. Echo time and number of slices determine dMRI 
volume repetition time. The number of diffusion directions,  
b values and averages acquired determine total scan time.

Emerging acquisition sequences
Multiband and multi-echo imaging are emerging acquisition 
strategies. In multiband imaging, multiple slices are acquired 
simultaneously, substantially improving temporal resolution, 

or increases in spatial resolution per unit time128, though 
at the cost of SNR and spatial smoothness. This improve-
ment enables higher fMRI sampling rates and more diffusion 
directions per b-value acquisitions in dMRI129, substan-
tially improving estimation of macroscale connectomes130. 
In multi-echo fMRI, two echoes of a slice are acquired at 
each acquisition (one with short echo time and one with an 
echo time optimized for BOLD imaging131). Systematic noise 
(heartbeat, respiration, head motion and scanner instability) 
are measured in the first echo (with the short echo time), 
and removed from the second, enabling signal denoising with 
practically no SNR cost.

 Box 1 Opti mizing fMRI and dMRI image acquisition (continued) 

Table 1 | Magnetic resonance imaging parameters

Parameter Definition Impact

Echo time Time between slice excitation and acquiring the center  
of k space

Determines the impact of spin-spin relaxation (T2) and spin dephasing 
(T2*) on image

Repetition time The time between acquisitions of adjacent fMRI volumes 
(sampling period)

Impacts the signal available for imaging (I0), impacted by the number  
of slices; longer repetition time durations reduce motion sensitivity

Bandwidth (1/∆t) The range of frequencies mapped to a voxel Lower bandwidth settings can increase artifacts owing to inadequate 
shimming or susceptibility and distortions in the phase-encoding 
direction (for example, ‘scalloping’)

Flip angle (α) The amount of rotation applied to proton spins by the 
excitation pulse

Impacts I0. Flip angles larger or smaller that the Ernst angle for a 
given repetition time will reduce I0. Low flip angles may reduce motion 
sensitivity and in-flow effects and improve spin-lattice relaxation (T1) 
contrast of images.

Spatial resolution  
(∆x, ∆y, ∆z, Nx, Ny)

The volume of tissue sampled in a given voxel;  
determined by field of view and the number of points 
sampled in a slice

Signal-to-noise ratio (SNR) is substantially impacted by voxel volume; 
higher spatial resolution have lower SNR, for example, a 2-mm isovoxel 
has only ~30% of the SNR of a 3-mm isovoxel, holding all other  
factors constant

Parallel imaging (Pf) Methods such as GRAPPA and SENSE can decrease  
repetition time and reduce spatial distortions by sampling  
k-space lines in parallel; decreases in repetition time are 
rate-limited by echo time required for BOLD contrast

Can allow faster image acquisition but at a reduction of SNR by 
1/parallelization factor, holding all other factors constant; will  
increase temporal noise resulting from head motion, respiration  
or pulsatile effects

Nacq Number of acquisitions that are acquired and  
subsequently averaged

Improves SNR; does not make sense for fMRI but is commonly used  
for dMRI
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for voxel-wise compression or expansion 
during image coregistration. This is par-
ticularly important for dMRI, where dis-
tortions vary in direction and magnitude 
between different gradient orientations, but 
is largely ignored by current software pack-
ages. Finally, image coregistrations contain 
a rotation component that is applied to each volume and must 
therefore be applied to the concurrent gradient orientation20.

Estimating fiber orientation. Before delineating tracts and bun-
dles via tractography, fiber orientation(s) must be inferred for 
white-matter voxels individually. Sensitivity of the dMRI signal 
to water-diffusion properties (such as rate and direction) ena-
bles the estimation of fiber orientation at each voxel. As each 
voxel contains thousands of axonal fibers, not just one, the goal 
of dMRI analysis is to infer a probability function for each voxel, 
which captures the different fiber orientations present and their 
relative proportions21. Estimation of this function— referred to 
as the fiber orientation density function (fODF)—at each voxel 
is the first step in estimating structural connectivity.

The diffusion tensor is a simplistic but viable model for the dif-
fusion profile that provides a simple approximation to the fODF22. 
Diffusion tensor imaging (DTI) uses a 3 × 3 matrix to provide an 
abstract ellipsoid representation of the water-diffusion profile for 
a given voxel. Mathematical decomposition of this matrix yields 
information regarding the directions (x, y and z) of maximum 
and minimum water motion (eigenvectors) as well as the amount 
of diffusion that occurs along each direction (eigenvalues). The 
direction of maximal diffusion, referred to as the principal dif-
fusion direction, is taken as the best estimate of fiber orientation 
within a voxel. Formally speaking, in the case of DTI, the fODF 
is approximated using a delta function or peak-aligned with the 
principal diffusion direction.

The diffusion tensor provides a good estimate of fiber orien-
tations when axons are homogeneously aligned within a voxel. 
However, this is not always the case. Fibers are known to dis-
perse (fan), cross, merge and kiss (temporarily run adjacent to 
one another)—all of which can happen within a single voxel and 
lead to heterogeneity not accounted for by a simple delta func-
tion. More complex approximations of fODF can account for such 
heterogeneity within a voxel, though they require greater angular 
coverage23,24 (that is, more directions) and models that either 

explicitly or implicitly account for interactions between fiber ori-
entation and the diffusion signal (see ref. 21 for example methods).  
Complex fODF models better estimate fiber trajectories,  
particularly when several white-matter tracts intersect and allow 
recovery of nondominant pathways invisible to DTI25.

Estimating edges. After estimation of voxel-wise fiber orienta-
tions, tractography approaches are used to establish structural 
connectivity between connectome nodes. Three-dimensional 
(3D) trajectories, referred to as ‘streamlines’, are used to trace 
putative white-matter paths. Local fiber orientation information 
guides the construction of streamlines along the fODF, allowing 
us to trace major white-matter bundles26. Results are typically 
visualized as 3D renderings of thin curves grouped into bundles 
(Fig. 2), reminiscent of postmortem dissection photographs. The 
individual streamlines do not represent actual axons; they depict 
estimates of the average trajectories of axon bundles, given our 
assumption that diffusion is least hindered along axons.

The specific process by which streamlines are developed var-
ies depending on the complexity of the fODF approximations 
available. With diffusion-tensor modeling, the principal diffusion 
direction at each voxel guides the formation of the streamline; 
specifically, it provides a candidate for the tangent to the stream-
line at each voxel. For more complex fODF models, streamlining 
follows the same principle, though with multiple peak orienta-
tions available at each voxel rather than a single principal diffu-
sion direction. This allows streamlines with differing orientations 
to pass through the same voxel, which is crucial when hetero-
geneous fibers are present. Whereas traditional tractography 
approaches are deterministic, probabilistic approaches account 
for uncertainty in estimates of local fiber orientations, allowing 
for estimation of probabilities for any given streamline.

Using streamlining methodologies, it is theoretically possible 
to measure all connections between gray-matter areas. We can 
estimate both the trajectories and the end points of anatomi-
cal pathways. In practice, however, inference of point-to-point 

a b

c
High

Low

2 cm

Figure 2 | Diffusion imaging of structural 
connectivity maps for a human brain. (a) dMRI-
based map of principal tensor orientations 
of the human brain viewed from the front. 
Blue, superior-inferior; green, anterior-
posterior; and red, medial-lateral. (b) DTI 
fiber orientation estimates (red lines) from a 
region of corpus callosum superimposed on a 
fractional anisotropy image. Sample streamline 
is in yellow. Image is magnified 4× relative 
to that in a. (c) Pyramidal tract streamlines 
based on deterministic (left) and probabilistic 
(right) approaches (results superimposed on 
fractional anisotropy image). Color bar indicates 
confidence about the presence of the tract. 
Images courtesy of S. Sotiropoulos (http://
etheses.nottingham.ac.uk/1164/).

http://etheses.nottingham.ac.uk/1164/
http://etheses.nottingham.ac.uk/1164/
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connectivity using streamlining is imprecise and error-prone27; 
improvements in both data quality and modeling are needed to 
yield more accurate structural connectomes.

Ideally, we should not only be able to infer the existence or 
absence of connections between nodes, but estimate connection 
(edge) strengths as well. Anatomical connections are made up of 
axons; features of these axons, such as density, size, length and 
myelination, have important consequences on the propagation 
of action potentials, and hence information transfer. Measures of 
microstructural features based on more complex dMRI experi-
ments are emerging28, and may become an important component 
of connectomics. Related measures, such as fractional anisotropy 
and diffusivity, serve as common proxies for these microstructural 
complexities, but are extremely sensitive to confounding factors 
such as partial volume (for example, voxels containing a mix-
ture of white matter and gray matter) and axonal dispersion27,29. 
Accordingly, these measures should be used with caution to 
quantify connection strength. Other anatomical factors such as 
dendrite densities, spine densities, number of synapses at axon 
terminals and synaptic efficacy are much harder to determine 
noninvasively, though potentially are more relevant.

Unfortunately, tractography does not result in quantification 
of any of the above properties. Often, probabilistic tractography, 
which provides an estimate in the uncertainty of streamline tra-
jectories, is used to quantify connection strength. Strong connec-
tions are expected to have a more discernible trace in the diffusion 
data and therefore lower uncertainty in their trajectories. This 
approximation, however, can easily break. For instance, locally 
nondominant pathways (for example, those that cross larger 
bundles), have greater uncertainty. Uncertainty is also affected 
by nonrelevant factors such as signal-to-noise ratio and partial 
volume effects. Another issue specific to streamlining is that 
uncertainty in the streamline’s path increases with the length of 
tract. Because streamlining operates by propagating uncertainty 
spatially, connection probabilities inevitably decrease with dis-
tance. As a result, tractography-based structural connections are 
difficult to quantify, threshold, compare between groups and use 
for other types of statistical analyses27,29.

Interpretation and considerations. Pitfalls of tractography  
can be divided into two categories: accuracy (correctness) and 
precision (reproducibility)14. Accuracy refers to our ability to 
infer axonal organization from measurements of water diffusion. 
In the ideal case, there is no instrument-based or physiologi-
cal noise, yet we can still make erroneous inferences regarding  
microstructure because of inaccurate modeling. A white-matter 
voxel contains hundreds of thousands of axons, which do not 
necessarily align30. The fODF models, which account for mul-
tiple directions in a voxel (crossing fibers) are replacing tensor 
models for tractography. However, the subvoxel organization 
of axons can be more complex than a simple crossing and may  
not always be easily recovered from the diffusion profile. For 
instance, a collection of axons that bend in a voxel will create a 
diffusion pattern that may not be easily distinguishable from that 
of fiber dispersion. One can easily imagine even more complex 
situations where all these configurations (for example, bending, 
dispersion and crossing) happen in the same voxel. Diffusion data 
from a single voxel cannot be used to unambiguously resolve these 
complexities. Future approaches may benefit from semiglobal 

models that aggregate diffusion data across multiple adjacent 
voxels to infer subvoxel features.

With regard to precision, measurement noise (for example, 
instrument-based or physiological) and inadequate water- 
diffusion modeling can compromise tensor and fODF estima-
tion, inducing spurious variations in the generated stream-
lines. Additionally, use of a fixed step size in the generation of 
streamlines (despite local variations in anatomy) and the discrete 
nature of voxels (when tracts are continuous) increase measure-
ment error. Probabilistic tractography algorithms try to quantify 
these errors by estimating the uncertainty in the entire process. 
Uncertainty in voxelwise fiber orientation can be quantified31 and 
propagated into uncertainties regarding the location of stream-
lines. This process turns 3D point estimates of streamline trajec-
tories into spatial histograms of their locations (Fig. 2c).

Beyond concerns regarding accuracy and precision, identi-
fication of fibers in their entirety requires knowledge of where 
tracts terminate throughout cortex. This remains a challenge for 
tractography algorithms, which are very good at estimating the 
location of bundles in deep white matter but not good (yet) at 
identifying where they project into gray matter27. These difficul-
ties result from a lack of detail in white-matter architecture mod-
eled through diffusion and biases in cortical projections.

Estimating functional connectivity
Although the concept of structural connectivity is relatively intui-
tive given the presence of physical connections between brain 
areas, its functional counterpart can be more challenging to 
define. The macroconnectomics field has adopted a neurophysio
logical perspective of functional connectivity, defining it as the 
synchronization of neurophysiological events between spatially 
remote brain areas32. First quantified in early electroencepha-
lography and multiunit recording studies, functional connec-
tivity analyses were adopted for positron emission tomography 
and fMRI in 1993 (ref. 32). Although functional connectivity 
can be measured noninvasively using a variety of neuroimaging 
modalities (for example, positron emission tomography, fMRI 
and magnetoencephalography) and different indices related to 
physiological function (for example, blood oxygenation level–
dependent (BOLD), cerebral blood flow and glucose metabolism 
analyses), BOLD-based fMRI is the most widely used technique 
for inferring functional connectivity.

Studies of functional connectivity may be dichotomized on the 
basis of the presence or absence of a task (that is, T-fMRI versus 
task-free or ‘resting state’ fMRI (R-fMRI)). Task-based approaches 
focus on the detection of synchronous responses to extrinsic 
stimulation or tasks, referred to here as evoked functional con-
nectivity (eFC) or coactivation33. Evoked functional connectivity 
can be quantified across the entire period of task performance 
or in response to specific types of events. Approaches using  
R-fMRI focus on the detection of synchronized spontaneous 
activity occurring in the absence of experimenter-controlled tasks 
or stimuli, referred to as intrinsic functional connectivity (iFC)34. 
Although iFC and eFC patterns can be notably similar, especially 
when eFC is assessed using meta-analytic techniques35 or broad 
comparisons (for example, task versus rest), these analyses probe 
different aspects of the functional architecture33. eFC patterns 
obtained using one task will not necessarily generalize to another, 
and aspects of iFC obtained during one state may not necessarily  
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generalize to another (for example, wakefulness and sleep; see 
Box 2 for a discussion of states other than wakeful rest).

Acquisition. BOLD is the predominant fMRI technique used  
in studies of functional connectivity (see ref. 36 for alternative 
cerebral blood flow–based technique). BOLD is measured using 
ultrafast imaging sequences that are sensitive to relative concen-
trations of deoxyhemoglobin, which is paramagnetic (that is, 
dephases the magnetic resonance signal), in contrast to oxyhe-
moglobin, which is diamagnetic37; the resulting measurement is 
an indirect measure of neural activation. Data sets for functional-
connectivity analysis using fMRI are typically obtained in 5–30 
minutes, as a participant either performs an experimental task 
(T-fMRI) or rests quietly in the scanner (typically while awake; 
R-fMRI). We discuss determinants of BOLD imaging acquisition 
quality in Box 1.

Preprocessing. The aim of preprocessing is to remove confound-
ing variation from data and facilitate comparison across subjects. 
Structured nuisance signals and anatomical variation can obscure 
functional connectivity measurements if left unaccounted for. 
Despite considerable effort, we lack consensus regarding the optimal  
set of preprocessing steps, their ordering and their implementation.  
Most preprocessing steps originated with task-activation 
approaches. However, their use and implications are greater for 
functional-connectivity approaches because of the greater risk of 
spurious findings given that the independent and dependent vari-
ables can be contaminated by the same noise signals (for example, 
motion and respiration). Comprehensive comparison of preproc-
essing strategies and their implications for eFC and iFC analyses 
remain elusive, in part owing to a lack of objective benchmarks. 
The preprocessing steps described below are post-hoc corrections. 
However, optimization of acquisition strategies to minimize the 
impact of noise sources is preferred (Box 1).

Slice timing correction. The slices of an fMRI volume are 
acquired at different times, creating effective shifts in time series 
obtained at different slices. Although some question its neces-
sity38, correction by temporal interpolation is recommended to 
avoid the potential for deleterious impact of these lags on signal 
denoising and time-series extraction from brain areas.

Motion correction. Head motion results in a misalignment of brain 
areas between volumes typically accounted for using 3D image- 
registration techniques. Additionally, head motion induces artifac-
tual fMRI signal fluctuations resulting from changes in slice tissue 
composition (partial voluming) and residual magnetization from 
prior slice excitations (spin-history effects)39. These motion artifacts 
are typically modeled and removed in a regression framework, con-
taining predictors calculated from motion parameters estimated dur-
ing coregistration40. Although effective, modeling-based approaches 
do not completely remove motion-related fluctuations in the fMRI 
signal41–43. To address this issue, the ‘scrubbing’ of offending volumes 
via removal41 or spike regression44 has been proposed. Excluding 
time points alters the temporal structure of the data, thereby com-
promising analyses that rely on this structure (for example, temporal 
dynamics, spectral analysis and estimation of temporal autocorrela-
tion). Regardless of the motion-correction scheme used, it is neces-
sary to account for motion in group-level analyses42,45.

Physiological noise correction. Cardiac pulsation and respira-
tion can induce fMRI signal fluctuations, which had led to early 
criticisms attributing iFC to these physiological signals rather 
than neural signals46. The cardiac cycle generates pulsatile motion 
throughout the brain47. Respiratory movement of the chest and 
abdomen induce changes in the magnetic field, producing inten-
sity fluctuations in fMRI images47. Additionally, changes in cardiac 
rhythm as well as rate and depth of breathing create longer-term 
effects. Respiration and pulse can be recorded to model and sub-
sequently remove their impact47. Although this is accepted as 
ideal, it is not commonly performed. Instead, signals present in 
white matter and cerebrospinal fluid are taken as surrogates for 
respiration and cardiac effects, and regressed from the fMRI time 
series. Incorporating spatial variation in the noise captured by the 
white-matter signal provides superior denoising (for example, 
anatomy-based correlation corrections (ANATICOR)48). Blinded 
source-separation techniques provide another means of physio
logical correction (for example, Corsica49).

Global signal regression. The mean time series across the whole 
brain is commonly regressed from the data. In this model, the global 
signal is considered a nonspecific measure of noise, whose removal 
improves the specificity of iFC50, decreases motion effects44, and 

The impact of cognitive97, physiological132 and pathological 
states133 on functional connectivity has been recently demon-
strated in the literature. Consciousness has received particular  
attention, with many studies examining physiological states 
(for example, sleep), induced states (for example, anesthesia 
and hypnosis) and pathological states (for example, coma, 
vegetative syndrome and minimally conscious state133).  
iFC patterns detected in these states are grossly similar to 
those observed during wakefulness, though direct comparison 
reveals state-related iFC changes. For example, the default and 
lateral networks each exhibit decreased functional connec-
tivity among network components (that is, within-network 
connectivity) during sleep, suggesting decreased integration 

of information. Complementary findings of decreased negative 
iFC between these networks and others may suggest decreased 
segregation as well134. These results suggest that although 
sleep-based studies may be useful in populations not amena-
ble to examination in wakeful states (for example, toddlers), 
comparison of findings across states may be problematic.  
Of note, changes in thalamocortical connectivity are reported 
during anesthesia, non–rapid eye movement (non-REM)  
sleep and vegetative states135, but the specific role of thalamo
cortical circuitry in consciousness remains underexplored. 
These studies also suggest potential clinical applications of 
iFC, such as improving recognition of consciousness after 
recovery from coma.

 Box 2  iFC and Conscious States 
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removes intersession and intersite effects. However, awareness 
that global signal regression centers the correlation distribution 
at zero, and thus introduces negative connections51 and can alter 
inter-individual differences52, has made its use controversial. In 
this regard, it is important to note that functional correlation coef-
ficients obtained after global signal regression are relative values, 
not absolute. Additionally, electrophysiological demonstrations of 
globally synchronous neural signals in gray matter53 call into ques-
tion the interpretation of the global signal as simply noise.

Temporal filtering. Bandpass filtering is usually performed to 
remove frequencies below 0.001 hertz and greater than 0.08 hertz 
from the fMRI time series. This frequency range targets removal of 
low-frequency scanner drift and frequencies above those tradition-
ally associated with functional connectivity34,54. However, com-
plete removal of physiological noise is unlikely because of artifacts 
induced by the low-temporal-resolution of fMRI (for example, 
aliasing)46. Concerns about temporal filtering include reductions 
in the degrees of freedom for the time series and recent demon-
strations of functional connectivity at frequencies greater than 
0.1 hertz for several brain areas, suggesting that low-pass filtering 
is removing valuable signal55. Thus, despite historical precedent, 
inclusion of low-pass filtering merits additional consideration.

Spatial normalization and smoothing. Another aspect of pre-
processing is conditioning the data for comparison across sub-
jects. Spatial normalization addresses morphological variation 
across individuals by transforming subject data to a common 
stereotactic space; population- and study-specific templates are 
increasingly used to optimize correspondence. Spatial smoothing 
additionally improves the correspondence of brain areas across 
individuals and increases the signal-to-noise ratio56.

Estimating edges. Several mathematical modeling techniques can 
be used to define functional relationships, differing primarily in 
the stringency with which they define functional connectivity. 
Functional connectivity simply implies a statistical dependency 
between activities observed in brain areas and is an umbrella term 
for a wide range of dependency measures, each providing a dif-
ferent perspective32. For example, mutual information measures 
statistical dependency from the joint-probability distribution 
function and is sensitive to linear and nonlinear relationships, 
whereas Pearson’s correlation is primarily sensitive to linear rela-
tionships57. Effective connectivity, in contrast, requires a mathe
matically precise (directional) description of the interactions 
between brain areas58. This leads to a plurality of graphs that can 
be derived from functional connectivity, with each graph charac-
terizing functional interactions from a different perspective.

Estimating iFC from R-fMRI data typically begins with extrac-
tion of the mean time series across voxels in each brain node (that 
is, parcellation-defined brain area). Intrinsic functional connec-
tivity is commonly estimated from bivariate tests for statistical 
dependency (for example, Pearson’s correlation, mutual informa-
tion and spectral coherence) between every possible pairing of 
time series59. Although these approaches perform well in simple 
simulations59, the limited number of observations results in noisy 
estimates of statistical relationships, which can be reduced using 
regularization (shrinkage) methods60. A limitation of bivariate 
approaches is that they do not account for information from  

multiple brain areas simultaneously. Hence they cannot be used 
to distinguish direct from indirect interactions (mediated by 
common relationships with other areas). Partial correlation 
(related to the inverse covariance matrix) results in estimates of 
the conditional linear dependency between two brain areas, after 
accounting for interactions with every other area61. Although 
this approach is preferred to bivariate approaches, the number of 
brain areas commonly exceeds the degrees of freedom, preventing 
unique specification of partial correlations. In these cases, regu-
larization techniques (for example, graphical lasso and elastic net) 
can be used to find a solution59. Additionally, information can be 
pooled across individuals to optimize estimation parameters62. 
Note that some, but not all, of these approaches enforce symme-
try; in other words, one can obtain dependency in one direction 
but not the other (Box 3 ).

Many approaches exist for estimating eFC. Several authors have 
borrowed approaches used to examine iFC; such approaches are 
based on the assumption that the time series spans the entire 
task63 or concatenated blocks of specific task conditions64. 
Psychophysiological interaction39 analyses directly model inter-
actions between patterns of functional connectivity and the experi-
mental stimulus design, potentially offering greater specificity of 
findings. Others have measured eFC from ‘coactivation’ using fit-
ted regression coefficients65 or binarized (by applying a threshold 
to regression coefficients) time series66 generated from a first-level 
task analysis. Regression coefficient series are then compared using 
correlation or partial correlation33,65. Binarized time series can 
be compared from the joint distribution of the two values using 
measures akin to mutual information66. Finally, meta-analytical 
approaches provide a means of measuring eFC across studies and 
often tasks, enabling detection of patterns of coactivation across 
statistical maps generated from data in the literature35,67.

A variety of data-driven techniques are also used for identifying 
iFC and eFC patterns. Examples include self-organizing maps68, 
principal component analysis, normalized cut clustering69 and 
independent component analysis70. These methods are more 
appropriate for identifying nodes of connectome graphs than 
edges, although exceptions exist59.

Once functional connectivity is estimated, some applications 
require it to be thresholded or binarized (that is, to determine 
whether a connection is present or not). Threshold selection is 
not straightforward but can be accomplished by applying a test 
of statistical significance to each edge. When using parametric 
statistics, care must be taken to adjust the degrees of freedom 
for temporal autocorrelation. Alternatively, this can be addressed 
using nonparametric tests of significance such as wavestrapping71 
or circular-block bootstrap72. Sparse covariance estimation  
methods can also be used.

Interpretations and considerations. A common pursuit of  
T-fMRI and R-fMRI studies is to fractionate the connectome into a 
set of spatially and functionally distinct networks that can each be 
annotated in terms of the specific functionality domain they sub-
serve (for example, cognitive, affective or visceral). It is impressive 
that these T-fMRI and R-fMRI studies have converged on similar 
definitions of 8–20 spatially and functionally distinct networks, 
though studies have suggested the actual number of networks is 
substantially greater13. The concordance of T-fMRI and R-fMRI 
findings suggests the brain’s intrinsic functional architecture 
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provides a framework for moment-to-moment responses to the 
external world. As summarized in ref. 67, it appears that “the full 
repertoire of functional networks utilized by the brain in action 
is continuously and dynamically ‘active’ even when at ‘rest’.”

When considering the visualization of functional connectiv-
ity (Fig. 3), an important question is: ‘what are we missing?’. 
Whereas functional connectivity is often represented with static 
graphs, neurophysiological models have long asserted the tran-
sient nature of many functional interactions. Specifically, dis-
tributed neural assemblies appear to change their patterns of 
interaction with one another from one cognitive act or state to 
another. Consistent with this notion, eFC studies have noted 

substantial task-dependency in their findings, even when look-
ing at the same regions33,39. Perhaps most exciting, recent iFC 
studies have observed dynamic changes in iFC patterns over a 
5-minute scan73. These findings suggest that commonly used 
metrics of iFC are incomplete, only capturing the ‘mean’ con-
nectivity over time. If true, the implications would be multifold: 
(i) findings of hypo- or hyper-connectivity in population stud-
ies would need to be reassessed, as they may reflect a different 
distribution of time spent in the various iFC configurations 
between populations, and (ii) the detection of changing eFC 
patterns over the course of task performance may prove to be a 
means of explaining observed behavioral variability. More and 

Commonly referred to as effective connectivity, the mapping 
of directional relationships is essential for characterizing 
information flow in functional-connectivity studies136. Iden-
tification of neural drivers can facilitate our understanding of 
control systems as well as ectopic foci leading to pathological 
conditions (for example, epilepsy137). Although invasive trac-
ing and stimulation techniques are powerful tools for mapping 
directional relationships in nonhuman populations138, they are 
not generally applicable in humans. Here we provide an over-
view of noninvasive approaches to establishing directionality.

Statistical techniques
Before reviewing statistical effective connectivity approaches, 
we note that despite the nomenclature, their findings should 
not be interpreted as indicating causality but rather the  
directionality of information flow. Structural equation mod-
eling (SEM) and dynamic causal modeling (DCM) approaches 
evaluate the fit of hypothesized models of directional inter
actions among nodes with measured fMRI data. SEM is a 
covariance-based approach that represents each node as an 
exogenous variable (predicting the activity of another node), 
endogenous variable (activity is predicted by another node) 
or both139; effective connectivity is modeled at the hemody-
namic (BOLD response) level. In contrast, DCM is a generative 
approach, modeling effective connectivity at the neuronal level 
based on a given biophysical model and uses a forward model 
to produce the downstream fMRI activity. Models can be evalu-
ated individually; however, common practice is to compare 
models representing competing hypotheses regarding causality 
to identify the ‘best-fit’ model. Concerns exist regarding the 
feasibility of successfully identifying a ‘best fit’ model from  
a large population of putative models140. SEM and DCM  
approaches are limited in the number of nodes and interac-
tions they can model efficiently. Primarily intended for con-
firmatory analysis, exploratory implementations of SEM141 and 
DCM136 are emerging for use with R-fMRI.

Granger causality analysis (GCA) is a model-free, data-driven 
effective connectivity approach142 that investigates whether 
past values of the time series for one node could improve the 
prediction of the current value in another143. In contrast to SEM 
and DCM, GCA can be used to assess many nodes simultaneous-
ly. Application of GCA to R-fMRI144 is particularly controversial 
because of (i) limitations imposed by the sluggish and variable 

hemodynamic response function (HRF), (ii) slow sampling rate 
(for example, repetition time ≥ 2 s)59 and (iii) assumptions that 
HRF characteristics are constant across nodes59. Attempts to 
rehabilitate GCA for R-fMRI include HRF deconvolution before 
GCA137, accounting for regional variation in the HRF using 
breath-hold scans and faster sampling rates145. Nonetheless, 
using GCA with R-fMRI remains problematic.

Lesion studies
Lesion studies directly perturb the system and therefore can 
be compelling in establishing causality when carried out in 
a controlled manner. From this perspective, changes in the 
activity of a node after disruption of inputs from another are 
taken to infer causal influences. In the ideal paradigm, scans 
are obtained before and after occurrence of a given lesion. For 
example146, R-fMRI scans from the brain of a 6-year-old child 
before and after callosotomy revealed disruptions specific to 
interhemispheric connectivity. Lesion studies are, however, 
commonly limited to scans after lesion, taken after natural  
occurrence of lesions (for example, stroke, congenital abnor
mality, neoplasm and seizure focus). Although useful for 
testing predictions or generating hypotheses, findings of such 
studies cannot be considered definitive.

Brain stimulation
The gold standard for establishing directional influences is the 
demonstration that direct stimulation of node A impacts node B  
but not the converse. In this regard, intraoperative studies of 
corticocortically evoked potentials—which involve the track-
ing of electrical signals from stimulation sites to other loca-
tions—are powerful tools147, though with limited applicability 
(that is, in neurosurgical patients). Noninvasive stimulation 
techniques with a broader range of applications are slowly 
evolving. Transcranial magnetic stimulation (TMS) can be  
used to produce temporary and reversible neural excitation or 
suppression in targeted cortical areas. Concurrent TMS-fMRI 
studies have revealed causal relationships in motor circuits148 
and the visual system149. Transcranial direct-current stimula-
tion and transcranial alternating-current stimulation  
approaches deliver weak currents to targeted brain areas,  
and are emerging as less expensive and technically demanding 
alternatives to TMS, though delivering focal stimulation  
is challenging150.

 Box 3  Directionality in functional connectomics 
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more studies are highlighting the poten-
tial value of examining transition zones 
between functional areas in the brain5. 
Examination of temporal dynamics may 
inform such efforts, by mapping changes 
in the boundary over time and providing 
greater clarity for findings.

In addition to naturally occurring variations in iFC over time, 
studies have suggested that iFC can be systematically impacted 
by cognitive demands before R-fMRI data acquisition. By com-
paring iFC during R-fMRI scans collected before and after 
task performance74, studies show that iFC strength within and 
between networks is altered in a task-dependent manner. For 
example, R-fMRI–based functional connectivity between the 
inferior frontal gyrus and visual areas varied depending on the 
category of stimuli viewed before the R-fMRI scan75. Across 
participants, the extent to which iFC was modulated correlated 
with subsequent memory for the stimuli. In addition to exhib-
iting plasticity related to tasks performed close in time to the 
measurements, iFC is modulated by direct-stimulation protocols 
including median nerve stimulation76, heat pain77, transcranial 
magnetic stimulation78 and transcranial direct current stimula-
tion79. This suggests that R-fMRI may have utility in the identi-
fication of targets for stimulation protocols as well as assessment 
of their efficacy (for example, in the context of the treatment  
of depression80).

This iFC-based evidence of experience-induced plasticity pro-
vides strong support for the hypothesis that iFC reflects a his-
tory of coactivation among areas. However, this also suggests a 
corollary: correlated intrinsic activity has a role in learning and 
memory consolidation81. The demonstration of brain-behavior 
correlations between task-related modulations of iFC and subse-
quent behavior (for example, recall) supports this hypothesis. If 
short-term iFC alterations reflect experience-induced plasticity, 

then enduring changes would be expected after extended practice 
or training. Several studies suggest this is the case82. Studies of 
long-term training–induced plasticity have the potential to inform 
our understanding of mechanisms involved in remediation-based 
recovery of function or even to index the efficacy of treatment 
interventions. For example, in a preliminary retrospective study, 
differences in iFC were observed between children with dyslexia 
who were remediated by reading interventions versus children 
who received no treatment83.

Statistical analysis of the connectome
Once connectome graphs are estimated, the next goal is to anno-
tate them in terms of their relevance to higher-order cogni-
tive processes, neuropsychiatric diagnoses or other phenotypic 
variables5. These associations are most often inferred by per-
forming a categorical or dimensional statistical analysis that 
compares connectivity across a population of individuals or 
within an individual across time or treatments84. Many of the 
same statistical approaches are appropriate for the analysis of 
connectome graphs regardless of whether they were constructed 
with functional or structural data sets. However, the interpre-
tation of the results must always account for the idiosyncratic 
differences between structural and functional connectivity. For 
example, functional connections are typically weighted and can 
be positive or negative. Structural connectivity graphs tend to 
be unweighted and are strictly nonnegative27. Additionally, 
structural connections can be thought of as pathways along 
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Figure 3 | Visualizing the connectome.  
(a) Classical anatomical-tracing–style depiction 
of iFC for posteromedial cortex subdivisions 
(image reproduced from ref. 113). (b) Matrix 
representation of functional brain connections 
predictive of diagnostic status in depression. 
dmThalamus, dorsomedial thalamus; vMF10, 
ventral medial prefrontal cortex (Brodmann 
area (BA) 10); sgCg24|25, subgenual cingulate 
(BA 24 and 25); aINS, anterior insula; rACC24, 
right anterior cingulate cortex (BA 24); dlPFC9, 
dorsolateral prefrontal cortex (BA 9); OFC11, 
orbitofrontal cortex (BA 11); dMF10, dorsal 
medial prefrontal cortex (BA 10); MCC24, 
midcingulate cortex (BA 24); vPCC, ventral 
posterior cingulate cortex; scACC25, subcallosal 
cingulate cortex (BA 25) (image reproduced 
from ref. 90). (c) Flatmap-based representation 
of the CoCoMac atlas of the macaque 
connectome (image reproduced from ref. 114). 
(d) Connectogram depicts brain areas (nodes) 
as columns in the circular band, differing 
connectivity metrics in separate layers and 
connections with lines; lobes are differentiated 
by color, and left or right halves corresponds  
to hemispheres (reproduced with permission 
from ref. 115).



©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

534  |  VOL.10  NO.6  |  JUNE 2013  |  nature methods

review	 Focus on mapping the brain

which information can flow, but functional connections  
cannot be interpreted in the same manner85.

A bag of edges. The simplest approach to compare graphs is to 
treat them as a bag, or collection, of edges and perform statistical 
analyses at each edge one at a time, without taking into account 
interactions or relationships between them (that is, edgewise 
statistics)84. Such univariate approaches (for example, t-tests,  
F-tests or regression) allow researchers to identify easily inter-
pretable relationships between categorical or dimensional vari-
ables and edge weights. However, this approach results in the 
need to perform many statistical tests, which require correction 
for multiple comparisons to adequately control for the number 
of false positives. Standard correction techniques such as false 
discovery rate86 that do not model the dependencies between 
edges may result in overly liberal or conservative corrections87. 
Alternate correction techniques such as the network-based statis-
tic88 or group Benjamini-Hochberg89 leverage information about 
the group structure of connectome graphs to increase statistical 
power, while maintaining control of false positives.

Alternatively, multivariate regression and classification tech-
niques evaluate the relationship between the entire connectome 
graphs and their associated phenotypic variables with a single 
statistical test90,91. Although powerful for the analysis of connec-
tome-phenotype relationships, they obscure information about 
the involvement of individual edges. Extracting this information, 
if desired, requires a return to edge-specific tests, and the need for 
multiple-comparison correction90. Although these multivariate 
techniques tend to be applied to bag-of-edges representations, 
which ignore graph structure, they can also be performed using 
graph-distance measures that preserve topological information 
when comparing graphs92.

Node and graph-level statistics: invariants. Graphical repre-
sentations of connectomes contain a wealth of information about 
brain architecture beyond the presence and strength of bivariate 
connections, which can be described using a variety of node-level 
and graph-level statistics. These measures are called ‘invariants’ 
in graph-theory parlance or ‘topological measures’ in network-
theory parlance because they are not unique to particular repre-
sentations of the graph. The most commonly used node invariants 
are centrality measures that indicate a node’s relative influence in 
a graph. Several different centrality metrics are available that mea
sure a node’s importance on the basis of the number and strength 
of direct connections (degree centrality93), the importance of 
neighboring nodes (eigenvector94 or Page Rank95 centrality) and 
their role in connecting other pairs of nodes (betweenness85). 
The various measures provide different perspectives on a node’s 
role in the graph and, when combined, can lead to a more holistic 
understanding of connectome-phenotype relationships95.

Similarly, a range of graph-level invariants is used for studying 
structural and functional connectivity. In particular, graphs are 
commonly assessed in terms of their local and global efficiency. 
Local efficiency assesses the extent to which neighbors are densely 
interconnected, whereas global efficiency captures the number of 
connections that must be traversed to connect any two nodes93. The 
relationships of these two measures to what would be obtained from 
random graphs with similar properties can be combined to assess 
the ‘small-worldness’ of a graph93. Small-world graphs balance 

integration and segregation to obtain fast and cost-efficient propa-
gation of information through the graph as well as robustness to 
single-node failures96. The cost-efficiency of a graph can be inferred 
from the difference between global efficiency and the number of 
edges in the graph93. An additional invariant is modularity, which 
quantifies the extent to which a graph can be segregated into densely 
intraconnected but sparsely interconnected modules and allows 
direct comparison of module membership between graphs85.

Each of the previously described node and graph invari-
ants can be statistically evaluated to identify relationships with  
categorical and dimensional phenotypes. Although invariants 
can increase statistical power by decreasing the number of mul-
tiple comparisons, the resulting relationships can be more dif-
ficult to interpret. When comparing invariants between graphs, 
it is important to consider the impact of potential differences in 
graph properties (for example, number of edges) that can sys-
tematically differ between individuals or groups and confound 
interpretation of findings93. Additionally, as the distribution 
properties of most invariants are poorly characterized, nonpara-
metric statistical tests are preferred93.

Predictive modeling
Finally, researchers frequently aim to identify connectivity  
patterns predictive of a phenotypic variable (for example, diag-
nosis90, age91 or brain state97). Predictive modeling can be used 
to directly assess the ability of a connectivity pattern to pre-
dict the phenotype of an individual, in contrast to inferential 
statistics, which evaluate improbability of a set of relationships 
arising by chance98. Predictive modeling is typically supervised, 
with the training set consisting of connectivity graphs and their 
associated phenotypes99. One can assess the predictive accu-
racy via cross-validation99 or other model-selection techniques. 
Predictive modeling has primarily focused on invariants and 
bag-of-edges–style90,100 approaches.

Translational connectomics
MRI-based approaches to connectomics research are rapidly 
transforming neuroscience in animal models as well, by remov-
ing barriers to longitudinal examinations associated with inva-
sive techniques (for example, animal killing and injection of toxic 
chemicals). The recent Mouse Biomedical Informatics Research 
Network initiative (http://www.loni.ucla.edu/BIRN/Projects/
Mouse/) provides an initial demonstration of the potential to 
complement cross-sectional atlases of the developing brain gener-
ated using histology approaches with longitudinal atlases obtained 
using dMRI. Simultaneously, R-fMRI is emerging as a powerful 
tool for comparative functional neuroanatomy studies. Initial 
work has demonstrated impressive correspondence between the 
iFC observed in humans and macaques for homologous func-
tional networks supporting an array of functions, including those 
that are putatively ‘human’ (for example, language, self-referential 
processes and cognition)101. Evidence of homologies with pat-
terns of iFC in lower mammals, such as rats, underscores this 
translational potential102. Armed with increasingly powerful 
imaging-based tools, macroscale connectomics studies in ani-
mal models are poised to provide a mechanistic understanding of 
brain function through the combination of noninvasive imaging 
with direct structural, pharmacological, molecular and genetic 
manipulations that are impossible in humans.

http://www.loni.ucla.edu/BIRN/Projects/Mouse/
http://www.loni.ucla.edu/BIRN/Projects/Mouse/
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Despite the rich promise of translational connectomics, meth-
odological issues must also be addressed. For example, iFC can 
be examined in awake rats that have been habituated to restraint 
in the loud MRI environment103. However, most studies are 
conducted under anesthesia—in particular, using the general 
anesthetic isoflurane104, which can confound findings owing to 
its effects on neural excitability. The sedating alpha-2 adrener-
gic agonist medetomidine may be preferable as it avoids such 
confounds105. Dose-response studies of anesthesia are few104 
and are essential. Initial translational studies in monkeys, rats 
and mice have relied on preprocessing and analytical approaches 
identical to those developed in humans103. Although their suc-
cess is encouraging, differences in physiological (for example, 
cardiac activity and respiration) and imaging parameters must be 
explored to arrive at optimal strategies. Finally, we note that the 
many questions raised regarding the interpretation of dMRI and 
R-fMRI techniques in humans also apply to animal studies.

Toward neurophenotypes and clinical applications
An overarching goal of the connectomics era is the derivation 
of ‘neurophenotypes’106, a concept that remains poorly specified 
despite increasing enthusiasm from investigators. An individu-
al’s macroscale connectome and its subgraphs contribute to the 
specification of that individual’s neurophenotype. A central goal 
of connectomics is to catalog neurophenotypes and relate them 
to phenotypic profiles4. This can be accomplished through data-
driven approaches focused on the detection of commonalities and 
distinctions in connectomes or by differentiating populations of 
neurophenotypes based on their phenotypic profiles. The breadth 
of phenotyping can vary depending on the application, though 
it typically consists of some combination of cognitive, affective, 
behavioral, neurological or psychiatric variables. When cataloging 
neurophenotypes based upon macroscale connectomes, the spe-
cificity of findings will depend on their nature, granularity of 
node definitions and quality of neuroimaging data used. Similarly, 

Table 2 | Initiatives promising to accelerate macroscale connectomics research

Initiative (weblink when available; location) Goals

Brain Genomics Superstruct (United States) Aims to collect a large-scale imaging data set to explore brain–behavior relationships and their genetic 
influences. The initiative has collected R-fMRI, dMRI and saliva samples from over 3,000 adults, along 
with comprehensive phenotyping data (cognition, personality and lifestyle), and the resultant repository 
containing 1,500 completed, quality-pass data sets is expected to be publicly available in 2013.

Brainnetome (http://www.brainnetome.org/;  
China)

Attempts to characterize brain networks with multimodal neuroimaging techniques, from the 
microscale (microtechnique, ultramicrotomy, staining and visualization techniques) to the macroscale 
(electroencephalography, fMRI and dMRI). R-fMRI and diffusion-imaging data sets, along with 
behavioral and blood data from more than 1,000 patients with schizophrenia, 300 patients with 
Alzheimer’s disease and mild cognitive impairment, 120 patients who had a stroke, 50 patients with 
glioma and 2,000 healthy controls collected from 11 hospitals and imaging centers.

Consortium of Neuroimagers for the Noninvasive 
Exploration of Brain Connectivity and Tracts  
(http://www.brain-connect.eu/; European Union)

Consortium focused on studying the brain’s microstructure, tracts and connectivity using  
dMRI. Target deliverables include optimized acquisition protocols, analytic tools and a  
connectivity atlas.

Developing Human Connectome Project  
(European Union)

Initiative to comprehensively map and model the human connectome for 1,000 babies, including  
in utero and in vivo imaging (20–44 weeks after conception).

US National Institutes of Health Human  
Connectome Project: Washington University in  
Saint Louis–University of Minnesota consortium 
(http://humanconnectome.org/; United States)

State-of-the-art multimodal imaging initiative (R-fMRI, T-fMRI, dMRI and magnetoencephalography) 
that makes use of a twin design (1,200 healthy adults, including twin pairs and their siblings from  
300 families) to provide insights into relationships between brain connectivity, behavior and genetics. 
The project uses multiband imaging sequences for R-fMRI (high spatial and temporal resolution) and 
dMRI (high spatial resolution), which it has refined and is currently distributing to interested centers. 
All data and tools developed through the initiative will be openly shared.

US National Institutes of Health Human  
Connectome Project: MGH-Harvard-UCLA  
consortium (http://humanconnectomeproject.org/; 
United States)

Initiative focusing on unraveling the full connectivity map using the first ‘Connectome Scanner’, 
which is designed to carry out diffusion using ultrahigh gradient strength (4–8 times the strength 
of conventional systems). Efforts to optimize dMRI technology will focus on increasing the spatial 
resolution, quality and speed of acquisition.

1000 Functional Connectomes Project (FCP)  
(http://fcon_1000.projects.nitrc.org/; global)

Grass-roots data-sharing initiative that brought together over 1,200 previously collected R-fMRI 
data sets from 33 independent sites around the world and released them openly to the scientific 
community via the Neuroimaging Informatics Tool Resources Clearinghouse (http://www.nitrc.org/).

International Neuroimaging Data-sharing  
Initiative (INDI) (global)

Second FCP initiative that was founded in an attempt to (i) expand the scope of open data sharing in 
the functional neuroimaging community to include phenotypic data beyond age and sex (major INDI 
data releases: ADHD-200 Consortium (http://fcon_1000.projects.nitrc.org/indi/adhd200/), the Autism 
Brain Imaging Data Exchange (ABIDE; http://con_1000.projects.nitrc.org/indi/abide/)) and (ii) provide 
a model for prospective, prepublication data sharing (major release: the Nathan Kline Institute-Rockland 
Sample http://fcon_1000.projects.nitrc.org/indi/enhanced/). More than 5,000 R-fMRI data sets are 
available through the FCP and INDI efforts combined as well as a growing number of dMRI data sets.

UK Biobank Imaging (http://www.ukbiobank. 
ac.uk/; UK)

Building on an existing long-term prospective epidemiological study that has collected genetics, 
blood samples and lifestyle information from a cohort of 500,000 subjects, the UK Biobank Imaging 
Extension aims to resample 100,000 of the cohort using multimodal neuroimaging (including but not 
limited to R-fMRI and dMRI), as well as cardiac MRI and rich phenotyping.

Large-scale initiatives from around the world that are promising to accelerate the pace of macroscale connectomics research through either the advancement of macroconnectomics research 
through the generation and sharing of large-scale imaging data sets with phenotyping or innovation of data-acquisition and/or analysis techniques (see ref. 116 for additional information 
regarding these initiatives and others).

http://www.brainnetome.org/
http://www.brain-connect.eu/
http://humanconnectome.org/
http://humanconnectomeproject.org/
http://fcon_1000.projects.nitrc.org/
http://www.nitrc.org/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
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when sorting neurophenotypes on the basis of phenotypic pro-
files, specificity will be determined by the precision and compre-
hensiveness (that is, number and breadth of independent features) 
of the phenotyping available to statistical analysis. Future work 
will need to find a balance between categorical and dimensional 
perspectives of neurophenotypes.

Beyond the derivation of a fundamental understanding of brain 
architecture and its implications for behavior and cognition, a 
major reason for the excitement surrounding connectomics is 
the promise of clinical utility because of the ability to obtain indi-
vidual-relevant reliable brain indices (see Table 2 for initiatives 
that are accelerating the pace of macroconnectomics research). 
Recent years have witnessed an explosion in the number of neuro-
logical and psychiatric disorders studied with dMRI and R-fMRI 
(Table 3). Hopes of attaining clinically useful diagnostic tools are 
increasingly espoused in the literature. However, leaders in the 
field have recently suggested that the attainment of tools capable 
of stratifying individuals based upon disease risk, prognosis and 
treatment response may prove to be a more fruitful goal than 
focusing on diagnosis107. Regardless, a key requirement remains: 
attaining large-scale data sets representative of the human popu-
lation. In this regard, the macroconnectomics community has 
supported several large-scale data-sharing initiatives dedicated 
to rapidly aggregating the necessary data108.

Conclusion
The connectomics era is the culmination of more than a cen-
tury of conceptual and methodological innovation. MRI-based 
approaches to mapping and annotating the connectome at the 
macroscale are transforming basic, translational and clinical 
neuroscience research by overcoming barriers to progress faced 
by more traditional invasive methodologies. In this Review we 
broadly surveyed the many challenges that remain in the acquisi-
tion, preprocessing and analysis of brain-imaging data. Failure to 
consider the many complexities could jeopardize this burgeoning 

field through the introduction of spurious, irreproducible findings 
associated with suboptimal methodologies. Conversely, increased 
attention to the acquisition of high-quality data, combined with 
optimized preprocessing and analytic methodologies can serve to 
accelerate the pace at which connectomes can be meaningfully 
annotated and their variations cataloged.
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