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ABSTRACT—The conceptual complexity of problems was

manipulated to probe the limits of human information

processing capacity. Participants were asked to interpret

graphically displayed statistical interactions. In such prob-

lems, all independent variables need to be considered to-

gether, so that decomposition into smaller subtasks is

constrained, and thus the order of the interaction directly

determines conceptual complexity. As the order of the in-

teraction increases, the number of variables increases. Re-

sults showed a significant decline in accuracy and speed of

solution from three-way to four-way interactions. Further-

more, performance on a five-way interaction was at chance

level. These findings suggest that a structure defined on four

variables is at the limit of human processing capacity.

The problem of how to quantify human information processing

capacity has been considered crucial at least since the article

by Miller (1956). Optimal learning depends on reducing the

complexity of information to a level that does not exceed ca-

pacity (Elman, 1993). Reasoning tasks must also be coded by

the problem solver so that no step in the solution exceeds

processing capacity (Birney & Halford, 2002). Furthermore, the

number of variables that can be integrated into a single cog-

nitive representation is a major constraint on cognitive and

neuropsychological processes.

The limits to processing have been estimated theoretically

(Christoff et al., 2001; Halford, Wilson, & Phillips, 1998;

Hummel & Holyoak, 2003; Phillips & Niki, 2002). However,

although there are capacity estimates for visual working mem-

ory and short-term memory (Cowan, 2001; Luck & Vogel, 1997),

there has not been a successful empirical determination of

processing capacity for variables.

Assessment of processing capacity is difficult because of the

great power of strategies for reducing processing load, thereby

optimizing use of available capacity (Hirst, Spelke, Reaves,

Caharack, & Neisser, 1980). Therefore, problem-solving strat-

egies that reduce complexity, though of immense value in other

contexts, must be constrained as far as possible in order to

determine underlying capacity.

Capacity to process variables can be assessed by requiring

participants to interpret certain types of graphical representa-

tions of interactions among variables. In an interaction, the

effect of any variable is modified by the effects of all the other

variables. Interpretation of an interaction thus requires that

information derived from all variables be integrated into a

single complex concept. Higher-order interactions (i.e., those

with more than two independent variables) create high

processing loads because, although some serial processing

might occur, accurate interpretation cannot be based on a

subset of variables.

Principles embodied in Bertin’s (1977/1981) theory of graph

perception and in theories of graph processing (Carswell, 1992;

Gillan & Lewis, 1994; Pinker, 1990) are normally used to fa-

cilitate interpretation of graphs. However, graphs can be de-

signed to preclude reductions in processing load, as is the case

when bar graphs describe interactions. In such graphs, the tops

of the bars cannot easily be described by a single predicate such

as ‘‘concave increasing’’ (Pinker, 1990). That is, they cannot be

chunked into a unit describing an overall trend or configuration.

Thus, using bar graphs to represent interactions helps to con-

strain strategies that would reduce the number of variables

being processed.

For example, to understand the effect of the variable choco-

late versus carrot on the preference for cakes within each half of

Figure 1a, one must also understand the effect of the variable

fresh versus frozen. In order to map the descriptive sentences in

the Figure 1a caption onto the bar graphs, one must group the

bars into structures so that their relative heights relate the

variables to one another in the same way as the variables are

related conceptually by the sentences. In the current study, we
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used these types of sentence-graph mappings to determine

processing ability for increasing levels of complexity.

We aimed to use the noncondensable characteristics of bar-

graph representations to investigate the limits to human

processing capacity. Our complexity estimates of the graphical

representations for the interactions were based on the relational

complexity metric, which has been applied to a wide range of

cognitive domains (Andrews & Halford, 2002; Birney & Hal-

ford, 2002; Christoff et al., 2001; Halford et al., 1998;

Kroger et al., 2002; Waltz et al., 1999). In this metric, cognitive

complexity is defined by the arity (i.e., number of arguments, or

slots) of the relations that are represented by the participant in

order to perform the task. An n-ary relation is a set of points in

n-dimensional space, so arity of a concept corresponds

to the number of dimensions encompassed by the relation.

Relational complexity theory proposes that the amount of in-

formation that has to be processed in a single cognitive

step can be reduced by conceptual chunking into fewer, larger

entities or by segmentation into smaller subtasks that are

performed serially (Halford et al., 1998; Simon, 1974).

Both conceptual chunking and segmentation are constrained

in interactions because of the need to process the variables

jointly.

From a mathematical perspective, an n-way interaction cor-

responds to a set of values of the dependent variable, which is a

function of the n independent variables defining the interaction.

From a cognitive perspective, graphically represented interac-

tions can be represented as the effect on the different levels of

one variable due to the influence of other variables, that is, how

the effect of variable A is modified by the effect of variable B,

and then how this modification is further affected by variable C,

and so forth. For example, for a problem that involves only bi-

nary variables, if the effect due to the two levels of variable A is

called Adiff, then in a two-way interaction, Adiff is moderated by

variable B, an effect that is represented by B(Adiff). In the

three-way interaction, B(Adiff) is moderated by variable C, an

effect that is represented by C(B(Adiff)), and so on. In this

formulation, A, B, C, and so forth are operator variables, and

each operator creates two difference sizes for its argument, as

follows:

Adiff ! A1; A2 ðtwo bar heights on a graphÞ
BðAdiffÞ ! Adiff1; Adiff2ðfour bar heights on a graphÞ

CðBðAdiffÞÞ ! CðAdiff1; Adiff2Þ ! Adiff11; Adiff12; Adiff21; Adiff22

ðeight bar heights on the graphÞ; and so on:

To understand an interaction, the problem solver must under-

stand all the points on the graph not as individual points, but as

collections that define a cognitive structure. In order to mini-

mize the cognitive load imposed by this structure, the problem

solver may make use of operator variables to generate all values

that are part of the interaction. In this case, the two two-way

graphs in Figure 1a are represented not as separate bar heights,

but as sets of pairs of heights. Within each pair, the height

difference between fresh and frozen is represented as a single

entity, such as preference—that is, in Pinker’s (1990) terms, as

a single predicate. This preference is then influenced by the

variable chocolate versus carrot. It is further influenced by the

variable iced versus plain in the three-way graph (Fig. 1b), and

even further influenced by the variable rich versus low fat in the

four-way graph (Fig. 2b).

Fig. 1. Examples of problems with eight bars. For each problem, par-
ticipants viewed a bar graph and an accompanying verbal description.
(The graphs were presented in blue and yellow, represented here by black
and gray, respectively.) The task was to indicate whether ‘‘greater’’ or
‘‘smaller’’ would correctly complete the final sentence of the description.
Horizontal lines represent 20 units. In the 2 � 2-way problem shown here
(a), the verbal description presented to participants was as follows:
‘‘People prefer fresh cakes to frozen cakes. The difference depends on the
flavor (chocolate vs carrot). Left half(blue): The difference between fresh
and frozen is (greater/smaller) for chocolate cakes than for carrot cakes.
Right half(yellow): The difference between fresh and frozen is (greater/
smaller) for chocolate cakes than for carrot cakes.’’ (The correct answers
for this problem are ‘‘smaller’’ and ‘‘greater,’’ respectively.) In the 3-way
problem shown here (b), the verbal description presented to participants
was as follows: ‘‘People prefer fresh cakes to frozen cakes. The difference
depends on the flavor (chocolate vs carrot) and the type (iced vs plain).
The difference between fresh and frozen increases from chocolate cakes
to carrot cakes. This increase is (greater/smaller) for iced cakes than for
plain cakes.’’ (The correct answer is ‘‘smaller.’’)
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Although an operator-based representation removes the need

to represent all bar heights in order to understand the interac-

tion, it still requires the simultaneous representation and inte-

gration of all the variables on which the interaction is defined.

Thus, the full cognitive representation of an n-way interaction

requires the simultaneous coding of n variables. The two-,

three-, and four-way interactions described in Figures 1 and 2

thus require two, three, and four variables, respectively, to be

related within a single concept.

The complexity of interactions that an individual is able to

interpret is thus a direct measure of the number of variables that

the person can process at one time. This measure holds even if

one elects to represent structures hierarchically, because the

complexity of hierarchical structures can be defined by the

number of variables required for representation (Halford et al.,

1998). In principle, it also holds if the variables are other than

binary because, at least with monotonic effects, each variable

can be coded by the magnitude of its effect.

In the study described next, we used graphical representa-

tions of interactions of varying orders of complexity to manip-

ulate the number of variables that needed to be considered

in one problem-solving decision. In these manipulations, the

memory load was equalized as far as possible, so that it was

processing load rather than storage that was varied. We ex-

Fig. 2. Examples of problems with 16 bars. For each problem, participants viewed a bar graph and an accompanying verbal description.
(The graphs were presented in blue and yellow, represented here by black and gray, respectively.) The task was to indicate whether
‘‘greater’’ or ‘‘smaller’’ would correctly complete the final sentence of the description. Horizontal lines represent 20 units. In the 2 � 3-
way problem shown here (a), the verbal description presented to participants was as follows: ‘‘People prefer fresh cakes to frozen cakes.
The difference depends on the flavor (chocolate vs carrot) and the type (iced vs plain). The difference between fresh and frozen increases
from chocolate cakes to carrot cakes. Left half(blue): This increase is (greater/smaller) for iced cakes than for plain cakes. Right
half(yellow): This increase is (greater/smaller) for iced cakes than for plain cakes.’’ (The correct answers for this problem are ‘‘greater’’
and ‘‘greater,’’ respectively). In the 4-way problem shown here (b), the verbal description presented to participants was as follows:
‘‘People prefer fresh cakes to frozen cakes. The difference depends on the flavor (chocolate vs carrot), the type (iced vs plain) and the
richness (rich vs low fat). The difference between fresh and frozen increases from chocolate cakes to carrot cakes. This increase is
greater for iced cakes than for plain cakes. There is a (greater/smaller) change in the size of the increase for rich cakes than for low fat
cakes.’’ (The correct answer is ‘‘smaller.’’)

72 Volume 16—Number 1

How Many Variables Can Humans Process?



pected that as complexity of interactions increased, processing

difficulty would increase, as measured by number of errors,

solution times, and confidence ratings.

EXPERIMENT 1

The task in this experiment was to interpret graphical presen-

tations of two-, three-, and four-way interactions, which require

two, three, and four variables, respectively, to be processed.

Specifically, the task required participants to choose whether

‘‘greater’’ or ‘‘smaller’’ would be the correct completion of the

final sentence in a verbal description of each interaction.

Method

Participants

To optimize expertise for the task, we recruited 30 participants

who were academic staff and graduate students in psychology

and computer science and had experience in interpreting the

type of data presented.

Materials

Each problem involved selecting the correct form of a verbal

description to match a graphical representation of an interac-

tion based on fictitious data on one of six everyday topics (see

Figs. 1 and 2). The verbal descriptions were written so as to

suggest that the lowest level of difference between pairs be

treated as a single entity, such as a preference or difference

(e.g., ‘‘People prefer fresh cakes to frozen cakes’’). The sen-

tences then described how the other variables in the interaction

affected that preference entity (e.g., ‘‘The difference between

fresh and frozen increases from chocolate cakes to carrot

cakes’’). Thus, the construction of the sentences encouraged

conceptual constructions as described in the representational

analysis just presented, in which a difference between two

levels of one variable is operated on by further variables. To

keep the complexity of the tasks equal at all levels of interac-

tion, we used only binary variables.

The materials were designed to equalize all task character-

istics except for complexity. In the crucial comparisons, the

input memory load was kept as constant as possible by equal-

izing the amount of verbal information and the number of bars.

Thus, 2 two-way interactions were compared with a three-way

interaction using 8 bars (as shown in Figs. 1a and 1b) and 2

three-way interactions were compared with a four-way inter-

action using 16 bars (as shown in Figs. 2a and 2b).

The general configuration of bars was consistent across

problems, regardless of level of complexity. In the 2 � 2-way

and 2 � 3-way displays, two graphs were presented side by

side, one in blue and one in yellow (shown as black and light

gray, respectively, in Figs. 1 and 2). In the single 3-way and

4-way displays, the left half of the bars were shown in blue and

the right half in yellow to ensure comparability with the prob-

lems involving pairs of graphs.

There was no repetition of particular sets of height values

across graphs, to ensure that all problems were independent of

one another. However, the graphs were designed to be as con-

sistent as possible in structure, both to eliminate extraneous

variables and to encourage optimal performance. For example,

the lower-level interactions within a higher-level interaction

were consistent in direction, differing only in magnitude. This

enabled participants to hold constant the directions of the

nested differences and to focus on their relative sizes to deter-

mine the direction of the highest-level interaction (and hence

choose the solution ‘‘greater’’ or ‘‘smaller’’). This consistency in

the direction of differences was maintained across all graphs, so

that problems of different levels of complexity differed essen-

tially only in the number of factors.

To ensure that height differences could be discerned visually,

in all graphs we maintained minimum differences between pairs

of bars representing preferences. For example, if one assigns an

arbitrary value of 20 units to each interval between horizontal

lines in Figures 1 and 2, then the minimum difference between

pairs was 20. Sizes of interactions were also designed to aid

discernibility. The magnitude of each interaction was defined by

the size difference at the highest level of the interaction. For

example, for the left (black) two-way graph in Figure 1a, the

highest-level difference is (140�80)�(160�30)5�70 units.

Across all problem types, three size differences, corresponding

to 50, 60, and 70 units, were used at the highest level of in-

teraction (e.g., all the sample graphs in Figs. 1 and 2 represent

an absolute size difference of 70 at the highest level). Fur-

thermore, minimum differences were maintained for the lower-

level interactions. The minimum difference for two-way inter-

actions nested within the three-way and four-way interaction

problems was 20. The minimum difference for three-way in-

teractions nested within four-way interaction problems was 50.

Each participant was assigned two of the three difference

sizes at the highest level of interaction (50, 60, 70), each oc-

curring equally often over the set of experimental problems.

Each person was assigned just one topic for all problems ad-

ministered, to minimize the amount of new information to be

assimilated for each new problem.

The materials were constructed to reduce the likelihood that

simplification strategies such as elimination or chunking could

be used. Within problems, no bar height was repeated within

sets of bars requiring joint processing, and there was no re-

peated magnitude of difference at any given level of interaction.

Horizontal grid lines aided comparison of bar heights, but there

was no numbering, and calculation was explicitly discouraged.

Procedure

All problems were presented on a laptop computer. The verbal

description of an interaction was presented first, one statement

to a line, to facilitate reference. This description contained two
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possible directions of the interaction. A graph was then dis-

played beneath the text, initially using equal bar heights, to

permit mapping of the descriptor variables onto the corre-

sponding bar labels. To display the bar heights corresponding to

the values for the variables (as in Figs. 1 and 2), participants

held down two widely spaced keys with the first finger of each

hand. This precluded recoding of heights or differences using

fingers. Then participants released the keys (causing the bar

heights to become equal again) and used the mouse to select

either ‘‘greater’’ or ‘‘smaller’’ as the correct completion of the

last sentence of the verbal description for that problem. The

verbal description remained on the screen throughout, so that

participants did not need to retain additional data in working

memory while solving the problem. Solution times were re-

corded for the problem-solving phase (i.e., while the bars were

unequal length). Participants then rated their confidence in

each answer on a scale from 0 (pure guess) to 5 ( fully

confident).

Problems were administered in a single session that com-

prised (a) one demonstration 2 � 2-way problem; (b) one

practice 2 � 2-way problem; (c) one demonstration 3-way

problem; (d) one practice 3-way problem; (e) a set of four ex-

perimental problems, consisting of two 2 � 2-way problems and

two 3-way problems, presented in random order; (f) one dem-

onstration 2 � 3-way problem; (g) one practice 2 � 3-way

problem; (h) one demonstration 4-way problem; (i) one practice

4-way problem; (j) a set of four experimental problems, con-

sisting of two 2 � 3-way problems and two 4-way problems,

presented in random order; and (k) re-presentation of the last 4-

way problem and 2 � 3-way problem, with submitted answers

shown, for tape-recording of a verbal protocol.

The demonstration and practice phases were designed to

provide adequate training and familiarity with the structure of

the problems, while avoiding mental fatigue or the acquisition of

strategies that would circumvent the requirements of the task.

Therefore, problems of the different types were introduced

systematically, building up by one factor at a time from two-way

to three-way, and then from three-way to four-way, using the

same topic as for the experimental problems. The description,

graph, and chosen answer reappeared on the screen after

completion of each demonstration and practice problem, to

provide feedback. No feedback was provided for experimental

problems. Participants were invited to rephrase problems in

their own words if they wished and were offered paper and

pencil to do so, but this option was never used.

Results

Table 1 shows that as the order of the interaction increased, the

number of participants answering one or more problems in-

correctly increased. For 2 � 3-way and 4-way problems, the

McNemar change test showed that this pattern was significant,

w2(1, N5 30)5 6.25, p < .02.

Mean solution times and confidence ratings are given in

Figure 3, which shows that as task complexity increased, speed

and confidence both decreased, particularly between the 2 � 3-

way and 4-way problems. For solution times, one-tailed t tests

revealed that for the 8-bar graphs, there was no significant

difference between the two levels of complexity (2 � 2-way vs.

3-way), t(29)5 0.23, n.s., d5 0.22, whereas for the 16-bar

graphs, there was a significant difference between the two levels

of complexity (2 � 3-way vs. 4-way), t(29)5 3.83, p < .05,

TABLE 1

Number of Participants Answering Neither, One, or Both

Problems of Each Type Correctly

Problem type

Score 2 � 2-way 3-way 2 � 3-way 4-way

Both correct 30 26 23 13

One incorrect 0 4 7 13

Both incorrect 0 0 0 4

Note. N5 30.

Fig. 3. Mean solution times and confidence ratings as a function of
problem type in Experiment 1.
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d5 0.68. For confidence ratings, there were significant differ-

ences between the 2 � 2-way and the 3-way problems, t(29)5

4.04, p< .05, d5 0.71, and between the 2 � 3-way and the

4-way problems, t(29)5 5.04, p< .05, d5 0.89. Variations in

the graphical form of the interaction used did not influence the

findings: The three sizes of the difference at the highest level

did not interact with the observed effects.

A curve fit applied to the percentage of correct responses

yielded the quadratic function P5 511 45.5N� 10.5N2 (where

P 5 percentage correct and N 5 level of interaction). This

function accounts for all of the variance (R25 1.00). The func-

tion extrapolates to chance level (50%) between four-way and

five-way problems. This prediction was tested in Experiment 2.

The mean solution times and confidence ratings calculated

only from problems answered correctly were almost identical to

those shown in Figure 3 for the complete data set. The largest

differences were for the four-way problems, for which the mean

solution time for correct answers was 78.28 s, as opposed to

76.85 for all problems, and the mean confidence rating was 3.25

instead of 3.12.

The verbal protocols for the three- and four-way interactions

indicated that processing-load difficulties, reported by 10 of the

30 participants, were exclusive to four-way problems (e.g.,

‘‘This is what I’m having trouble holding onto,’’ ‘‘Everything fell

apart and I had to go back,’’ ‘‘I kept losing information’’).

EXPERIMENT 2

The task in this experiment was to interpret a graphical rep-

resentation of a five-way interaction, which required five vari-

ables to be processed.

Method

Participants

Twenty-two of the 30 participants from Experiment 1 were

available to take part in Experiment 2. In terms of their per-

formance on the problems, Experiment 2 participants were

representative of the original sample: Ten had previously an-

swered both four-way problems correctly, 10 had answered one

correctly, and 2 had answered both incorrectly (out of 13, 13,

and 4, respectively, for the original sample).

Materials and Procedure

Participants were presented with a five-way problem, con-

structed using 2 four-way bar graphs, one blue and one yellow,

presented side by side on paper, with labels and a full written

description of both interactions. Each person received a prob-

lem involving the same topic as in the first experiment. Par-

ticipants were asked to say whether the interaction was larger in

the blue or the yellow graph, which were said to represent dif-

ferent (fictional) surveys. Thus, the problem was similar to those

in the previous experiment, but with a fifth factor added.

Results

Twelve participants gave correct responses, and 10 gave in-

correct responses, which is no better than chance. This result is

consistent with the extrapolation from Experiment 1. The mean

confidence rating was 2.28, which is lower than the mean

confidence rating for the four-way interactions. Seven of the 22

participants gave explicit verbal indications of processing-load

difficulties (e.g., ‘‘It becomes too much’’; ‘‘When I got to the 5th

level, I just lost track’’; ‘‘My brain wouldn’t really do the com-

parison at that level’’).

DISCUSSION

All dependent measures, that is, the number of correct prob-

lems, solution times, and confidence ratings, indicated a dis-

proportionate decline in performance from 2 � 3-way

interactions to 4-way interactions, as compared with the tran-

sition from 2 � 2-way interactions to 3-way interactions. Fur-

thermore, verbal indications of processing-load difficulties were

exclusive to 4-way problems and 5-way problems. Given the

controls that were built into the design of the graphs, which

minimized differences due to storage or configurations, we can

conclude that the increased level of difficulty for the 4- and

5-way problems was due to increased processing loads.

The results show that a four-way interaction is difficult even

for experienced adults to process without external aids. A soft

limit is indicated by the decline from three- to four-way inter-

actions, with five-way problems being performed no better than

chance. A four-way interaction requires four variables to be

integrated in a representation, so our findings suggest that a

structure defined on four variables is at the limit of human

processing capacity. This limit of four variables would coordi-

nate well with visual and short-term memory capacities of four

items (Cowan, 2001; Luck & Vogel, 1997) and is consistent with

predictions from symbolic connectionist models (Halford et al.,

1998; Hummel & Holyoak, 2003).

Processing loads required for the 2 � 3-way and 4-way

problems differed because two 3-way problems can be pro-

cessed independently, and a solution can be stored for each,

whereas the two halves of a 4-way problem must be processed

relative to each other, and cannot be decomposed into separate

problems. Therefore, the increase in working memory load from

the 2 � 3-way to the 4-way problems was not simply due to the

amount of information that was stored, but was due to the

number of variables that had to be related in the representations

of the problems.

The results imply that the strategies for reasoning and deci-

sion making must entail processing of no more than four vari-

ables in any one cognitive step. However, more complex tasks

can be processed by a number of well-established means.

Conceptual chunking (Andrews & Halford, 2002; Halford et al.,

1998) is analogous to collapsing over variables in analysis of

variance and can be used to reduce the number of variables

Volume 16—Number 1 75

G.S. Halford et al.



processed in one step, but at the cost that relations between

chunked variables become temporarily inaccessible. For ex-

ample, velocity equals distance divided by time (V5 dt�1).

However, if velocity is reduced to a single variable, as in the

scale on a speedometer, one cannot answer questions such as

‘‘What would happen to an object’s velocity if the object travels

the same distance in half the time?’’ It is possible to answer such

questions only by processing three variables, according to the

formula V5 dt�1. One can chunk velocity as a single variable

in order to process acceleration as a difference between ve-

locities at two times, t1 and t2 (A5 V1� V2). Then acceleration

can be chunked as a single variable to define force as mass

times acceleration (F5MA), and so on. Alternatively, one can

segment complex tasks into simpler subtasks that are performed

serially, but representations in any one segment will not include

relations to variables in other segments. Therefore, effective

problem-solving strategies must include a sequence of steps

that process all the relevant relations between variables, but

never require more than four variables in one step.

It is a major function of expertise to recognize higher-order

variables that relate chunked representations of lower-order

variables. Velocity is a higher-order variable that relates time

and distance, acceleration relates changes in velocity to time,

and force relates acceleration and mass. Variance, defined as

the mean squared deviations from a mean, is an example of a

higher-order variable that forms part of the expertise of psy-

chological scientists. Knowledge of higher-order variables can

be applied to interpretation of interactions, by chunking values

of two or more variables into a trend or a configuration. How-

ever, our findings suggest that the underlying cognitive proc-

esses in such tasks represent a maximum of approximately four

variables.

Higher-order variables are used to overcome capacity limi-

tations in both academic and applied contexts, especially in

complex tasks such as air-traffic control (Boag, 2003). The tasks

that are most intractably difficult are those in which conceptual

chunking and segmentation are constrained, as in interpretation

of interactions, knights-and-knaves tasks (Birney & Halford,

2002), and some problems that have been prominent in cogni-

tive development research (Andrews & Halford, 2002).
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