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Identifying natural images from human brain activity
Kendrick N. Kay1, Thomas Naselaris2, Ryan J. Prenger3 & Jack L. Gallant1,2

A challenging goal in neuroscience is to be able to read out, or
decode, mental content from brain activity. Recent functional
magnetic resonance imaging (fMRI) studies have decoded orienta-
tion1,2, position3 and object category4,5 from activity in visual cor-
tex. However, these studies typically used relatively simple stimuli
(for example, gratings) or images drawn from fixed categories (for
example, faces, houses), and decoding was based on previous
measurements of brain activity evoked by those same stimuli or
categories. To overcome these limitations, here we develop a
decoding method based on quantitative receptive-field models
that characterize the relationship between visual stimuli and
fMRI activity in early visual areas. These models describe the tun-
ing of individual voxels for space, orientation and spatial fre-
quency, and are estimated directly from responses evoked by
natural images. We show that these receptive-field models make
it possible to identify, from a large set of completely novel natural
images, which specific image was seen by an observer. Identi-
fication is not a mere consequence of the retinotopic organization
of visual areas; simpler receptive-field models that describe only
spatial tuning yield much poorer identification performance. Our
results suggest that it may soon be possible to reconstruct a picture
of a person’s visual experience from measurements of brain
activity alone.

Imagine a general brain-reading device that could reconstruct a
picture of a person’s visual experience at any moment in time6. This
general visual decoder would have great scientific and practical use.
For example, we could use the decoder to investigate differences in
perception across people, to study covert mental processes such as
attention, and perhaps even to access the visual content of purely
mental phenomena such as dreams and imagery. The decoder would
also serve as a useful benchmark of our understanding of how the
brain represents sensory information.

How do we build a general visual decoder? We consider as a first
step the problem of image identification3,7,8. This problem is analog-
ous to the classic ‘pick a card, any card’ magic trick. We begin with a
large, arbitrary set of images. The observer picks an image from the
set and views it while brain activity is measured. Is it possible to use
the measured brain activity to identify which specific image was seen?

To ensure that a solution to the image identification problem will
be applicable to general visual decoding, we introduce two challen-
ging requirements6. First, it must be possible to identify novel images.
Conventional classification-based decoding methods can be used to
identify images if brain activity evoked by those images has been
measured previously, but they cannot be used to identify novel
images (see Supplementary Discussion). Second, it must be possible
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Figure 1 | Schematic of experiment. The experiment consisted of two stages.
In the first stage, model estimation, fMRI data were recorded while each
subject viewed a large collection of natural images. These data were used to
estimate a quantitative receptive-field model10 for each voxel. The model was
based on a Gabor wavelet pyramid11–13 and described tuning along the
dimensions of space3,14–19, orientation1,2,20 and spatial frequency21,22. In the
second stage, image identification, fMRI data were recorded while each
subject viewed a collection of novel natural images. For each measurement of
brain activity, we attempted to identify which specific image had been seen.
This was accomplished by using the estimated receptive-field models to
predict brain activity for a set of potential images and then selecting the
image whose predicted activity most closely matches the measured activity.
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to identify natural images. Natural images have complex statistical
structure9 and are much more difficult to parameterize than simple
artificial stimuli such as gratings or pre-segmented objects. Because
neural processing of visual stimuli is nonlinear, a decoder that can
identify simple stimuli may fail when confronted with complex
natural images.

Our experiment consisted of two stages (Fig. 1). In the first stage,
model estimation, fMRI data were recorded from visual areas V1, V2
and V3 while each subject viewed 1,750 natural images. We used
these data to estimate a quantitative receptive-field model10 for each
voxel (Fig. 2). The model was based on a Gabor wavelet pyramid11–13

and described tuning along the dimensions of space3,14–19, orienta-
tion1,2,20 and spatial frequency21,22. (See Supplementary Discussion
for a comparison of our receptive-field analysis with those of pre-
vious studies.)

In the second stage, image identification, fMRI data were recorded
while each subject viewed 120 novel natural images. This yielded 120
distinct voxel activity patterns for each subject. For each voxel activity
pattern we attempted to identify which image had been seen. To do
this, the receptive-field models estimated in the first stage of the
experiment were used to predict the voxel activity pattern that would
be evoked by each of the 120 images. The image whose predicted
voxel activity pattern was most correlated (Pearson’s r) with the
measured voxel activity pattern was selected.

Identification performance for one subject is illustrated in Fig. 3.
For this subject, 92% (110/120) of the images were identified
correctly (subject S1), whereas chance performance is just 0.8%
(1/120). For a second subject, 72% (86/120) of the images were
identified correctly (subject S2). These high performance levels
demonstrate the validity of our decoding approach, and indicate that
our receptive-field models accurately characterize the selectivity of
individual voxels to natural images.

A general visual decoder would be especially useful if it could
operate on brain activity evoked by a single perceptual event.
However, because fMRI data are noisy, the results reported above
were obtained using voxel activity patterns averaged across 13
repeated trials. We therefore attempted identification using voxel
activity patterns from single trials. Single-trial performance was
51% (834/1620) and 32% (516/1620) for subjects S1 and S2, respec-
tively (Fig. 4a); once again, chance performance is just 0.8%
(13.5/1620). These results suggest that it may be feasible to decode
the content of perceptual experiences in real time7,23.

We have so far demonstrated identification of a single image
drawn from a set of 120 images, but a general visual decoder should
be able to handle much larger sets of images. To investigate this issue,
we measured identification performance for various set sizes up to
1,000 images (Fig. 4b). As set size increased tenfold from 100 to 1,000,
performance only declined slightly, from 92% to 82% (subject S1,
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Figure 2 | Receptive-field model for a representative voxel. a, Spatial
envelope. The intensity of each pixel indicates the sensitivity of the receptive
field to that location. The white circle delineates the bounds of the stimulus
(20u3 20u) and the green square delineates the estimated receptive-field
location. Horizontal and vertical slices through the spatial envelope are
shown below and to the left. These intersect the peak of the spatial envelope,
as indicated by yellow tick marks. The thickness of each slice profile
indicates 6 1 s.e.m. This receptive field is located in the left hemifield, just

below the horizontal meridian. b, Orientation and spatial frequency tuning
curves. The top matrix depicts the joint orientation and spatial frequency
tuning of the receptive field, and the bottom two plots give the marginal
orientation and spatial frequency tuning curves. Error bars
indicate 6 1 s.e.m. This receptive field has broadband orientation tuning
and high-pass spatial frequency tuning. For additional receptive-field
examples and population summaries of receptive-field properties, see
Supplementary Figs 9–11.
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Figure 3 | Identification performance. In the image identification stage of
the experiment, fMRI data were recorded while each subject viewed 120
novel natural images that had not been used to estimate the receptive-field
models. For each of the 120 measured voxel activity patterns, we attempted
to identify which image had been seen. This figure illustrates identification
performance for one subject (S1). The colour at the mth column and nth row
represents the correlation between the measured voxel activity pattern for
the mth image and the predicted voxel activity pattern for the nth image. The
highest correlation in each column is designated by an enlarged dot of the
appropriate colour, and indicates the image selected by the identification
algorithm. For this subject 92% (110/120) of the images were identified
correctly.
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repeated trial). Extrapolation of these measurements (see Supple-
mentary Methods) suggests that performance for this subject would
remain above 10% even up to a set size of 1011.3 images. This is more
than 100 times larger than the number of images currently indexed
by Google (108.9 images; source: http://www.google.com/whatsnew/,
4 June 2007).

Early visual areas are organized retinotopically, and voxels are
known to reflect this organization14,16,18. Could our results be a mere
consequence of retinotopy? To answer this question, we attempted
identification using an alternative model that captures the location
and size of each voxel’s receptive field but discards orientation and
spatial frequency information (Fig. 4c). Performance for this retino-
topy-only model declined to 10% correct at a set size of just 105.1

images, whereas performance for the Gabor wavelet pyramid model
did not decline to 10% correct until 109.5 images were included in the
set (repeated-trial performance extrapolated and averaged across
subjects). This result indicates that spatial tuning alone does not
yield optimal identification performance; identification improves
substantially when orientation and spatial frequency tuning are
included in the model.

To further investigate the impact of orientation and spatial fre-
quency tuning, we measured identification performance after impos-
ing constraints on the orientation and spatial frequency tuning of the
Gabor wavelet pyramid model (Supplementary Fig. 8). The results
indicate that both orientation and spatial frequency tuning contri-
bute to identification performance, but that the latter makes the
larger contribution. This is consistent with recent studies demon-
strating that voxels have only slight orientation bias1,2. We also find
that voxel-to-voxel variation in orientation and spatial frequency
tuning contributes to identification performance. This reinforces
the growing realization in the fMRI community that information
may be present in fine-grained patterns of voxel activity6.

To be practical our identification algorithm must perform well
even when brain activity is measured long after estimation of the
receptive-field models. To assess performance over time2,4,6,23 we
attempted identification for a set of 120 novel natural images that
were seen approximately two months after the initial experiment. In
this case 82% (99/120) of the images were identified correctly (chance
performance 0.8%; subject S1, repeated trial). We also evaluated
identification performance for a set of 12 novel natural images that
were seen more than a year after the initial experiment. In this case
100% (12/12) of the images were identified correctly (chance per-
formance 8%; subject S1, repeated trial). These results demonstrate
that the stimulus-related information that can be decoded from voxel
activity remains largely stable over time.

Why does identification sometimes fail? Inspection revealed that
identification errors tended to occur when the selected image was
visually similar to the correct image. This suggests that noise in
measured voxel activity patterns causes the identification algorithm
to confuse images that have similar features.

Functional MRI signals have modest spatial resolution and reflect
haemodynamic activity that is only indirectly coupled to neural
activity24,25. Despite these limitations, we have shown that fMRI sig-
nals can be used to achieve remarkable levels of identification per-
formance. This indicates that fMRI signals contain a considerable
amount of stimulus-related information4 and that this information
can be successfully decoded in practice.

Identification of novel natural images brings us close to achieving a
general visual decoder. The final step will require devising a way to
reconstruct the image seen by the observer, instead of selecting the
image from a known set. Stanley and co-workers26 reconstructed
natural movies by modelling the luminance of individual image
pixels as a linear function of single-unit activity in cat lateral genicu-
late nucleus. This approach assumes a linear relation between lumin-
ance and the activity of the recorded units, but this condition does
not hold in fMRI27,28.

An alternative approach to reconstruction is to incorporate
receptive-field models into a statistical inference framework. In such
a framework, receptive-field models are used to infer the most likely
image given a measured activity pattern. This model-based approach
has a long history in both theoretical and experimental neuro-
science29,30. Recently, Thirion and co-workers3 used it to reconstruct
spatial maps of contrast from fMRI activity in human visual cortex.
The success of the approach depends critically on how well the
receptive-field models predict brain activity. The present study
demonstrates that our receptive-field models have sufficient predic-
tive power to enable identification of novel natural images, even for
the case of extremely large sets of images. We are therefore optimistic
that the model-based approach will make possible the reconstruction
of natural images from human brain activity.

METHODS SUMMARY
The stimuli consisted of sequences of 20u3 20u greyscale natural photographs

(Supplementary Fig. 1a). Photographs were presented for 1 s with a delay of

3 s between successive photographs (Supplementary Fig. 1b). Subjects (S1:

author T.N.; S2: author K.N.K.) viewed the photographs while fixating a central

white square. MRI data were collected at the Brain Imaging Center at University

of California, Berkeley using a 4 T INOVA MR scanner (Varian, Inc.) and a

quadrature transmit/receive surface coil (Midwest RF, LLC). Functional

BOLD data were recorded from occipital cortex at a spatial resolution of

2 mm 3 2 mm 3 2.5 mm and a temporal resolution of 1 Hz. Brain volumes were
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Figure 4 | Factors that impact identification performance. a, Summary of
identification performance. The bars indicate empirical performance for a
set size of 120 images, the marker above each bar indicates the estimated
noise ceiling (that is, the theoretical maximum performance given the level
of noise in the data), and the dashed green line indicates chance
performance. The noise ceiling estimates suggest that the difference in
performance across subjects is due to intrinsic differences in the level of
noise. b, Scaling of identification performance with set size. The x axis
indicates set size, the y axis indicates identification performance, and the

number to the right of each line gives the estimated set size at which
performance declines to 10% correct. In all cases performance scaled very
well with set size. c, Retinotopy-only model versus Gabor wavelet pyramid
model. Identification was attempted using an alternative retinotopy-only
model that captures only the location and size of each voxel’s receptive field.
This model performed substantially worse than the Gabor wavelet pyramid
model, indicating that spatial tuning alone is insufficient to achieve optimal
identification performance. (Results reflect repeated-trial performance
averaged across subjects; see Supplementary Fig. 5 for detailed results.)
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reconstructed and then co-registered to correct differences in head positioning
within and across scan sessions. The time-series data were pre-processed such

that voxel-specific response time courses were deconvolved from the data.

Voxels were assigned to visual areas based on retinotopic mapping data17 col-

lected in separate scan sessions.

In the model estimation stage of the experiment, a receptive-field model was

estimated for each voxel. The model was based on a Gabor wavelet pyramid11–13

(Supplementary Figs 2 and 3), and was able to characterize responses of voxels in

early visual areas V1, V2 and V3 (Supplementary Table 1). Alternative receptive-

field models were also used, including the retinotopy-only model and several

constrained versions of the Gabor wavelet pyramid model. Details of these

models and model estimation procedures are given in Supplementary Methods.

In the image identification stage of the experiment, the estimated receptive-

field models were used to identify images viewed by the subjects, based on

measured voxel activity. The identification algorithm is described in the main

text. For details of voxel selection, performance for different set sizes, and noise

ceiling estimation, see Supplementary Fig. 4 and Supplementary Methods.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Stimuli. The stimuli consisted of sequences of natural photographs.

Photographs were obtained from a commercial digital library (Corel Stock

Photo Libraries from Corel Corporation), the Berkeley Segmentation Dataset

(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/)

and the authors’ personal collections. The content of the photographs included

animals, buildings, food, humans, indoor scenes, manmade objects, outdoor

scenes, and textures. Photographs were converted to greyscale, downsampled so

that the smaller of the two image dimensions was 500 pixels, linearly transformed

so that the 1/10th and 99 9/10th percentiles of the original pixel values were
mapped to the minimum (0) and maximum (255) pixel values, cropped to the

central 500 pixels 3 500 pixels, masked with a circle, and placed on a grey back-

ground (Supplementary Fig. 1a). The luminance of the background was set to the

mean luminance across photographs, and the outer edge of each photograph

(10% of the radius of the circular mask) was linearly blended into the background.

The size of the photographs was 20u3 20u (500 pixels 3 500 pixels). A central

white square served as the fixation point, and its size was 0.2u3 0.2u (4 pixels 3 4

pixels). Photographs were presented in successive 4-s trials; in each trial, a

photograph was presented for 1 s and the grey background was presented for

3 s. Each 1-s presentation consisted of a photograph being flashed ON–OFF–

ON–OFF–ON where ON corresponds to presentation of the photograph for

200 ms and OFF corresponds to presentation of the grey background for

200 ms (Supplementary Fig. 1b). The flashing technique increased the signal-

to-noise ratio of voxel responses relative to that achieved by presenting each

photograph continuously for 1 s (data not shown).

Visual stimuli were delivered using the VisuaStim goggles system (Resonance

Technology). The display resolution was 800 3 600 at 60 Hz. A PowerBook G4

computer (Apple Computer) controlled stimulus presentation using software
written in MATLAB 5.2.1 (The Mathworks) and Psychophysics Toolbox 2.53

(http://psychtoolbox.org).

MRI parameters. The experimental protocol was approved by the University of

Caifornia, Berkeley Committee for the Protection of Human Subjects. MRI data

were collected at the Brain Imaging Center at University of California, Berkeley

using a 4 T INOVA MR scanner (Varian, Inc.) and a quadrature transmit/receive

surface coil (Midwest RF, LLC). Data were acquired using coronal slices that

covered occipital cortex: 18 slices, slice thickness 2.25 mm, slice gap 0.25 mm,

field-of-view 128 mm 3 128 mm. (In one scan session, a slice gap of 0.5 mm was

used.) For functional data, a T2*-weighted, single-shot, slice-interleaved,

gradient-echo EPI pulse sequence was used: matrix size 64 3 64, TR 1 s, TE

28 ms, flip angle 20u. The nominal spatial resolution of the functional data was

2 mm 3 2 mm 3 2.5 mm. For anatomical data, a T1-weighted gradient-echo

multislice sequence was used: matrix size 256 3 256, TR 0.2 s, TE 5 ms, flip angle

40u.
Data collection. Data for the model estimation and image identification stages

of the experiment were collected in the same scan sessions. Two subjects were

used: S1 (author T.N., age 33) and S2 (author K.N.K., age 25). Subjects were
healthy and had normal or corrected-to-normal vision.

Five scan sessions of data were collected from each subject. Each scan session

consisted of five model estimation runs and two image identification runs.

Model estimation runs (11 min each) were used for the model estimation stage

of the experiment. Each model estimation run consisted of 70 distinct images

presented two times each. Image identification runs (12 min each) were used for

the image identification stage of the experiment. Each image identification run

consisted of 12 distinct images presented 13 times each. Images were randomly

selected for each run and were mutually exclusive across runs. The total number

of distinct images used in the model estimation and image identification runs

was 1,750 and 120, respectively. (For additional details on experimental design,

see Supplementary Methods.)

Three additional scan sessions of data were collected from subject S1. Two of

these were held approximately two months after the main experiment, and

consisted of five image identification runs each. The third was held approxi-

mately 14 months after the main experiment, and consisted of one image iden-

tification run. The images used in these additional scan sessions were randomly

selected and were distinct from the images used in the main experiment.

Data pre-processing. Functional brain volumes were reconstructed and then co-

registered to correct differences in head positioning within and across scan

sessions. Next, voxel-specific response time courses were estimated and decon-

volved from the time-series data. This produced, for each voxel, an estimate of

the amplitude of the response (a single value) to each image used in the model

estimation and image identification runs. Finally, voxels were assigned to visual

areas based on retinotopic mapping data17 collected in separate scan sessions.

(Details of these procedures are given in Supplementary Methods.)

Model estimation. A receptive-field model was estimated for each voxel based

on its responses to the images used in the model estimation runs. The model was

based on a Gabor wavelet pyramid11–13. In the model, each image is represented

by a set of Gabor wavelets differing in size, position, orientation, spatial fre-

quency and phase (Supplementary Fig. 2). The predicted response is a linear

function of the contrast energy contained in quadrature wavelet pairs (Supple-

mentary Fig. 3). Because contrast energy is a nonlinear quantity, this is a linea-

rized model10. The model was able to characterize responses of voxels in visual

areas V1, V2 and V3 (Supplementary Table 1), but it did a poor job of char-

acterizing responses in higher visual areas such as V4.

Alternative receptive-field models were also used, including the retinotopy-

only model and several constrained versions of the Gabor wavelet pyramid

model. Details of these models and model estimation procedures are given in

Supplementary Methods.

Image identification. Voxel activity patterns were constructed from voxel res-

ponses evoked by the images used in the image identification runs. For each voxel

activity pattern, the estimated receptive-field models were used to identify which

specific image had been seen. The identification algorithm is described in the

main text. See Supplementary Fig. 4 and Supplementary Methods for details of

voxel selection, performance for different set sizes, and noise ceiling estimation.

See Supplementary Discussion for a comparison of identification with the

decoding problems of classification and reconstruction.
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